
St. Johns College of Engineering & Technology

Course Code OPERATING SYSTEMS
(Common to CSE, IT, CSE(DS), CSE (IoT),

CSE (AI), CSE (AI & ML) and AI &
DS)

L T P C
20A05402T 3 0 0 3

Pre-requisite Basics of CO and DBMS Semester I
V

UNIT - I Operating Systems Overview, System Structures 8Hrs
Operating Systems Overview: Introduction, Operating system functions, Operating
systems operations, Computing environments, Open-Source Operating Systems
System Structures: Operating System Services, User and Operating-System Interface,
systems calls, Types of System Calls, system programs, Operating system Design and
Implementation, Operating system structure, Operating system debugging, System Boot.
UNIT - II Process Concept, Multithreaded

 Programming,Process
Scheduling, Inter-process Communication

10Hrs

Process Concept: Process scheduling, Operations on processes, Inter-process
communication, Communication in client server systems.
Multithreaded Programming: Multithreading models, Thread libraries, Threading issues,
Examples. Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms,
Multiple processor scheduling, Thread scheduling, Examples.
Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion
with busy
waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers,
Classical IPC Problems - Dining philosophers problem, Readers and writers problem.
UNIT - III Memory-Management Strategies, Virtual

 Memory Management
Lecture
8Hrs

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation,
Paging, Segmentation, Examples.
Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page
replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation,
Examples.
UNIT - IV Deadlocks, File Systems Lecture

9Hrs
Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock
detection And recovery, Deadlock avoidance, Deadlock prevention.
File Systems: Files, Directories, File system implementation, management and optimization.
Secondary-Storage Structure: Overview of disk structure, and attachment, Disk
scheduling, RAID structure, Stable storage implementation.
UNIT - V System Protection, System Security Lecture

8Hrs
System Protection: Goals of protection, Principles and domain of protection, Access
matrix, Access control, Revocation of access rights.
System Security: Introduction, Program threats, System and network threats, Cryptography
as a security, User authentication, implementing security defenses, firewalling to protect
systems and networks, Computer security classification.
Case Studies: Linux, Microsoft Windows.
Textbooks:

1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th
edition, Wiley, 2016.

2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson
Education, 2008. (Topics: Inter-process Communication and File systems.)

Reference Books:
1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation,

3rd edition, PHI, 2006.
2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata

McGraw- Hill, 2012.
3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition,

Pearson Education, 2009
4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

Online Learning Resources:
https://nptel.ac.in/courses/106/106/106106144/
http://peterindia.net/OperatingSystems.html

https://nptel.ac.in/courses/106/106/106106144/
http://peterindia.net/OperatingSystems.html

UNIT-1
Introduction
An operating system acts as an intermediary between the user of a computer and
the computer hardware. The purpose of an operating system is to provide an
environment in which a user can execute programs in a convenient and efficient
manner.
An operating system is software that manages the computer hard-ware. The
hardware must provide appropriate mechanisms to ensure the correct operation of
the computer system and to prevent user programs from interfering with the
proper operation of the system.
Internally, operating systems vary greatly in their makeup, since they are
organized along many different lines. The design of a new operating system is a
major task. It is important that the goals of the system be well defined before the
design begins. These goals form the basis for choices among various algorithms
and strategies.
Because an operating system is large and complex, it must be created piece by
piece. Each of these pieces should be a well-delineated portion of the system,
with carefully defined inputs, outputs, and functions.

OBJECTIVES

1. To describe the basic organization of computer systems.
2. To provide a grand tour of the major components of operating systems.
3. To give an overview of the many types of computing environments.
4. To explore several open-source operating systems.
5. To describe the services an operating system provides to users,

processes, and other systems.
6. To discuss the various ways of structuring an operating system.
7. To explain how operating systems are installed and customized and

how they boot.

1.1 Operating System:
An operating system is a program that manages a computer’s hardware. It also
provides a basis for application programs and acts as an intermediary between the
computer user and the computer hardware. An amazing aspect of operating
systems is how they vary in accomplishing these tasks. Mainframe operating
systems are designed primarily to optimize utilization of hardware. Personal
computer (PC) operating systems support complex games, business applications,
and everything in between. Operating systems for mobile com-puters provide an

environment in which a user can easily interface with the computer to execute
programs. Thus, some operating systems are designed to be convenient, others to
be efficient, and others to be some combination of the two.

User user user user
…

1 2 3 n

Figure 1.1 Abstract view of the components of a computer system.

What Operating Systems Do
We begin our discussion by looking at the operating system’s role in the

overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs, and
the users (Figure 1.1).

The hardware — the central processing unit (CPU), the memory, and
the input/output (I/O) devices — provides the basic computing resources for the
system. The application programs — such as word processors, spreadsheets,
compilers, and Web browsers — define the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for the
various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is similar
to a government. Like a government, it performs no useful function by itself. It
simply provides an environment within which other programs can do useful
work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

User View

The user’s view of the computer varies according to the interface being

Compiler, assembler text editor … database system

System and application programs

Operating system

computer hardware

used. Most computer users sit in front of a PC, consisting of a monitor, keyboard,
mouse, and system unit. Such a system is designed for one user to monopolize its
resources. The goal is to maximize the work (or play) that the user is performing.
In this case, the operating system is designed mostly for ease of use, with some
attention paid to performance and none paid to resource utilization, how various
hardware and software resources are shared. Performance is, important to the
user; but such systems are optimized for the single-user experience rather than the
requirements of multiple users.

In other cases, a user sits at a terminal connected to a mainframe or a
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utilization — to
assure that all available CPU time, memory, and I/O are used efficiently and that
no individual user takes more than her fair share.

In still other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers, including
file, compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of mobile computers, such as smartphones and
tablets, have come into fashion. Most mobile computers are standalone units for
individual users. Quite often, they are connected to networks through cellular or
other wireless technologies. Increasingly, these mobile devices are replacing
desktop and laptop computers for people who are primarily interested in using
computers for e-mail and web browsing. The user interface for mobile computers
generally features a touch screen, where the user interacts with the system by
pressing and swiping fingers across the screen rather than using a physical
keyboard and mouse.

1.1.2. System View
From the computer’s point of view, the operating system is the program

most intimately involved with the hardware. In this context, we can view an
operating system as a resource allocator. A computer system has many resources
that may be required to solve a problem: CPU time, memory space, file-storage
space, I/O devices, and so on. The operating system acts as the manager of these
resources. Facing numerous and possibly conflicting requests for resources, the
operating system must decide how to allocate them to specific programs and users
so that it can operate the computer system efficiently and fairly.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A control program manages the execution of user programs to
prevent errors and improper use of the computer. It is especially concerned with
the operation and control of I/O devices.
1.2 Operating System Functions

 1.2.1 Process Management
A program does nothing unless its instructions are executed by a CPU.

A program in execution, as mentioned, is a process. A word-processing
program being run by an individual user on a PC is a process. A system task,
such as sending output to a printer, can also be a process (or at least part of
one).

A process needs certain resources — including CPU time, memory,
files, and I/O devices — to accomplish its task. These resources are either
given to the process when it is created or allocated to it while it is running. In
addition to the various physical and logical resources that a process obtains
when it is created, various initialization data (input) may be passed along. For
example, consider a process whose function is to display the status of a file on
the screen of a terminal.

We emphasize that a program by itself is not a process. A program is a
passive entity, like the contents of a file stored on disk, whereas a process is an
active entity. A single-threaded process has one program counter specifying
the next instruction to execute. The execution of such a process must be
sequential. The CPU executes one instruction of the process after another, until
the process completes. Further, at any time, one instruction at most is executed
on behalf of the process.

A process is the unit of work in a system. A system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently —
by multiplexing on a single CPU, for example.

The operating system is responsible for the following activities in
connection with process management:

1) Scheduling processes and threads on the CPUs
2) Creating and deleting both user and system processes
3) Suspending and resuming processes
4) Providing mechanisms for process synchronization
5) Providing mechanisms for process communication

 1.2.2 Memory Management
Main memory is a large array of bytes, ranging in size from hundreds

of thousands to billions. Each byte has its own address. Main memory is a
repository of quickly accessible data shared by the CPU and I/O devices. The
central processor reads instructions from main memory during the instruction-
fetch cycle and both reads and writes data from main memory during the data-
fetch cycle (on a von Neumann architecture). The main memory is generally
the only large storage device that the CPU is able to address and access

directly. For example, for the CPU to process data from disk, those data must
first be transferred to main memory by CPU-generated I/O calls. In the same
way, instructions must be in memory for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses
and loaded into memory. As the program executes, it accesses program
instructions and data from memory by generating these absolute addresses.
Eventually, the program terminates, its memory space is declared available,
and the next program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the
computer’s response to its users, general-purpose computers must keep several
programs in memory, creating a need for memory management. Many different
memory-management schemes are used.
The operating system is responsible for the following activities in connection
with memory management:

1) Keeping track of which parts of memory are currently being used and
who is using them

2) Deciding which processes (or parts of processes) and data to move
into and out of memory

3) Allocating and deallocating memory space as needed

 1.2.3 Storage Management

To make the computer system convenient for users, the operating
system provides a uniform, logical view of information storage. The operating
system abstracts from the physical properties of its storage devices to define a
logical storage unit, the file. The operating system maps files onto physical
media and accesses these files via the storage devices.

 1.2.3.1 File-System Management

File management is one of the most visible components of an operating
system. Computers can store information on several different types of physical
media. Magnetic disk, optical disk, and magnetic tape are the most
common. Each of these media has its own characteristics and physical
organization. Each medium is controlled by a device, such as a disk drive or
tape drive, that also has its own unique characteristics. These properties include
access speed, capacity, data-transfer rate, and access method (sequential or
random).

A file is a collection of related information defined by its creator.
Commonly, files represent programs (both source and object forms) and data.
Data files may be numeric, alphabetic, alphanumeric, or binary. Files may be
free-form (for example, text files), or they may be formatted rigidly (for
example, fixed fields). Clearly, the concept of a file is an extremely general
one.

The operating system implements the abstract concept of a file by

managing mass-storage media, such as tapes and disks, and the devices that
control them. In addition, files are normally organized into directories to make
them easier to use. Finally, when multiple users have access to files, it may be
desirable to control which user may access a file and how that user may access

it (for example, read, write, append).
The operating system is responsible for the following activities in connection
with file management:
1) Creating and deleting files
2) Creating and deleting directories to organize files
3) Supporting primitives for manipulating files and directories
4) Mapping files onto secondary storage
5) Backing up files on stable (nonvolatile) storage media

1.2.3.2 Mass-Storage Management

As we have already seen, because main memory is too small to
accommodate all data and programs, and because the data that it holds are
lost when power is lost, the computer system must provide secondary storage
to back up main memory. Most modern computer systems use disks as the
principal on- line storage medium for both programs and data. Most programs
— including compilers, assemblers, word processors, editors, and formatters
— are stored on a disk until loaded into memory. They then use the disk as both
the source and destination of their processing. Hence, the proper management
of disk storage is of central importance to a computer system. The operating
system is responsible for the following activities in connection with disk
management:

Free-space management
Storage allocation
Disk scheduling

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, storage of seldom-used data, and long-term archival storage are some
examples. Magnetic tape drives and their tapes and CD and DVD drives and
platters are typical tertiary storage devices. The media (tapes and optical
platters) vary between WORM (write-once, read-many-times) and RW (read –
write) formats.

Tertiary storage is not crucial to system performance, but it still must be
managed. Some operating systems take on this task, while others leave tertiary-
storage management to application programs

1.2.3.3Caching

Caching is an important principle of computer systems. Here’s how it
works. Information is normally kept in some storage system (such as main
memory). As it is used, it is copied into a faster storage system — the cache —
on a temporary basis. When we need a particular piece of information, we first
check whether it is in the cache. If it is, we use the information directly from
the cache. If it is not, we use the information from the source, putting a copy in
the cache under the assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main

memory.
Other caches are implemented totally in hardware. For instance, most

systems have an instruction cache to hold the instructions expected to be
executed next. Without this cache, the CPU would have to wait several cycles
while an instruction was fetched from main memory.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement policy
can result in greatly increased performance. Figure 1.11 compares storage
performance in large workstations and small servers.

Main memory can be viewed as a fast cache for secondary storage,
since data in secondary storage must be copied into main memory for use
and data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory. In addition, solid-state disks may be used for high-speed storage that
is accessed through the file-system interface. The bulk of secondary storage is
on magnetic disks.

Level 1 2 3 4 5

Name

registers

cache

main
memory

solid state
disk

magnetic
disk

Typical size < 1 KB < 16MB < 64GB < 1 TB < 10 TB
Implementat
ion

custom
memory

on-chip
or

CMOS
SRAM

flash
memory

magnetic
disk

technology

with
multiple

off-chip

 ports
CMOS

CMOS
SRAM

Access time
(ns)

0.25 - 0.5

0.5 - 25

80 - 250

25,000 -
50,000

5,000,000

Bandwidth
(MB/sec)

20,000 -
100,000

5,000 -
10,000

1,000 -
5,000

500

20 – 150

Managed by

compiler

hardwar
e

operating
system

operating
system

operating
system

Backed by

cache

main
memory

disk

disk

disk or
tape

Performance of various levels of storage.

magnetic main
cache hardware

A A A
disk memory register

Migration of integer A from disk to register.

In a hierarchical storage structure, the same data may appear in

different levels of the storage system. For example, suppose that an integer A
that is to be incremented by 1 is located in file B, and file B resides on
magnetic disk. The increment operation proceeds by first issuing an I/O
operation to copy the disk block on which A resides to main memory. This
operation is followed by copying A to the cache and to an internal register.
Thus, the copy of A appears in several places: on the magnetic disk, in main
memory, in the cache, and in an internal register (see Figure 1.12). Once the
increment takes place in the internal register, the value of A differs in the
various storage systems. The value of A becomes the same only after the new
value of A is written from the internal register back to the magnetic disk.

 1.2.4 I/O Systems
One of the purposes of an operating system is to hide the peculiarities

of specific hardware devices from the user. For example, in UNIX, the
peculiarities of I/O devices are hidden from the bulk of the operating system
itself by the I/O subsystem. The I/O subsystem consists of several
components:
1) A memory-management component that includes buffering, caching,

and spooling
2) A general device-driver interface
3) Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to
which it is assigned.

1.2.5 Protection and Security

If a computer system has multiple users and allows the concurrent
execution of multiple processes, then access to data must be regulated. For that
purpose, mechanisms ensure that files, memory segments, CPU, and other
resources can be operated on by only those processes that have gained proper
authorization from the operating system. For example, memory-addressing
hardware ensures that a process can execute only within its own address space.
The timer ensures that no process can gain control of the CPU without
eventually relinquishing control. Device-control registers are not accessible to
users, so the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of
processes or users to the resources defined by a computer system. This
mechanism must provide means to specify the controls to be imposed and to
enforce the controls.

Protection can improve reliability by detecting latent errors at the
interfaces between component subsystems. Early detection of interface errors
can often prevent contamination of a healthy subsystem by another subsystem
that is malfunctioning. Furthermore, an unprotected resource cannot defend
against use (or misuse) by an unauthorized or incompetent user.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication
information (her means of identifying herself to the system) is stolen. Her data

could be copied or deleted, even though file and memory protection are
working. It is the job of security to defend a system from external and
internal attacks. Such attacks spread across a huge range and include viruses
and worms, denial-of- service attacks (which use all of a system’s resources
and so keep legitimate users out of the system), identity theft, and theft of
service (unauthorized use of a system). Prevention of some of these attacks is
considered an operating-system function on some systems, while other systems
leave it to policy or additional software.

Protection and security require the system to be able to distinguish
among all its users. Most operating systems maintain a list of user names and
associated user identifiers (user IDs). In Windows parlance, this is a security
ID (SID). These numerical IDs are unique, one per user. When a user logs in to
the system, the authentication stage determines the appropriate user ID for the
user. That user ID is associated with all of the user’s processes and threads.
When an ID needs to be readable by a user, it is translated back to the user
name via the user name list.

In some circumstances, we wish to distinguish among sets of users
rather than individual users. For example, the owner of a file on a UNIX
system may be allowed to issue all operations on that file, whereas a selected
set of users may be allowed only to read the file. To accomplish this, we need
to define a group name and the set of users belonging to that group. Group
functionality can be implemented as a system-wide list of group names and
group identifiers. A user can be in one or more groups, depending on
operating-system design decisions. The user’s group IDs are also included in
every associated process and thread.

 1.3. Operating-System Operations
Modern operating systems are interrupt driven. If there are no

processes to execute, no I/O devices to service, and no users to whom to
respond, an operating system will sit quietly, waiting for something to happen.
Events are almost always signaled by the occurrence of an interrupt or a trap.
A trap (or an exception) is a software-generated interrupt caused either by an
error (for example, division by zero or invalid memory access) or by a specific
request from a user program that an operating-system service be performed.

Since the operating system and the users share the hardware and
software resources of the computer system, we need to make sure that an error
in a user program could cause problems only for the one program running.
With sharing, many processes could be adversely affected by a bug in one
program. For example, if a process gets stuck in an infinite loop, this loop
could prevent the correct operation of many other processes. More subtle errors
can occur in a multiprogramming system, where one erroneous program might
modify another program, the data of another program, or even the operating
system itself.

 1.3.1 Dual-Mode and Multimode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide

hardware support that allows us to differentiate among various modes of
execution.

Figure 1.10 Transition from user to kernel mode.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we can
distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill the
request. This is shown in Figure 1.10. As we shall see, this architectural
enhancement is useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to a
user program.

The dual mode of operation provides us with the means for protecting

the operating system from errant users — and errant users from one another.
We accomplish this protection by designating some of the machine instructions
that may cause harm as privileged instructions. The hardware allows
privileged instructions to be executed only in kernel mode. If an attempt is
made to execute a privileged instruction in user mode, the hardware does not

execute the instruction but rather treats it as illegal and traps it to the operating
system.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user
program’s behalf. A system call is invoked in a variety of ways, depending on
the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
(such as MIPS) have a specific syscall instruction to invoke a system call.

 1.3.2 Timer

We must ensure that the operating system maintains control over the
CPU. We cannot allow a user program to get stuck in an infinite loop or to fail
to call system services and never return control to the operating system. To
accomplish this goal, we can use a timer. A timer can be set to interrupt the
computer after a specified period. The period may be fixed (for example, 1/60
second) or variable (for example, from 1 millisecond to 1 second). A variable
timer is generally implemented by a fixed-rate clock and a counter. The
operating system sets the counter. Every time the clock ticks, the counter is
decremented. When the counter reaches 0, an interrupt occurs. For instance, a
10-bit counter with a 1-millisecond clock allows interrupts at intervals from 1
millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

 1.4 Computing Environments
We turn now to a discussion of how operating systems are used in a variety
of computing environments.

1.4.1 Traditional Computing

As computing has matured, the lines separating many of the traditional
computing environments have blurred. Consider the ―typical office
environment.‖ Just a few years ago, this environment consisted of PCs
connected to a network, with servers providing file and print services. Remote
access was awkward, and portability was achieved by use of laptop computers.
Terminals attached to mainframes were prevalent at many companies as well,
with even fewer remote access and portability options.

The current trend is toward providing more ways to access these
computing environments. Web technologies and increasing WAN bandwidth
are stretching the boundaries of traditional computing. Companies establish
portals, which provide Web accessibility to their internal servers. Network
computers (or thin clients) — which are essentially terminals that

understand web-based computing — are used in place of traditional
workstations where more security or easier maintenance is desired. Mobile
computers can synchronize with PCs to allow very portable use of company
information. Mobile computers can also connect to wireless networks and
cellular data networks to use the company’s Web portal (as well as the myriad
other Web resources).

At home, most users once had a single computer with a slow modem
connection to the office, the Internet, or both. Today, network-connection
speeds once available only at great cost are relatively inexpensive in many
places, giving home users more access to more data. These fast data
connections are allowing home computers to serve up Web pages and to run
networks that include printers, client PCs, and servers. Many homes use
firewalls to protect their networks from security breaches.

In the latter half of the 20th century, computing resources were
relatively scarce. For a period of time, systems were either batch or interactive.
Batch systems processed jobs in bulk, with predetermined input from files or
other data sources. Interactive systems waited for input from users. To
optimize the use of the computing resources, multiple users shared time on
these systems. Time- sharing systems used a timer and scheduling algorithms
to cycle processes rapidly through the CPU, giving each user a share of the
resources.

Today, traditional time-sharing systems are uncommon. The same
scheduling technique is still in use on desktop computers, laptops, servers, and
even mobile computers, but frequently all the processes are owned by the same
user (or a single user and the operating system). User processes, and system
processes that provide services to the user, are managed so that each frequently
gets a slice of computer time. Consider the windows created while a user is
working on a PC, the fact that they may be performing different tasks at the
same time. Even a web browser can be composed of multiple processes, one
for each website currently being visited, with time sharing applied to each web
browser process.

1.4.2 Mobile Computing

Mobile computing refers to computing on handheld smartphones and
tablet computers. These devices share the distinguishing physical features of
being portable and lightweight. Historically, compared with desktop and laptop
computers, mobile systems gave up screen size, memory capacity, and overall
functionality in return for handheld mobile access to services such as e-mail
and web browsing.

Today, mobile systems are used not only for e-mail and web browsing
but also for playing music and video, reading digital books, taking photos, and
recording high-definition video. Accordingly, tremendous growth continues
in the wide range of applications that run on such devices. Many developers are
now designing applications that take advantage of the unique features of mobile
devices, such as global positioning system (GPS) chips, accelerometers, and
gyroscopes. An embedded GPS chip allows a mobile device to use satellites
to determine its precise location on earth. That functionality is especially useful
in designing applications that provide navigation — for example, telling users

which way to walk or drive or perhaps directing them to nearby services, such
as restaurants. An accelerometer allows a mobile device to detect its
orientation with respect to the ground and to detect certain other forces, such as
tilting and shaking.

Two operating systems currently dominate mobile computing: Apple
iOS and Google Android. iOS was designed to run on Apple iPhone and iPad
mobile devices. Android powers smartphones and tablet computers available
from many manufacturers.

 1.4.3 Distributed Systems

A distributed system is a collection of physically separate, possibly
heterogeneous, computer systems that are networked to provide users with
access to the various resources that the system maintains. Access to a shared
resource increases computation speed, functionality, data availability, and
reliability.

A network, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
and it provides the fundamental architecture of the Internet. Most operating
systems support TCP/IP, including all general-purpose ones.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a building,
or a campus. A wide-area network (WAN) usually links buildings, cities, or
countries. A global company may have a WAN to connect its offices
worldwide, for example. These networks may run one protocol or several
protocols. The continuing advent of new technologies brings about new forms
of networks. For example, a metropolitan-area network (MAN) could link
buildings within a city. BlueTooth and 802.11 devices use wireless technology
to communicate over a distance of several feet, in essence creating a personal-
area network (PAN) between a phone and a headset or a smartphone and a
desktop computer. These networks also vary in their performance and
reliability.

Some operating systems have taken the concept of networks and
distributed systems further than the notion of providing network connectivity.
A network operating system is an operating system that provides features
such as file sharing across the network, along with a communication scheme
that allows different processes on different computers to exchange messages. A
computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is able
to communicate with other networked computers.

1.4.4 Client – Server Computing

As PCs have become faster, more powerful, and cheaper, designers
have shifted away from centralized system architecture. Terminals connected
to centralized systems are now being supplanted by PCs and mobile devices.
Correspondingly, user-interface functionality once handled directly by

centralized systems is increasingly being handled by PCs, quite often through a
web interface. As a result, many of today’s systems act as server systems to
satisfy requests generated by client systems. This form of specialized
distributed system, called a client – server system, has the general structure
depicted in Figure 1.18.
Server systems can be broadly categorized as compute servers and file servers:
The compute-server system provides an interface to which a client can send a
request to perform an action (for example, read data). In response, the server
executes the action and sends the results to the client. A server running a
database that responds to client requests for data is an example of such a
system.
The file-server system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a web
server that delivers files to clients running web browsers.

General structure of a client – server system.

 1.4.5 Peer-to-Peer Computing
Another structure for a distributed system is the peer-to-peer (P2P)

system model. In this model, clients and servers are not distinguished from one
another. Instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the
network of peers. Once a node has joined the network, it can begin providing
services to — and requesting services from — other nodes in the network.
Determining what services are available is accomplished in one of two general
ways:

When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first contacts
this centralized lookup service to determine which node provides the service. The
remainder of the communication takes place between the client and the service
provider.

An alternative scheme uses no centralized lookup service. Instead, a
peer acting as a client must discover what node provides a desired service by

client

client client

client client

broadcasting a request for the service to all other nodes in the network. The
node (or nodes) providing that service responds to the peer making the request.
To support this approach, a discovery protocol must be provided that allows
peers to discover services provided by other peers in the network. Figure 1.19
illustrates such a scenario.

Peer-to-peer networks gained widespread popularity in the late 1990s
with several file-sharing services, such as Napster and Gnutella, that enabled
peers to exchange files with one another. The Napster system used an approach
similar to the first type described above: a centralized server maintained an index
of all files stored on peer nodes in the Napster network, and the actual exchange
of files took place between the peer nodes. The Gnutella system used a technique
similar to the second type: a client broadcasted file requests to other nodes in the
system, and nodes that could service the request responded directly to the client.

Peer-to-peer system with no centralized service.

Skype is another example of peer-to-peer computing. It allows clients

to make voice calls and video calls and to send text messages over the Internet
using a technology known as voice over IP (VoIP). Skype uses a hybrid peer-
to-peer approach. It includes a centralized login server, but it also incorporates
decentralized peers and allows two peers to communicate.

 1.4.6 Virtualization

Virtualization is a technology that allows operating systems to run as
applications within other operating systems. At first blush, there seems to be
little reason for such functionality.

Broadly speaking, virtualization is one member of a class of software
that also includes emulation. Emulation is used when the source CPU type is
different from the target CPU type. For example, when Apple switched from
the IBM Power CPU to the Intel x86 CPU for its desktop and laptop
computers, it included an emulation facility called ―Rosetta,‖ which
allowed applications compiled for the IBM CPU to run on the Intel CPU.

A common example of emulation occurs when a computer language is
not compiled to native code but instead is either executed in its high-level form
or translated to an intermediate form. This is known as interpretation. Some

languages, such as BASIC, can be either compiled or interpreted. Java, in
contrast, is always interpreted. Interpretation is a form of emulation in that the
high-level language code is translated to native CPU instructions, emulating
not another CPU but a theoretical virtual machine on which that language
could run natively. Thus, we can run Java programs on ―Java virtual
machines,‖ but technically those virtual machines are Java emulators.

With virtualization, in contrast, an operating system that is natively
compiled for a particular CPU architecture runs within another operating
system also native to that CPU. Virtualization first came about on IBM
mainframes as a method for multiple users to run tasks concurrently. Running
multiple virtual machines allowed (and still allows) many users to run tasks on
a system designed for a single user. Later, in response to problems with
running multiple Microsoft Windows XP applications on the Intel x86 CPU,
VMware created a new virtualization technology in the form of an application
that ran on XP. That application ran one or more guest copies of Windows or
other native x86 operating systems, each running its own applications. (See
Figure 1.20.) Windows was the host operating system, and the VMware
application was the virtual machine manager VMM. The VMM runs the guest
operating systems, manages their resource use, and protects each guest from
the others.

VMware.

Even though modern operating systems are fully capable of running
multiple applications reliably, the use of virtualization continues to grow. On
laptops and desktops, a VMM allows the user to install multiple operating
systems for exploration or to run applications written for operating systems
other than the native host. For example, an Apple laptop running Mac OS X on
the x86 CPU can run a Windows guest to allow execution of Windows
applications. Companies writing software for multiple operating systems can
use virtualization to run all of those operating systems on a single physical
server for development, testing, and debugging. Within data centers,
virtualization has become a common method of executing and managing
computing environments. VMMs like VMware, ESX, and Citrix XenServer no
longer run on host operating systems but rather are the hosts.

1.4.7. Cloud Computing

Cloud computing is a type of computing that delivers computing,
storage, and even applications as a service across a network. In some ways, it’s
a logical extension of virtualization, because it uses virtualization as a base for
its functionality. For example, the Amazon Elastic Compute Cloud (EC2)
facility has thousands of servers, millions of virtual machines, and petabytes of
storage available for use by anyone on the Internet. Users pay per month based
on how much of those resources they use.

There are actually many types of cloud computing, including the following:
Public cloud — a cloud available via the Internet to anyone willing to
pay for the services
Private cloud — a cloud run by a company for that company’s own use
Hybrid cloud — a cloud that includes both public and private cloud
components
Software as a service (SaaS) — one or more applications (such as
word processors or spreadsheets) available via the Internet
Platform as a service (PaaS) — a software stack ready for application use via
the Internet (for example, a database server)
Infrastructure as a service (IaaS) — servers or storage available over the
Internet (for example, storage available for making backup copies of production
data)

These cloud-computing types are not discrete, as a cloud computing environ-
ment may provide a combination of several types. For example, an organization
may provide both SaaS and IaaS as a publicly available service.

Certainly, there are traditional operating systems within many of the types of
cloud infrastructure. Beyond those are the VMMs that manage the virtual
machines in which the user processes run. At a higher level, the VMMs
themselves are managed by cloud management tools, such as Vware vCloud
Director and the open-source Eucalyptus toolset. These tools manage the
resources within a given cloud and provide interfaces to the cloud components,
making a good argument for considering them a new type of operating system.

Figure 1.21 illustrates a public cloud providing IaaS. Notice that both the cloud
services and the cloud user interface are protected by a firewall.

Cloud computing.

1.4.8Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in
existence. These devices are found everywhere, from car engines and
manufacturing robots to DVDs and microwave ovens. They tend to have very
specific tasks. The systems they run on are usually primitive, and so the
operating systems provide limited features. Usually, they have little or no user
interface, preferring to spend their time monitoring and managing hardware
devices, such as automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems — such as Linux — with
special- purpose applications to implement the functionality. Others are hard-
ware devices with a special-purpose embedded operating system providing just
the functionality desired. Yet others are hardware devices with application-
specific integrated circuits (ASICs) that perform their tasks without an
operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as elements of networks and the web, is
sure to increase as well. Even now, entire houses can be computerized, so that
a central computer — either a general-purpose computer or an embedded
system — can control heating and lighting, alarm systems, and even coffee

makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator can notify the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. A
real-time system is used when rigid time requirements have been placed on the
operation of a processor or the flow of data; thus, it is often used as a control
device in a dedicated application. Sensors bring data to the computer. The
computer must analyze the data and possibly adjust controls to modify the
sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-time
systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.
 1.5 Open-Source Operating Systems

 1.6 Operating-System Services
An operating system provides an environment for the execution of programs. It
provides certain services to programs and to the users of those programs. The
specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating system services
are provided for the convenience of the programmer, to make the programming
task easier. Figure 2.1 shows one view of the various operating-system services
and how they interrelate.

A view of
operating system

services.
One set of operating system services provides functions that are helpful to the
user.
User interface. Almost all operating systems have a user interface (UI). This
interface can take several forms. One is a command-line interface (CLI), which
uses text commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Another is a batch
interface, in which commands and directives to control those commands are
entered into files, and those files are executed. Most commonly, a graphical
user interface (GUI) is used. Here, the interface is a window system with a
pointing device to direct I/O, choose from menus, and make selections and a
keyboard to enter text. Some systems provide two or all three of these variations.
Program execution. The system must be able to load a program into memory
and to run that program. The program must be able to end its execution, either
normally or abnormally (indicating error).
I/O operations. A running program may require I/O, which may involve a file or
an I/O device. For specific devices, special functions may be desired (such as
recording to a CD or DVD drive or blanking a display screen). For efficiency
and protection, users usually cannot control I/O devices directly. Therefore, the

operating system must provide a means to do I/O.
File-system manipulation. The file system is of particular interest. Obvi- ously,
programs need to read and write files and directories. They also need to create
and delete them by name, search for a given file, and list file information.
Finally, some operating systems include permissions management to allow or
deny access to files or directories based on file ownership. Many operating
systems provide a variety of file systems, sometimes to allow personal choice
and sometimes to provide specific features or performance characteristics.
Communications. There are many circumstances in which one process needs to
exchange information with another process. Such communication may occur
between processes that are executing on the same computer or between processes
that are executing on different computer systems tied together by a computer
network. Communications may be implemented via shared memory, in which
two or more processes read and write to a shared section of memory, or message
passing, in which packets of information in predefined formats are moved
between processes by the operating system.
Error detection. The operating system needs to be detecting and correcting
errors constantly. Errors may occur in the CPU and memory hardware (such as a
memory error or a power failure), in I/O devices (such as a parity error on disk, a
connection failure on a network, or lack of paper in the printer), and in the user
program (such as an arithmetic overflow, an attempt to access an illegal
memory location, or a too-great use of CPU time). For each type of error, the
operating system should take the appropriate action to ensure correct and
consistent computing. Sometimes, it has no choice but to halt the system. At
other times, it might terminate an error-causing process or return an error code to
a process for the process to detect and possibly correct.

Another set of operating system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among the
users.

Resource allocation. When there are multiple users or multiple jobs running at
the same time, resources must be allocated to each of them. The operating system
manages many different types of resources. Some (such as CPU cycles, main
memory, and file storage) may have special allocation code, whereas others (such
as I/O devices) may have much more general request and release code. For
instance, in determining how best to use the CPU, operating systems have CPU-
scheduling routines that take into account the speed of the CPU, the jobs that
must be executed, the number of registers available, and other factors. There may
also be routines to allocate printers, USB storage drives, and other peripheral
devices.
Accounting. We want to keep track of which users use how much and what
kinds of computer resources. This record keeping may be used for accounting (so
that users can be billed) or simply for accumulating usage statistics. Usage
statistics may be a valuable tool for researchers who wish to reconfigure the
system to improve computing services.
Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information. When
several separate processes execute concurrently, it should not be possible for one
process to interfere with the others or with the operating system itself. Protection
involves ensuring that all access to system resources is controlled. Security of the
system from outsiders is also important. Such security starts with requiring each
user to authenticate himself or herself to the system, usually by means of a
password, to gain access to system resources. It extends to defending external I/O
devices, including network adapters, from invalid access attempts and to
recording all such connections for detection of break- ins. If a system is to be
protected and secure, precautions must be instituted throughout it. A chain is only
as strong as its weakest link.

1.7 User and Operating-System Interface

Here, we discuss two fundamental approaches. One provides a command-
line interface, or command interpreter, that allows users to directly enter
commands to be performed by the operating system. The other allows users to
interface with the operating system via a graphical user interface, or GUI.

1.7.1Command Interpreters

Some operating systems include the command interpreter in the kernel.
Others, such as Windows and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs on (on
interactive systems). On systems with multiple command interpreters to choose
from, the interpreters are known as shells. For example, on UNIX and Linux
systems, a user may choose among several different shells, including the Bourne
shell, C shell, Bourne-Again shell, Korn shell, and others.

The main function of the command interpreter is to get and execute the
next user-specified command. Many of the commands given at this level
manipulate files: create, delete, list, print, copy, execute, and so on. The MS-
DOS and UNIX shells operate in this way. These commands can be implemented
in two general ways.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause the
command interpreter to jump to a section of its code that sets up the parameters
and makes the appropriate system call. In this case, the number of commands that
can be given determines the size of the command interpreter, since each
command requires its own implementing code.

An alternative approach — used by UNIX, among other operating
systems— implements most commands through system programs. In this case,
the command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt
would search for a file called rm, load the file into memory, and execute it

with the parameter file.txt. The function associated with the rm command
would be defined completely by the code in the file rm. In this way,
programmers can add new commands to the system easily by creating new files
with the proper names. The command-interpreter program, which can be small,
does not have to be changed for new commands to be added.

1.7.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a
user-friendly graphical user interface, or GUI. Here, rather than entering
commands directly via a command-line interface, users employ a mouse-based
window-and-menu system characterized by a desktop metaphor. The user moves
the mouse to position its pointer on images, or icons, on the screen (the desktop)
that represent programs, files, directories, and system functions. Depending on
the mouse pointer’s location, clicking a button on the mouse can invoke a
program, select a file or directory — known as a folder — or pull down a menu
that contains commands.

Because a mouse is impractical for most mobile systems, smartphones

and handheld tablet computers typically use a touchscreen interface. Here, users
interact by making gestures on the touchscreen — for example, pressing and
swiping fingers across the screen. Figure 2.3 illustrates the touchscreen of the
Apple iPad. Whereas earlier smartphones included a physical keyboard, most
smartphones now simulate a keyboard on the touchscreen.

Traditionally, UNIX systems have been dominated by command-line
interfaces. Various GUI interfaces are available, however. These include the
Common Desktop Environment (CDE) and X-Windows systems, which are
common on commercial versions of UNIX, such as Solaris and IBM’s AIX

system. In addition, there has been significant development in GUI designs from
various open-source projects, such as K Desktop Environment (or KDE) and the
GNOME desktop by the GNU project. Both the KDE and GNOME desktops run
on Linux and various UNIX systems and are available under open-source
licenses, which means their source code is readily available for reading and for
modification under specific license terms.

The iPad touchscreen.

1.7.3 Choice of Interface

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. System administrators who manage computers and
power users who have deep knowledge of a system frequently use the command-
line interface. For them, it is more efficient, giving them faster access to the
activities they need to perform. Indeed, on some systems, only a subset of system
functions is available via the GUI, leaving the less common tasks to those who
are command-line knowledgeable. Further, command-line interfaces usually
make repetitive tasks easier, in part because they have their own
programmability. For example, if a frequent task requires a set of command-line
steps, those steps can be recorded into a file, and that file can be run just like a
program. The program is not compiled into executable code but rather is
interpreted by the command-line interface. These shell scripts are very common
on systems that are command-line oriented, such as UNIX and Linux.

1.8 System Calls

System calls provide an interface to the services made available by an
operating system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware must
be accessed directly) may have to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let’s first use an example to illustrate how system calls are used: writing a simple
program to read data from one file and copy them to another file. The first input
that the program will need is the names of the two files: the input file and the
output file. These names can be specified in many ways, depending on the
operating-system design. One approach is for the program to ask the user for the
names. In an interactive system, this approach will require a sequence of system
calls, first to write a prompting message on the screen and then to read from the
keyboard the characters that define the two files. On mouse-based and icon-based
systems, a menu of file names is usually displayed in a window. The user can
then use the mouse to select the source name, and a window can be opened for
the destination name to be specified. This sequence requires many I/O system
calls.

Once the two file names have been obtained, the program must open the
input file and create the output file. Each of these operations requires another
system call. Possible error conditions for each operation can require additional
system calls. When the program tries to open the input file, for example, it may
find that there is no file of that name or that the file is protected against access. In
these cases, the program should print a message on the console (another sequence
of system calls) and then terminate abnormally (another system call). If the input
file exists, then we must create a new output file. We may find that there is
already an output file with the same name. This situation may cause the program
to abort (a system call), or we may delete the existing file (another system call)
and create a new one (yet another system call). Another option, in an interactive
system, is to ask the user (via a sequence of system calls to output the
prompting message and to read the response from the terminal) whether to
replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input file (a
system call) and writes to the output file (another system call). Each read and
write must return status information regarding various possible error conditions.
On input, the program may find that the end of the file has been reached or that
there was a hardware failure in the read (such as a parity error). The write
operation may encounter various errors, depending on the output device (for
example, no more disk space).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more system
calls), and finally terminate normally (the final system call). This system-call
sequence is shown in Figure 2.5.

Typically, application developers design programs according to an
application programming interface (API). The API specifies a set of functions
that are available to an application programmer, including the parameters that are
passed to each function and the return values the programmer can expect. Three
of the most common APIs available to application programmers are the Windows
API for Windows systems, the POSIX API for POSIX-based systems (which
include virtually all versions of UNIX, Linux, and Mac OS X), and the Java API
for programs that run on the Java virtual machine. A programmer accesses an
API via a library of code provided by the operating system. In the case of UNIX
and Linux for programs written in the C language, the library is called libc. Note
that — unless specified — the system-call names used throughout this text are
generic examples. Each operating system has its own name for each system call.

There are several reasons for doing so. One benefit concerns program
portability. An application program mer designing a program using an API can
expect her program to compile and run on any system that supports the same
API.

source file

destination
file

Example System Call Sequence
Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file

Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

Example of how system calls are used.

user
mode

system call interface
kernel
mode

open ()
Implementation
of open ()
system call

For most programming languages, the run-time support system (a set of
functions built into libraries included with a compiler) provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the API and
invokes the necessary system calls within the operating system. Typically, a
number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call
interface then invokes the intended system call in the operating-system kernel
and returns the status of the system call and any return values.

open (

return

Figure 2.6 The handling of a user application invoking the open()
system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need to
specify the file or device to use as the source, as well as the address and length
of the memory buffer into which the input should be read. Of course, the
device or file and length may be implicit in the call.

1.9 Types of System Calls

System calls can be grouped roughly into six major categories: process
control, file manipulation, device manipulation, information maintenance,
communications, and protection. Figure 2.8 summarizes the types of system
calls normally provided by an operating system.

user application

)

Process Control

A running program needs to be able to halt its execution either
normally (end()) or abnormally (abort()). If a system call is made to terminate
the currently running program abnormally, or if the program runs into a
problem and causes an error trap, a dump of memory is sometimes taken and
an error message generated. The dump is written to disk and may be examined
by a debugger — a system program designed to aid the programmer in finding
and correcting errors, or bugs— to determine the cause of the problem. Under
either normal or abnormal circumstances, the operating system must transfer
control to the invoking command interpreter. The command interpreter then
reads the next command. In an interactive system, the command interpreter
simply continues with the next command; it is assumed that the user will issue
an appropriate command to respond to any error. In a GUI system, a pop-up
window might alert the user to the error and ask for guidance. In a batch
system, the command interpreter usually terminates the entire job and
continues with the next job. Some systems may allow for special recovery
actions in case an error occurs. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher- level error parameter.

Process control

end, abort
load, execute
create process, terminate process
get process attributes, set process attributes
wait for time
wait event, signal event
allocate and free memory

File management
create file, delete file

open, close

read, write, reposition
get file attributes, set file attributes

Device management
request device, release device
read, write, reposition
get device attributes, set device attributes
logically attach or detach devices

Information maintenance
get time or date, set time or date

get system data, set system data

get process, file, or device attributes
set process, file, or device attributes

Communications
create, delete communication connection

send, receive messages

transfer status information
attach or detach remote devices

Types of system calls.

It is then possible to combine normal and abnormal termination by defining a
normal termination as an error at level 0. The command interpreter or a
following program can use this error level to determine the next action
automatically.

A process or job executing one program may want to load() and execute()
another program.

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

 Windows Unix

Process CreateProcess() fork()
Control ExitProcess() exit()

 WaitForSingleObject() wait()

File CreateFile() open()
Manipulation ReadFile() read()

 WriteFile() write()
 CloseHandle() close()

Device SetConsoleMode() ioctl()
Manipulation ReadConsole() read()

 WriteConsole() write()

Information GetCurrentProcessID() getpid()
Maintenance SetTimer() alarm()

 Sleep() sleep()
Communication CreatePipe() pipe()
 CreateFileMapping() shm open()
 MapViewOfFile() mmap()

Protection SetFileSecurity() chmod()
 InitlializeSecurityDescriptor() umask()
 SetSecurityDescriptorGroup() chown()

An interesting question is where to return control when the loaded

program terminates. This question is related to whether the existing program is
1lo1s1t, saved, or allowed to continue execution concurrently with the new program.

If control returns to the existing program when the new program
terminates, we must save the memory image of the existing program; thus, we
have effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to be
multiprogrammed. Often, there is a system call specifically for this purpose
(create process() or submit job()).

If we create a new job or process, or perhaps even a set of jobs or processes, we
should be able to control its execution. This control requires the ability to
determine and reset the attributes of a job or process, includ-ing the job’s priority,
its maximum allowable execution time, and so on (get process attributes() and set
process attributes()). We may also want to terminate a job or process that we
created (terminate process()) if we find that it is incorrect or is no longer needed.
Having created new jobs or processes, we may need to wait for them to finish
their execution. We may want to wait for a certain amount of time to pass (wait
time()). More probably, we will want to wait for a specific event to occur (wait
event()). The jobs or processes should then signal when that event has occurred
(signal event()).
 File Management

We first need to be able to create() and delete() files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once the
file is created, we need to open() it and to use it. We may also read(), write(), or
reposition() (rewind or skip to the end of the file, for example). Finally, we need
to close() the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the file
name, file type, protection codes, accounting information, and so on. At least two
system calls, get file attributes() and set file attributes(), are required for this
function. Some operating systems provide many more calls, such as calls for file
move() and copy().

 Device Management

A process may need several resources to execute — main memory, disk
drives, access to files, and so on. If the resources are available, they can be
granted, and control can be returned to the user process. Otherwise, the process
will have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought
of as devices. Some of these devices are physical devices (for example, disk
drives), while others can be thought of as abstract or virtual devices (for example,
files). A system with multiple users may require us to first request() a device, to
ensure exclusive use of it. After we are finished with the device, we release() it.
These functions are similar to the open() and close() system calls for files. Other
operating systems allow unmanaged access to devices.

 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most systems
have a system call to return the current time() and date(). Other system calls may
return information about the system, such as the number of current users, the
version number of the operating system, the amount of free memory or disk
space, and so on.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set of
locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are also used
to reset the process information (get process attributes() and set process
attributes()).

 Communication

There are two common models of interprocess communication: the
message-passing model and the shared-memory model. In the message-passing
model, the communicating processes exchange messages with one another to
transfer information. Messages can be exchanged between the processes either
directly or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator must
be known, be it another process on the same system or a process on another
computer connected by a communications network. Each computer in a network
has a host name by which it is commonly known. A host also has a network
identifier, such as an IP address. Similarly, each process has a process name, and
this name is translated into an identifier by which the operating system can refer
to the process. The get hostid() and get processid() system calls do this
translation. The identifiers are then passed to the general-purpose open() and

close() calls provided by the file system or to specific open connection() and
close connection() system calls, depending on the system’s model of
communication. The recipient process usually must give its permission for
communication to take place with an accept connection() call. Most processes
that will be receiving connections are special-purpose daemons, which are
system programs provided for that purpose. They execute a wait for connection()
call and are awakened when a connection is made. The source of the
communication, known as the client, and the receiving daemon, known as a
server, then exchange messages by using read message() and write message()
system calls. The close connection() call terminates the communication.

In the shared-memory model, processes use shared memory create() and
shared memory attach() system calls to create and gain access to regions of
memory owned by other processes. Shared memory requires that two or more
processes agree to remove this restriction. They can then exchange information
by reading and writing data in the shared areas.

Both of the models just discussed are common in operating systems, and
most systems implement both. Message passing is useful for exchanging smaller
amounts of data, because no conflicts need be avoided. It is also easier to
implement than is shared memory for intercomputer communication.

 Protection

Protection provides a mechanism for controlling access to the resources
provided by a computer system. Historically, protection was a concern only on
multiprogrammed computer systems with several users. However, with the
advent of networking and the Internet, all computer systems, from servers to
mobile handheld devices, must be concerned with protection.

Typically, system calls providing protection include set permission() and
get permission(), which manipulate the permission settings of resources such as
files and disks. The allow user() and deny user() system calls specify whether
particular users can — or cannot — be allowed access to certain resources.

 System Programs

System programs, also known as system utilities, provide a convenient
environment for program development and execution. Some of them are simply
user interfaces to system calls. Others are considerably more complex. They can
be divided into these categories:

File management. These programs create, delete, copy, rename, print, dump,
list, and generally manipulate files and directories.
Status information. Some programs simply ask the system for the date, time,
amount of available memory or disk space, number of users, or similar status
information. Others are more complex, providing detailed performance, logging,
and debugging information. Typically, these pro-grams format and print the
output to the terminal or other output devices or files or display it in a window of

the GUI. Some systems also support a registry, which is used to store and
retrieve configuration information.
File modification. Several text editors may be available to create and modify the
content of files stored on disk or other storage devices. There may also be special
commands to search contents of files or perform transformations of the text.
Programming-language support. Compilers, assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java, and
PERL) are often provided with the operating system or available as a separate
download.
Program loading and execution. Once a program is assembled or com-piled, it
must be loaded into memory to be executed. The system may provide absolute
loaders, relocatable loaders, linkage editors, and overlay loaders. Debugging
systems for either higher-level languages or machine language are needed as
well.
Communications. These programs provide the mechanism for creating virtual
connections among processes, users, and computer systems. They allow users to
send messages to one another’s screens, to browse Web pages, to send e-mail
messages, to log in remotely, or to transfer files from one machine to another.

Background services. All general-purpose systems have methods for launching
certain system-program processes at boot time. Some of these processes
terminate after completing their tasks, while others continue to run until the
system is halted. Constantly running system-program processes are known as
services, subsystems, or daemons.

Along with system programs, most operating systems are supplied with
programs that are useful in solving common problems or performing common
operations. Such application programs include Web browsers, word proces-sors
and text formatters, spreadsheets, database systems, compilers, plotting and
statistical-analysis packages, and games.

1.10 Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

 Design Goals

The first problem in designing a system is to define goals and
specifications. At the highest level, the design of the system will be affected by
the choice of hardware and the type of system: batch, time sharing, single user,
multiuser, distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users want certain obvious properties in a system. The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there is
no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system. The system should be easy to
design, implement, and maintain; and it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real time
operating system for embedded systems, must have been substantially different
from those for MVS, a large multiuser, multiaccess operating system for IBM
mainframes. Specifying and designing an operating system is a highly creative
task.

Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to a
discussion of some of these principles.
 Mechanisms and Policies

One important principle is the separation of policy from mechanism.
Mecha-nisms determine how to do something; policies determine what will be
done. For example, the timer construct (see Section 1.5.2) is a mechanism for
ensuring CPU protection, but deciding how long the timer is to be set for a
particular user is a policy decision.

The separation of policy and mechanism is important for flexibility.

Policies are likely to change across places or over time. In the worst case, each
change in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change in
policy would then require redefinition of only certain parameters of the system.
For instance, consider a mechanism for giving priority to certain types of
programs over others. If the mechanism is properly separated from policy, it can
be used either to support a policy decision that I/O-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems take the separation of mechanism
and policy to one extreme by implementing a basic set of primitive building
blocks. These blocks are almost policy free, allowing more advanced mechanisms
and policies to be added via user-created kernel modules or user programs
themselves. As an example, consider the history of UNIX.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is how rather than what, it is a mechanism that
must be determined.

 Implementation

Once an operating system is designed, it must be implemented. Because
operating systems are collections of many programs, written by many people over
a long period of time, it is difficult to make general statements about how they are
implemented. Early operating systems were written in assembly language. Now,
although some operating systems are still written in assembly language, most are
written in a higher-level language such as C or an even higher-level language
such as C++. Actually, an operating system can be written in more than one
language. The lowest levels of the kernel might be assembly language. Higher-
level routines might be in C, and system programs might be in C or C++, in
interpreted scripting languages like PERL or Python, or in shell scripts. In fact, a
given Linux distribution probably includes programs written in all of those
languages.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in the
system programming language PL/1. The Linux and Windows operating system
kernels are written mostly in C, although there are some small sections of
assembly code for device drivers and for saving and restoring the state of
registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same as
those gained when the language is used for application programs: the code can be
written faster, is more compact, and is easier to understand and debug. In
addition, improvements in compiler technology will improve the generated code
for the entire operating system by simple recompilation. Finally, an operating
system is far easier to port — to move to some other hardware — if it is written
in a higher-level language. For example, MS-DOS was written in Intel 8088
assembly language. Consequently, it runs natively only on the Intel X86 family of
CPUs. (Note that although MS-DOS runs natively only on Intel X86, emulators
of the X86 instruction set allow the operating system to run on other CPUs .

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today’s systems. Although an expert
assembly-language programmer can produce efficient small routines, for large
programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors have
deep pipelining and multiple functional units that can handle the details of
complex dependencies much more easily than can the human mind.

1.11Operating-System Structure

A system as large and complex as a modern operating system must be engineered
carefully if it is to function properly and be modified easily. A common approach
is to partition the task into small components, or modules, rather than have one
monolithic system. Each of these modules should be a well-defined portion of
the system, with carefully defined inputs, outputs, and functions. In this section,
we discuss how these components are interconnected and melded into a kernel.
1.11.1 Simple Structure

Many operating systems do not have well-defined structures. Frequently,
such systems started as small, simple, and limited systems and then grew beyond
their original scope. MS-DOS is an example of such a system. It was originally
designed and implemented by a few people who had no idea that it would become
so popular. It was written to provide the most functionality in the least space, so it
was not carefully divided into modules. Figure 2.11 shows its structure.

In MS-DOS, the interfaces and levels of functionality are not well

separated. For instance, application programs are able to access the basic I/O
routines to write directly to the display and disk drives. Such freedom leaves MS-
DOS vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual mode
and no hardware protection, the designers of MS-DOS had no choice but to leave
the base hardware accessible.

Another example of limited structuring is the original UNIX operating
system. Like MS-DOS, UNIX initially was limited by hardware functionality. It
consists of two separable parts: the kernel and the system programs. The kernel

Figure 2.11 MS-DOS layer structure.

(the users)

 shells and
commands

 compilers and
interpreters

 system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block

I/O
page

replacement
character I/O

system

system

demand paging

terminal drivers

disk and tape
drivers

virtual memory

kernel interface to the hardware
terminal

controllers

device controllers

memory
controllers

terminals disks and tapes physical

Figure 2.12 Traditional UNIX system structure.

is further separated into a series of interfaces and device drivers, which have
been added and expanded over the years as UNIX has evolved. We can view
the traditional UNIX operating system as being layered to some extent, as
shown in Figure 2.12. Everything below the system-call interface and above
the physical hardware is the kernel. The kernel provides the file system, CPU
scheduling, memory management, and other operating-system functions
through system calls.

1.11.2 Layered Approach

With proper hardware support, operating systems can be broken into
pieces that are smaller and more appropriate than those allowed by the original
MS-DOS and UNIX systems. The operating system can then retain much
greater control over the computer and over the applications that make use of
that computer. Implementers have more freedom in changing the inner
workings of the system and in creating modular operating systems. Under a
top-down approach, the overall functionality and features are determined and
are separated into components. Information hiding is also important, because it
leaves programmers free to implement the low-level routines as they see fit,

layer N
user interface

•
•
•

layer 1

layer 0
hardware

provided that the external interface of the routine stays unchanged and that the
routine itself performs the advertised task.

A system can be made modular in many ways. One method is the

layered approach, in which the operating system is broken into a number of
layers (levels). The bottom layer (layer 0) is the hardware; the highest (layer N)
is the user interface. This layering structure is depicted in Figure 2.13.

Figure 2.13 A layered operating system.

An operating-system layer is an implementation of an abstract object
made up of data and the operations that can manipulate those data. A typical
operating-system layer — say, layer M — consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of
construction and debugging. The layers are selected so that each uses functions
(operations) and services of only lower-level layers. This approach simplifies
debugging and system verification. The first layer can be debugged without
any concern for the rest of the system, because, by definition, it uses only the
basic hardware (which is assumed correct) to implement its functions. Once the
first layer is debugged, its correct functioning can be assumed while the second
layer is debugged, and so on. If an error is found during the debugging of a
particular layer, the error must be on that layer, because the layers below it are
already debugged. Thus, the design and implementation of the system are
simplified.

Each layer is implemented only with operations provided by lower-
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
store (disk space used by virtual-memory algorithms) must be at a lower level
than the memory-management routines, because memory management requires
the ability to use the backing store.

A final problem with layered implementations is that they tend to be
less efficient than other types. For instance, when a user program executes an
I/O operation, it executes a system call that is trapped to the I/O layer, which
calls the memory-management layer, which in turn calls the CPU-scheduling
layer, which is then passed to the hardware. At each layer, the parameters may
be modified, data may need to be passed, and so on. Each layer adds overhead
to the system call. The net result is a system call that takes longer than does one
on a nonlayered system.

1.11.3 Microkernels

We have already seen that as UNIX expanded, the kernel became large

and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized the
kernel using the microkernel approach. This method structures the operating
system by removing all nonessential components from the kernel and
implementing them as system and user-level programs. The result is a smaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space.. Figure 2.14 illustrates
the architecture of a typical microkernel.

The main function of the microkernel is to provide communication
between the client program and the various services that are also running in
user space. Communication is provided through message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is that it makes extending the

operating system easier. All new services are added to user space and
consequently do not require modification of the kernel. When the kernel does
have to be modified, the changes tend to be fewer, because the microkernel is a
smaller kernel. The resulting operating system is easier to port from one
hardware design to another. The microkernel also provides more security and
reliability, since most services are running as user — rather than kernel —
processes. If a service fails, the rest of the operating system remains untouched.

g

Applicat
ion

File

Device

 use
r

Progra
m

 Syste
m

Driver

 mo
de

mesessa memor
y

mgeesssa

ker
nel Interprocess CPU

Communication

 manag
ment

scheduling

 mo
de

 microk
ernel

 hardwar

e

Figure 2.14 Architecture of a typical microkernel.

Unfortunately, the performance of microkernels can suffer due to increased
system-function overhead. Consider the history of Windows NT. The first
release had a layered microkernel organization. This version’s performance
was low compared with that of Windows 95. Windows NT 4.0 partially
corrected the performance problem by moving layers from user space to kernel
space and integrating them more closely. By the time Windows XP was
designed, Windows architecture had become more monolithic than
microkernel.

1.11.4 Modules
Perhaps the best current methodology for operating-system design involves
using loadable kernel modules. Here, the kernel has a set of core components
and links in additional services via modules, either at boot time or during run
time. This type of design is common in modern implementations of UNIX,
such as Solaris, Linux, and Mac OS X, as well as Windows.

The idea of the design is for the kernel to provide core services while
other services are implemented dynamically, as the kernel is running. Linking
services dynamically is preferable to adding new features directly to the kernel,
which would require recompiling the kernel every time a change was made. Thus,
for example, we might build CPU scheduling and memory management
algorithms directly into the kernel and then add support for different file systems
by way of loadable modules.

The overall result resembles a layered system in that each kernel section
has defined, protected interfaces; but it is more flexible than a layered system,
because any module can call any other module. The approach is also similar to
the microkernel approach in that the primary module has only core functions and
knowledge of how to load and communicate with other modules; but itis more
efficient, because modules do not need to invoke message passing in order to
communicate.

scheduling
device
and

classes

bus
drivers

 file systems

core Solaris
miscellaneo

us
kernel loadable

 system calls
modules

STREA
MS

executable

modules formats

Figure 2.15 Solaris loadable modules.

The Solaris operating system structure, shown in Figure 2.15, is organized
around a core kernel with seven types of loadable kernel modules:

Scheduling classes
File systems
Loadable system calls
Executable formats
STREAMS modules
Miscellaneous

Device and bus drivers

Linux also uses loadable kernel modules, primarily for supporting device
drivers and file systems. We cover creating loadable kernel modules in Linux as a
programming exercise at the end of this chapter.

1.11.5 Hybrid Systems

In practice, very few operating systems adopt a single, strictly defined
structure. Instead, they combine different structures, resulting in hybrid systems
that address performance, security, and usability issues. For example, both Linux
and Solaris are monolithic, because having the operating system in a single
address space provides very efficient performance. However, they are also
modular, so that new functionality can be dynamically added to the kernel.
Windows is largely monolithic as well (again primarily for performance reasons),
but it retains some behavior typical of microkernel systems, including providing
support for separate subsystems (known as operating-system personalities) that
run as user-mode processes. Windows systems also provide support for
dynamically loadable kernel modules. In this, we explore the structure of three
hybrid systems: the Apple Mac OS X operating system and the two most
prominent mobile operating systems — iOS and Android.

 1.11.6 Mac OS X

The Apple Mac OS X operating system uses a hybrid structure. As shown
in Figure 2.16, it is a layered system. The top layers include the Aqua user
interface (Figure 2.4) and a set of application environments and services.
Notably, the Cocoa environment specifies an API for the Objective-C
programming language, which is used for writing Mac OS X applications. Below
these layers is the kernel environment, which consists primarily of the Mach
microkernel and the BSD UNIX kernel. Mach provides memory management;
support for remote procedure calls (RPCs) and interprocess communication (IPC)
facilities, including message passing; and thread scheduling. The BSD component
provides a BSD command-line interface, support for networking and file systems,
and an implementation of POSIX APIs, including Pthreads. In addition to Mach
and BSD, the kernel environment provides an I/O kit for development of device
drivers and dynamically loadable modules (which Mac OS X refers to as kernel
extensions). As shown in Figure 2.16, the BSD application environment can
make use of BSD facilities directly.

 1.11.7 iOS
iOS is a mobile operating system designed by Apple to run its smartphone, the
iPhone, as well as its tablet computer, the iPad. iOS is structured on the Mac OS
X operating system, with added functionality pertinent to mobile devices, but
does not directly run Mac OS X applications. The structure of iOS appears in
Figure 2.17.

Cocoa Touch is an API for Objective-C that provides several frameworks for
developing applications that run on iOS devices. The fundamental difference

graphical user
interface

Aqua

application environments
and services

Java Cocoa
Quickti
me BSD

kernel
environment

BSD

Mach

kernel extensions

I/O
kit

Cocoa Touch

Media Services

Core Services

Core OS

between Cocoa, mentioned earlier, and Cocoa Touch is that the latter provides
support for hardware features unique to mobile devices, such as touch screens.
The media services layer provides services for graphics, audio, and video.

Figure 2.16 The Mac OS X structure.

The core services layer provides a variety of features, including support for
cloud computing and databases. The bottom layer represents the core
operating system, which is based on the kernel environment shown in Figure
2.16.

Figure 2.17 Architecture of Apple’s iOS.

Applications

Linux kernel

1.11.8 Android
The Android operating system was designed by the Open Handset

Alliance (led primarily by Google) and was developed for Android
smartphones and tablet computers. Whereas iOS is designed to run on Apple
mobile devices and is close-sourced, Android runs on a variety of mobile
platforms and is open-sourced, partly explaining its rapid rise in popularity.
The structure of Android appears in Figure 2.18.

Android is similar to iOS in that it is a layered stack of software that
provides a rich set of frameworks for developing mobile applications. At the
bottom of this software stack is the Linux kernel, although it has been modified
by Google and is currently outside the normal distribution of Linux releases.

Libraries

 Android
runtime

SQLit
e

openGL

Core Libraries

Surfac
es

media

Manag
er

 framew
or
k

 Dalvik

 virtual machine

webkit libc

Figure 2.18 Architecture of Google’s Android.
Linux is used primarily for process, memory, and device-driver support

for hardware and has been expanded to include power management. The Android
runtime environment includes a core set of libraries as well as the Dalvik virtual
machine. Software designers for Android devices develop applications in the Java
language. However, rather than using the standard Java API, Google has designed
a separate Android API for Java development. The Java class files are first
compiled to Java bytecode and then translated into an executable file that runs on
the Dalvik virtual machine. The Dalvik virtual machine was designed for Android
and is optimized for mobile devices with limited memory and CPU processing
capabilities.

Application Framework

The set of libraries available for Android applications includes frameworks for
 developing web browsers (webkit), database support (SQLite), and multi-media.
The libc library is similar to the standard C library but is much smaller and has been

designed for the
that characterize mobile devices.

UNIT-II
Process Management

A process can be thought of as a program in execution. A process will
need certain resources — such as CPU time, memory, files, and I/O devices — to
accomplish its task. These resources are allocated to the process either when it is
created or while it is executing.

A process is the unit of work in most systems. Systems consist of a
collection of processes: operating-system processes execute system code, and
user processes execute user code. All these processes may execute concurrently.

Although traditionally a process contained only a single thread of control
as it ran, most modern operating systems now support processes that have
multiple threads.

The operating system is responsible for several important aspects of
process and thread management: the creation and deletion of both user and
system processes; the scheduling of processes; and the provision of mechanisms
for synchronization, communication, and deadlock handling for processes.

Early computers allowed only one program to be executed at a time. This

program had complete control of the system and had access to all the system’s
resources. In contrast, contemporary computer systems allow multiple pro-grams
to be loaded into memory and executed concurrently. This evolution required
firmer control and more compartmentalization of the various pro-grams; and
these needs resulted in the notion of a process, which is a program in execution.
A process is the unit of work in a modern time-sharing system.

The more complex the operating system is, the more it is expected to do
on behalf of its users. Although its main concern is the execution of user
programs, it also needs to take care of various system tasks that are better left
outside the kernel itself. A system therefore consists of a collection of processes:
operating-system processes executing system code and user processes executing
user code. Potentially, all these processes can execute concurrently, with the CPU
(or CPUs) multiplexed among them. By switching the CPU between processes,
the operating system can make the computer more productive. In this chapter, you
will read about what processes are and how they work.

OBJECTIVES

1. To introduce the notion of a process, forms the basis of all
computation.

2. To describe the various features of processes, including scheduling,
creation, and termination.

3. To explore interprocess communication using shared memory and
message passing.

4. To describe communication in client – server systems.
5. To introduce the critical-section problem, whose solutions can be

used to ensure the consistency of shared data.
6. To present both software and hardware solutions of the critical-

section problem.
7. To examine several classical process-synchronization problems.
8. To explore several tools that are used to solve process

synchronization problems.
9. To introduce CPU scheduling, the basis for multiprogrammed

operating systems.
10. To describe various CPU-scheduling algorithms.
11. To discuss evaluation criteria for selecting a CPU-scheduling

algorithm for a particular system.
12. To examine the scheduling algorithms of several operating

systems.

 Process Concept

A batch system executes jobs, whereas a time-shared system has user
programs, or tasks. Even on a single-user system, a user may be able to run
several programs at one time: a word processor, a Web browser, and an e-mail
package. And even if a user can execute only one program at a time, such as on
an embedded device that does not support multitasking, the operating system may
need to support its own internal programmed activities, such as memory
management. In many respects, all these activities are similar, so we call all of
them processes.

 The Process

Informally, a process is a program in execution. A process is more than the
program code, which is sometimes known as the text section. It also includes the
current activity, as represented by the value of the program counter and the
contents of the processor’s registers. A process generally also includes the
process stack, which contains temporary data (such as function parameters,
return addresses, and local variables), and a data section, which contains global
variables. A process may also include a heap, which is memory that is
dynamically allocated during process run time. The structure of a process in
memory is shown in Figure 2.1.

A program is a passive entity, such as a file containing a list of
instructions stored on disk (often called an executable file). In contrast, a process
is an active entity, with a program counter specifying the next instruction to
execute and a set of associated resources. A program becomes a process when an
executable file is loaded into memory. Two common techniques for loading
executable files are double-clicking an icon representing the executable file and
entering the name of the executable file on the command line (as in prog.exe or
a.out).

max

Figure 2.1 Process in memory.

stack

Heap
data
text

0

new admitte
d interrupt exit

Termina
ted

read
y running

I/O or event
completion

scheduler
dispatch

I/O or event wait

 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. A process may be in one of the
following states:

New. The process is being created.
Running. Instructions are being executed.
Waiting. The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).
Ready. The process is waiting to be assigned to a processor.
Terminated. The process has finished execution.

The state diagram corresponding to these states is presented in Figure2.2.

waiting

Figure 2.2 Diagram of process state

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB) — also called a task control block. A PCB is shown in Figure 2.3. It
contains many pieces of information associated with a specific process, including
these:

Process state. The state may be new, ready, running, waiting, halted, and so on.

Program counter. The counter indicates the address of the next instruction to be
executed for this process.
CPU registers. The registers vary in number and type, depending on the
computer architecture. They include accumulators, index registers, stack pointers,
and general-purpose registers, plus any condition-code information. Along with

the program counter, this state information must be saved when an interrupt
occurs, to allow the process to be continued correctly afterward (Figure 3.4).

CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
Memory-management information. This information may include such items as
the value of the base and limit registers and the page tables, or the segment tables,
depending on the memory system used by the operating system.

Accounting information. This information includes the amount of CPU and real
time used, time limits, account numbers, job or process numbers, and so on.

Figure 2.3 Process control block (PCB).

I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

2.1.4 Threads
The process model discussed so far has implied that a process is a

program that performs a single thread of execution. For example, when a process
is running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one
task at a time. The user cannot simultaneously type in characters and run the spell
checker within the same process, for example.

 Process Scheduling

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects an
available process (possibly from a set of several available processes) for program
execution on the CPU. For a single-processor system, there will never be more
than one running process. If there are more processes, the rest will have to wait
until the CPU is free and can be rescheduled.

process state

process number
program counter
registers
memory limits

list of open files

•

tail

head

ready
queue

mag

queue
header PCB7 PCB2

head
tail Registers registers

 • •
• •
• •

tape

unit 0

mag

tape
unit 1

disk

PCB3 PCB14 PCB6

unit 0

termin
al

unit 0
•
•

•

PCB5

Figure 2.4 The ready queue and various I/O device queues.

 Scheduling Queues
As processes enter the system, they are put into a job queue, which consists

of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

tail

head

head

tail

head
tail

ready queue CPU

I/O

time slice
expired

Child
execut

es

fork a

child

Interru
pt

occurs

I/O queue

I/O request

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for the
occurrence of a particular event, such as the completion of an I/O request.
Suppose the process makes an I/O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the I/O
request of some other process. The process therefore may have to wait for the
disk. The list of processes waiting for a particular I/O device is called a device
queue. Each device has its own device queue (Figure 2.4).

wait for an

 interrupt

Figure 2.5 Queueing-diagram representation of process scheduling.

A common representation of process scheduling is a queueing diagram,
such as that in Figure 2.5. Each rectangular box represents a queue. Two types of
queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow of
processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or dispatched. Once the process is allocated the CPU and
is executing, one of several events could occur:

The process could issue an I/O request and then be placed in an I/O queue.
The process could create a new child process and wait for the child’s termination.

The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the waiting
state to the ready state and is then put back in the ready queue. A process
continues this cycle until it terminates, at which time it is removed from all
queues and has its PCB and resources deallocated.

 Schedulers

A process migrates among the various scheduling queues throughout its

lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be
executed immediately. These processes are spooled to a mass-storage device
(typically a disk), where they are kept for later execution. The long-term
scheduler, or job scheduler, selects processes from this pool and loads them into
memory for execution.

The short-term scheduler, or CPU scheduler, selects from among the
processes that are ready to execute and allocates the CPU to one of them.

The long-term scheduler executes much less frequently. The long-term
scheduler controls the degree of multiprogramming (the number of processes in
memory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes leaving
the system. Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between executions, the
long-term scheduler can afford to take more time to decide which process should
be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either I/O bound or CPU bound. An
I/O-bound process is one that spends more of its time doing I/O than it spends
doing computations. A CPU-bound process, in contrast, generates I/O requests
infrequently, using more of its time doing computations. It is important that the
long-term scheduler select a good process mix of I/O-bound and CPU-bound
processes. If all processes are I/O bound, the ready queue will almost always be
empty, and the short-term scheduler will have little to do. If all processes are
CPU bound, the I/O waiting queue will almost always be empty, devices will go
unused, and again the system will be unbalanced. The system with the best
performance will thus have a combination of CPU-bound and I/O-bound
processes.

This medium-term scheduler is diagrammed in Figure 2.6. The key idea

behind a medium-term scheduler is that sometimes it can be advantageous to
remove a process from memory (and from active contention for the CPU) and
thus reduce the degree of multiprogramming.

I/O waiting
I/O

swap in partially executed swap out
 swapped-out processes

ready queue

CP
U

en
d

queues

Figure 2.6 Addition of medium-term scheduling to the queueing diagram.

 Context Switch
When an interrupt occurs, the system needs to save the current context of

the process running on the CPU so that it can restore that context when its
processing is done, essentially suspending the process and then resuming it. The
context is represented in the PCB of the process. It includes the value of the CPU
registers, the process state (see Figure 2.2), and memory-management
information. Generically, we perform a state save of the current state of the CPU,
be it in kernel or user mode, and then a state restore to resume operations.

Switching the CPU to another process requires performing a state save of
the current process and a state restore of a different process. This task is known as
a context switch. When a context switch occurs, the kernel saves the context of
the old process in its PCB and loads the saved context of the new process
scheduled to run. Switching speed varies from machine to machine, depending on
the memory speed, the number of registers that must be copied, and the existence
of special instructions (such as a single instruction to load or store all registers). A
typical speed is a few milliseconds.

 Operations on Processes

The processes in most systems can execute concurrently, and they may be
created and deleted dynamically. Thus, these systems must provide a mechanism
for process creation and termination.

 Process Creation

During the course of execution, a process may create several new

processes. As mentioned earlier, the creating process is called a parent process,
and the new processes are called the children of that process. Each of these new
processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX, Linux, and Windows) identify
processes according to a unique process identifier (or pid), which is typically an
integer number. The pid provides a unique value for each process in the system,
and it can be used as an index to access various attributes of a process within the
kernel.

The init process (which always has a pid of 1) serves as the root parent
process for all user processes. Once the system has booted, the init process can
also create various user processes, such as a web or print server, an ssh server,
and the like. In Figure 2.7, we see two children of init— kthreadd and sshd. The
kthreadd process is responsible for creating additional processes that perform
tasks on behalf of the kernel (in this situation, khelper and pdflush). The sshd
process is responsible for managing clients that connect to the system by using
ssh (which is short for secure shell). The login process is responsible for
managing clients that directly log onto the system. In this example, a client has
logged on and is using the bash shell, which has been assigned pid 8416. Using
the bash command-line interface, this user has created the process ps as well as
the emacs editor.

On UNIX and Linux systems, we can obtain a listing of processes by
using the ps command. For example, the command

ps -el
will list complete information for all processes currently active in the system. It is
easy to construct a process tree similar to the one shown in Figure 3.8 by
recursively tracing parent processes all the way to the init process.

init
pid = 1

login

Kthread
d

sshd

pid = 8415 pid = 2 pid = 3028

Bash
Khelp
er

pdflush

sshd

pid = 8416

pid =
6

pid = 200

pid =
3610

ps

emacs

tcsch

pid =
9298

pid =
9204

 pid =
4005

Figure 2.7 A tree of processes on a typical Linux system.

In general, when a process creates a child process, that child process will
need certain resources (CPU time, memory, files, I/O devices) to accomplish its
task. A child process may be able to obtain its resources directly from the
operating system, or it may be constrained to a subset of the resources of the
parent process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children.

In addition to supplying various physical and logical resources, the parent
process may pass along initialization data (input) to the child process. For
example, consider a process whose function is to display the contents of a file —
say, image.jpg— on the screen of a terminal. When the process is created, it will
get, as an input from its parent process, the name of the file image.jpg. Using that
file name, it will open the file and write the contents out. It may also get the name
of the output device. Alternatively, some operating systems pass resources to
child processes. On such a system, the new process may get two open files,
image.jpg and the terminal device, and may simply transfer the datum between
the two.
When a process creates a new process, two possibilities for execution exist:
The parent continues to execute concurrently with its children.
The parent waits until some or all of its children have terminated.
There are also two address-space possibilities for the new process:
The child process is a duplicate of the parent process (it has the same program
and data as the parent).
The child process has a new program loaded into it.

To illustrate these differences, let’s first consider the UNIX operating

system. In UNIX, as we’ve seen, each process is identified by its process
identifier, which is a unique integer. A new process is created by the fork()
system call. The new process consists of a copy of the address space of the
original process. This mechanism allows the parent process to communicate
easily with its child process. Both processes (the parent and the child) continue
execution at the instruction after the fork(), with one difference: the return code
for the fork() is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

After a fork() system call, one of the two processes typically uses the
exec() system call to replace the process’s memory space with a new program.
The exec() system call loads a binary file into memory (destroying the memory
image of the program containing the exec() system call) and starts its execution.
In this manner, the two processes are able to communicate and then go their
separate ways. The parent can then create more children; or, if it has nothing else
to do while the child runs, it can issue a wait() system call to move itself off the
ready queue until the termination of the child. Because the call to exec() overlays
the process’s address space with a new program, the call to exec() does not return
control unless an error occurs.

We now have two different processes running copies of the same
program. The only difference is that the value of pid (the process identifier) for
the child process is zero, while that for the parent is an integer value greater than

zero (in fact, it is the actual pid of the child process). The child process inherits
privileges and scheduling attributes from the parent, as well certain resources,
such as open files. The child process then overlays its address space with the
UNIX command /bin/ls (used to get a directory listing) using the execlp() system
call (execlp() is a version of the exec() system call). The parent waits for the child
process to complete with the wait() system call. When the child process
completes (by either implicitly or explicitly invoking exit()), the parent process
resumes from the call to wait(), where it completes using the exit() system call.
This is also illustrated in Figure 2.8.

Of course, there is nothing to prevent the child from not invoking exec()
and instead continuing to execute as a copy of the parent process. In this scenario,
the parent and child are concurrent processes running the same code instructions.
Because the child is a copy of the parent, each process has its own copy of any
data.

parent

exec() exit()
child (pid = 0)

resumes

Figure 2.8 Process creation using the fork() system call.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Windows API using the CreateProcess() function,
which is similar to fork() in that a parent creates a new child process. However,
whereas fork() has the child process inheriting the address space of its parent,
CreateProcess() requires loading a specified program into the address space of the
child process at process creation. Furthermore, whereas fork() is passed no
parameters, CreateProcess() expects no fewer than ten parameters.

 Process Termination

A process terminates when it finishes executing its final statement and
asks the operating system to delete it by using the exit() system call. At that point,
the process may return a status value (typically an integer) to its parent process
(via the wait() system call). All the resources of the process, including physical
and virtual memory, open files, and I/O buffers — are deallocated by the
operating system.

A process can cause the termination of another process via an appropriate

system call (for example, TerminateProcess() in Windows). Usually, such a
system call can be invoked only by the parent of the process that is to be

parent (pid > 0)
wait()
parent

pid = fork()

terminated Thus, when one process creates a new process, the identity of the
newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety
of reasons, such as these:

The child has exceeded its usage of some of the resources that it has
been allocated. The task assigned to the child is no longer required. The parent is
exiting, and the operating system does not allow a child to continue if its parent
terminates.

Some systems do not allow a child to exist if its parent has terminated. In
such systems, if a process terminates (either normally or abnormally), then all its
children must also be terminated. This phenomenon, referred to as cascading
termination, is normally initiated by the operating system.

To illustrate process execution and termination, consider that, in Linux
and UNIX systems, we can terminate a process by using the exit() system call,
providing an exit status as a parameter:

/* exit with status 1 */
exit(1);

In fact, under normal termination, exit() may be called either directly (as
shown above) or indirectly (by a return statement in main()).

A parent process may wait for the termination of a child process by using
the wait() system call. The wait() system call is passed a parameter that allows the
parent to obtain the exit status of the child. This system call also returns the
process identifier of the terminated child so that the parent can tell which of its
children has terminated:

pid t pid; int status;
pid = wait(&status);

When a process terminates, its resources are deallocated by the operating
system. However, its entry in the process table must remain there until the parent
calls wait(), because the process table contains the process’s exit status. A process
that has terminated, but whose parent has not yet called wait(), is known as a
zombie process.
 Interprocess Communication

Processes executing concurrently in the operating system may be either

independent processes or cooperating processes. A process is independent if it
cannot affect or be affected by the other processes executing in the system. Any
process that does not share data with any other process is independent. A process
is cooperating if it can affect or be affected by the other processes executing in
the system. Clearly, any process that shares data with other processes is a
cooperating process.
There are several reasons for providing an environment that allows process
cooperation:

Information sharing. Several users may be interested in the same piece of
information (for instance, a shared file), we must provide an environment to
allow concurrent access to such information.
Computation speedup. If we want a particular task to run faster, we must break
it into subtasks, each of which will be executing in parallel with the others.
Modularity. We may want to construct the system in a modular fashion, dividing
the system functions into separate processes or threads.
Convenience. Even an individual user may work on many tasks at the same time.
For instance, a user may be editing, listening to music, and compiling in parallel.

Cooperating processes require an interprocess communication (IPC)

mechanism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: shared memory and
message passing. In the shared-memory model, a region of memory that is
shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged
between the cooperating processes. The two communications models are
contrasted in Figure 2.9.

m0
kernel

kernel

(b) Shared memory.
(a) Message passing (b)

Figure 2.9 Communications models.

process A

process A

 shared memory

process B

message queue
m1 m2 m3 ...

mn

process B

 Shared-Memory Systems
Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the operating
system tries to prevent one process from accessing another process’s memory.
Shared memory requires that two or more processes agree to remove this
restriction. They can then exchange information by reading and writing data in
the shared areas. The form of the data and the location are determined by these
processes and are not under the operating system’s control. The processes are also
responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let’s consider the
producer – consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code that is
consumed by an assembler. The assembler, in turn, may produce object modules
that are consumed by the loader. The producer – consumer problem

item next

produced;

while (true) {
/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

}

Figure 2.10The producer process using shared memory.
also provides a useful metaphor for the client – server paradigm. We generally
think of a server as a producer and a client as a consumer. For example, a web
server produces (that is, provides) HTML files and images, which are consumed
(that is, read) by the client web browser requesting the resource.

One solution to the producer – consumer problem uses shared memory.
To allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by the
consumer. This buffer will reside in a region of memory that is shared by the
producer and consumer processes. A producer can produce one item while the
consumer is consuming another item. The producer and consumer must be
synchronized, so that the consumer does not try to consume an item that has not
yet been produced.

Two types of buffers can be used. The unbounded buffer places no
practical limit on the size of the buffer. The consumer may have to wait for new
items, but the producer can always produce new items. The bounded buffer
assumes a fixed buffer size. In this case, the consumer must wait if the buffer is
empty, and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer illustrates interprocess
communication using shared memory. The following variables reside in a region
of memory shared by the producer and consumer processes:

#define BUFFER SIZE 10
typedef struct {

. . .
}item;

item buffer[BUFFER SIZE];
int in = 0;
int out = 0;

Figure: 2.11The producer process using shared memory
The shared buffer is implemented as a circular array with two logical

pointers: in and out. The variable in points to the next free position in the buffer;
out points to the first full position in the buffer. The buffer is empty when in ==
out; the buffer is full when ((in + 1) % BUFFER SIZE) == out.

The code for the producer process is shown in Figure 2.11, and the code
for the consumer process is shown in Figure 2.12. The producer process has a

item next consumed;
while (true) {

while (in == out)
; /* do nothing */

next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
/* consume the item in next consumed */

}
Figure 2.12 The consumer process using shared memory.

local variable next produced in which the new item to be produced is stored. The
consumer process has a local variable next consumed in which the item to be
consumed is stored.

This scheme allows at most BUFFER SIZE − 1 items in the buffer at the
same time. We leave it as an exercise for you to provide a solution in which
BUFFER SIZE items can be in the buffer at the same time.

 Message-Passing Systems
Shared-memory environment scheme requires that these processes share a

region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to
communicate and to synchronize their actions without sharing the same address
space. It is particularly useful in a distributed environment, where the
communicating processes may reside on different computers connected by a
network. For example, an Internet chat program could be designed so that chat
participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations:

send(message) receive(message)
Messages sent by a process can be either fixed or variable in size. If only

fixed-sized messages can be sent, the system-level implementation is straight-
forward. Conversely, variable-sized messages require a more complex system-
level implementation, but the programming task becomes simpler.

If processes P and Q want to communicate, they must send messages to
and receive messages from each other: a communication link must exist between
them. This link can be implemented in a variety of ways. Here are several
methods for logically implementing a link and the send()/receive() operations:

Direct or indirect communication
Synchronous or asynchronous communication
Automatic or explicit buffering

 Naming

Processes that want to communicate must have a way to refer to each other. They
can use either direct or indirect communication. Under direct communication,
each process that wants to communicate must explicitly name the recipient or
sender of the communication. In this scheme, the send() and receive() primitives
are defined as:

send(P, message)— Send a message to process P.
receive(Q, message)— Receive a message from process Q.

A communication link in this scheme has the following properties:

A link is established automatically between every pair of processes that want to
communicate.
The processes need to know only each other’s identity to communicate.
A link is associated with exactly two processes. Between each pair of processes,
there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A variant

of this scheme employs asymmetry in addressing. Here, only the sender names
the recipient; the recipient is not required to name the sender. In this scheme, the
send() and receive() primitives are defined as follows:

send(P, message)— Send a message to process P.
receive(id, message)— Receive a message from any process.

The variable id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is
the limited modularity of the resulting process definitions. Changing the identifier
of a process may necessitate examining all other process definitions.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. A process can communicate with
another process via a number of different mailboxes, but two processes can
communicate only if they have a shared mailbox. The send() and receive()
primitives are defined as follows:

send(A, message)— Send a message to mailbox A.
receive(A, message)— Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

A link is established between a pair of processes only if both members of the pair
have a shared mailbox.
A link may be associated with more than two processes.
Between each pair of communicating processes, a number of different links may
exist, with each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1
sends a message to A, while both P2 and P3 execute a receive() from A. Which
process will receive the message sent by P1? The answer depends on which of the
following methods we choose:

Allow a link to be associated with two processes at most.
Allow at most one process at a time to execute a receive() operation.

Allow the system to select arbitrarily which process will receive the
message (that is, either P2 or P3, but not both, will receive the message). The
system may define an algorithm for selecting which process will receive the
message (for example, round robin, where processes take turns receiving
messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.

If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (which can only
receive messages through this mailbox) and the user (which can only send

messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about which process should receive a message sent to this mailbox.
When a process that owns a mailbox terminates, the mailbox disappears. Any
process that subsequently sends a message to this mailbox must be notified that
the mailbox no longer exists.

 Synchronization
Communication between processes takes place through calls to send() and

receive() primitives. There are different design options for implementing each
primitive. Message passing may be either blocking or nonblocking — also
known as synchronous and asynchronous.

Blocking send. The sending process is blocked until the message is received by
the receiving process or by the mailbox.
Nonblocking send. The sending process sends the message and resumes
operation.
Blocking receive. The receiver blocks until a message is available.
Nonblocking receive. The receiver retrieves either a valid message or a null.

 Buffering
Whether communication is direct or indirect, messages exchanged by

commu-nicating processes reside in a temporary queue. Basically, such queues
can be implemented in three ways:

message next produced;
while (true) {

/* produce an item in next produced */
send(next produced);

}

Figure 2.13 The producer process using message passing.

Zero capacity. The queue has a maximum length of zero; thus, the link cannot
have any messages waiting in it. In this case, the sender must block until the
recipient receives the message.
Bounded capacity. The queue has finite length n; thus, at most n messages can
reside in it. If the queue is not full when a new message is sent, the message is
placed in the queue (either the message is copied or a pointer to the message is
kept), and the sender can continue execution without waiting. The link’s capacity
is finite, however. If the link is full, the sender must block until space is available
in the queue.
Unbounded capacity. The queue’s length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering. The other cases are referred to as systems with automatic buffering.

pipe

 Pipes
A pipe acts as a conduit allowing two processes to communicate. Pipes

were one of the first IPC mechanisms in early UNIX systems. They typically
provide one of the simpler ways for processes to communicate with one another,
although they also have some limitations

 Ordinary Pipes

Ordinary pipes allow two processes to communicate in standard producer
– consumer fashion: the producer writes to one end of the pipe (the write-end)
and the consumer reads from the other end (the read-end). As a result, ordinary
pipes are unidirectional, allowing only one-way communication. If two-way
communication is required, two pipes must be used, with each pipe sending data
in a different direction. In both program examples, one process writes the
message Greetings to the pipe, while the other process reads this message from
the pipe.

On UNIX systems, ordinary pipes are constructed using the function
pipe(int fd[])

This function creates a pipe that is accessed through the int fd[] file
descriptors: fd[0] is the read-end of the pipe, and fd[1] is the write-end.

Parent child

fd(0)

fd(1)

fd(
0)

fd(1)

Figure 2.14 File descriptors for an ordinary pipe.

UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using
ordinary read() and write() system calls.

An ordinary pipe cannot be accessed from outside the process that created

it. Typically, a parent process creates a pipe and uses it to communicate with a
child process that it creates via fork().

Named Pipes
Ordinary pipes provide a simple mechanism for allowing a pair of processes to
communicate. However, ordinary pipes exist only while the processes are
communicating with one another. On both UNIX and Windows systems, once
the processes have finished communicating and have terminated, the ordinary
pipe ceases to exist.

Named pipes provide a much more powerful communication tool.
Communication can be bidirectional, and no parent – child relationship is
required. Once a named pipe is established, several processes can use it for
communication. In fact, in a typical scenario, a named pipe has several writers.
Additionally, named pipes continue to exist after communicating processes.

Named pipes are referred to as FIFOs in UNIX systems. Once created,
they appear as typical files in the file system. A FIFO is created with the
mkfifo() system call and manipulated with the ordinary open(), read(), write(),
and close() system calls. It will continue to exist until it is explicitly deleted
from the file system. Although FIFOs allow bidirectional communication, only
half-duplex transmission is permitted. If data must travel in both directions,
two FIFOs are typically used. Additionally, the communicating processes must
reside on the same machine.

Named pipes on Windows systems provide a richer communication
mechanism than their UNIX counterparts. Full-duplex communication is
allowed, and the communicating processes may reside on either the same or
different machines. Additionally, only byte-oriented data may be transmitted
across a UNIX FIFO, whereas Windows systems allow either byte- or
message-oriented data. Named pipes are created with the CreateNamedPipe()
function, and a client can connect to a named pipe using ConnectNamedPipe().
Communication over the named pipe can be accomplished using the ReadFile()
and WriteFile() functions.

 Thread Scheduling

On operating systems that support them, it is kernel-level threads — not
processes — that are being scheduled by the operating system. User-level threads
are managed by a thread library, and the kernel is unaware of them. To run on a
CPU, user-level threads must ultimately be mapped to an associated kernel-level
thread, although this mapping may be indirect and may use a lightweight process
(LWP). In this section, we explore scheduling issues involving user-level and
kernel-level threads and offer specific examples of scheduling for Pthreads.

 Contention Scope

One distinction between user-level and kernel-level threads lies in how
they are scheduled.The thread library schedules user-level threads to run on an
available LWP. This scheme is known as process-contention scope (PCS), since
competition for the CPU takes place among threads belonging to the same
process. (When we say the thread library schedules user threads onto available
LWPs, we do not mean that the threads are actually running on a CPU. That
would require the operating system to schedule the kernel thread onto a physical
CPU.) To decide which kernel-level thread to schedule onto a CPU, the kernel
uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems using the one-to-
one model, such as Windows, Linux, and Solaris, schedule threads using only
SCS.

Typically, PCS is done according to priority — the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities are set
by the programmer and are not adjusted by the thread library, although some
thread libraries may allow the programmer to change the priority of a thread. It is

important to note that PCS will typically preempt the thread currently running in
favor of a higher-priority thread; however, there is no guarantee of time slicing
(Section 6.3.4) among threads of equal priority.

 Pthread Scheduling

We highlight the POSIX Pthread API that allows specifying PCS or SCS
during thread creation. Pthreads identifies the following contention scope values:

PTHREAD SCOPE PROCESS schedules threads using PCS scheduling.
PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many model, the PTHREAD
SCOPE PROCESS policy schedules user-level threads onto available LWPs. The
number of LWPs is maintained by the thread library, perhaps using scheduler
activations (Section 4.6.5). The PTHREAD SCOPE SYSTEM scheduling policy
will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy.

The Pthread IPC provides two functions for getting — and setting — the
contention scope policy:

pthread attr setscope(pthread attr t *attr, int scope)
pthread attr getscope(pthread attr t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute
set for the thread. The second parameter for the pthread attr setscope() function is
passed either the PTHREAD SCOPE SYSTEM or the PTHREAD SCOPE
PROCESS value, indicating how the contention scope is to be set. In the case of
pthread attr getscope(), this second parameter contains a pointer to an int value
that is set to the current value of the contention scope. If an error occurs, each of
these functions returns a nonzero value.

 Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the

CPU in a system with a single processor. If multiple CPUs are available, load
sharing becomes possible — but scheduling problems become correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution.

Here, we discuss several concerns in multiprocessor scheduling. We
concentrate on systems in which the processors are identical — homogeneous —
in terms of their functionality. We can then use any available processor to run any
process in the queue. Note, however, that even with homogeneous
multiprocessors, there are sometimes limitations on scheduling. Consider a
system with an I/O device attached to a private bus of one processor. Processes
that wish to use that device must be scheduled to run on that processor.

 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all
scheduling decisions, I/O processing, and other system activities handled by a
single processor — the master server. The other processors execute only user
code. This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv[])
{

int i, scope;
pthread t tid[NUM THREADS];
pthread attr t attr;

/* get the default attributes */
pthread attr init(&attr);

/* first inquire on the current scope */
if (pthread attr getscope(&attr, &scope) != 0) fprintf(stderr,

"Unable to get scheduling scope\n");
else {

if (scope == PTHREAD SCOPE PROCESS)
printf("PTHREAD SCOPE PROCESS");

else if (scope == PTHREAD SCOPE SYSTEM)
printf("PTHREAD SCOPE SYSTEM");

else
fprintf(stderr, "Illegal scope value.\n");

}

/* set the scheduling algorithm to PCS or SCS */ pthread attr
setscope(&attr, PTHREAD SCOPE SYSTEM);

/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}

/* Each thread will begin control in this function */ void
*runner(void *param)
{

/* do some work ... */

pthread exit(0);
}

Figure 2.36 Pthread scheduling API.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be in a common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we saw in Chapter 5, if we have
multiple processors trying to access and update a common data structure, the
scheduler must be programmed carefully. We must ensure that two separate
processors do not choose to schedule the same process and that processes are not
lost from the queue. Virtually all modern operating systems support SMP,
including Windows, Linux, and Mac OS X.

 Processor Affinity
Consider what happens to cache memory when a process has been running

on a specific processor. The data most recently accessed by the process populate
the cache for the processor. As a result, successive memory accesses by the
process are often satisfied in cache memory. Now consider what happens if the
process migrates to another processor. The contents of cache memory must be
invalidated for the first processor, and the cache for the second processor must be
repopulated. Because of the high cost of invalidating and repopulating caches,
most SMP systems try to avoid migration of processes from one processor to
another and instead attempt to keep a process running on the same processor.
This is known as processor affinity — that is, a process has an affinity for the
processor on which it is currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor — but not
guaranteeing that it will do so — we have a situation known as soft affinity.
Here, the operating system will attempt to keep a process on a single processor,
but it is possible for a process to migrate between processors. In contrast, some
systems provide system calls that support hard affinity, thereby allowing a
process to specify a subset of processors on which it may run. Many systems
provide both soft and hard affinity. For example, Linux implements soft affinity,
but it also provides the sched setaffinity() system call, which supports hard
affinity.

The main-memory architecture of a system can affect processor affinity
issues. Figure 2.37 illustrates an architecture featuring non-uniform memory
access (NUMA), in which a CPU has faster access to some parts of main memory
than to other parts. Typically, this occurs in systems containing combined CPU
and memory boards. The CPUs on a board can access the memory on that board
faster than they can access memory on other boards in the system. If the operating
system’s CPU scheduler and memory-placement algorithms work together, then a

process that is assigned affinity to a particular CPU can be allocated memory on
the board where that CPU resides. This example also shows that operating
systems are frequently not as cleanly defined and implemented as described in
operating-system textbooks. Rather, the ―solid lines‖ between sections of an
operating system are frequently only ―dotted lines,‖ with algorithms creating
connections in ways aimed at optimizing performance and reliability.

 Load Balancing

On SMP systems, it is important to keep the workload balanced among all

processors to fully utilize the benefits of having more than one processor.

CPU

CPU

fast access

fast access

memory Memory

computer

Figure 2.37 NUMA and CPU scheduling.

Otherwise, one or more processors may sit idle while other processors have high
workloads, along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in an SMP
system. It is important to note that load balancing is typically necessary only on
systems where each processor has its own private queue of eligible processes to
execute. On systems with a common run queue, load balancing is often
unnecessary, because once a processor becomes idle, it immediately extracts a
runnable process from the common run queue. It is also important to note,
however, that in most contemporary operating systems supporting SMP, each
processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the load
on each processor and — if it finds an imbalance — evenly distributes the load by
moving (or pushing) processes from overloaded to idle or less-busy processors.

Pull migration occurs when an idle processor pulls a waiting task from a busy
processor. Push and pull migration need not be mutually exclusive and are in fact
often implemented in parallel on load-balancing systems. For example, the Linux
schedulercand the ULE scheduler available for FreeBSD systems implement both
techniques.

The benefit of keeping a process running on the same processor is that the
process can take advantage of its data being in that processor’s cache memory.
Either pulling or pushing a process from one processor to another removes this
benefit. As is often the case in systems engineering, there is no absolute rule
concerning what policy is best. Thus, in some systems, an idle processor always
pulls a process from a non-idle processor. In other systems, processes are moved
only if the imbalance exceeds a certain threshold.

 Multicore Processors
Traditionally, SMP systems have allowed several threads to run

concurrently by providing multiple physical processors. However, a recent
practice in computer

mory stall cycle

thread

C M C M C M C M

time

Figure 2.38 Memory stall.
hardware has been to place multiple processor cores on the same physical chip,
resulting in a multicore processor. Each core maintains its architectural state and
thus appears to the operating system to be a separate physical processor. SMP
systems that use multicore processors are faster and consume less power than
systems in which each processor has its own physical chip.

Multicore processors may complicate scheduling issues. Let’s consider
how this can happen. Researchers have discovered that when a processor accesses
memory, it spends a significant amount of time waiting for the data to become
available. This situation, known as a memory stall, may occur for various
reasons, such as a cache miss (accessing data that are not in cache memory).
Figure 2.38 illustrates a memory stall. In this scenario, the processor can spend up
to 50 percent of its time waiting for data to become available from memory. To
remedy this situation, many recent hardware designs have implemented
multithreaded processor cores in which two (or more) hardware threads are
assigned to each core. That way, if one thread stalls while waiting for memory,
the core can switch to another thread. Figure 2.39 illustrates a dual-threaded
processor core on which the execution of thread 0 and the execution of thread 1
are interleaved. From an operating-system perspective, each hardware thread

C compute cycle M m

appears as a logical processor that is available to run a software thread. Thus, on a
dual-threaded, dual-core system, four logical processors are presented to the
operating system. The UltraSPARC T3 CPU has sixteen cores per chip and eight
hardware threads per core. From the perspective of the operating system, there
appear to be 128 logical processors.
In general, there are two ways to multithread a processing core: coarse-grained
and fine-grained multithreading. With coarse-grained multithreading, a thread
executes on a processor until a long-latency event such as a memory stall occurs.
Because of the delay caused by the long-latency event, the processor must switch
to another thread to begin execution. However, the cost of switching between
threads is high, since the instruction pipeline must be flushed before the other
thread can begin execution on the processor core. Once this new thread begins
execution, it begins filling the pipeline with its instructions. Fine-grained (or
interleaved) multithreading switches between threads at a much finer level of
granularity — typically at the boundary of an instruction cycle. However, the
architectural design of fine-grained systems includes logic for thread switching.
As a result, the cost of switching between threads is small.

 thread1

 thread0

time

Figure 2.39 Multithreaded multicore system.

Notice that a multithreaded multicore processor actually requires two
different levels of scheduling. On one level are the scheduling decisions that must
be made by the operating system as it chooses which software thread to run on
each hardware thread (logical processor). For this level of scheduling, the
operating system may choose any scheduling algorithm. A second level of
scheduling specifies how each core decides which hardware thread to run. There
are several strategies to adopt in this situation. The UltraSPARC T3, mentioned
earlier, uses a simple round-robin algorithm to schedule the eight hardware
threads to each core. Another example, the Intel Itanium, is a dual-core processor
with two hardware-managed threads per core. Assigned to each hardware thread
is a dynamic urgency value ranging from 0 to 7, with 0 representing the lowest
urgency and 7 the highest. The Itanium identifies five different events that may
trigger a thread switch. When one of these events occurs, the thread-switching
logic compares the urgency of the two threads and selects the thread with the
highest urgency value to execute on the processor core.

C

M

C

M

C

M

C

C

M

C

M

C

M

C

Memory Management
The main purpose of a computer system is to execute programs. These

programs, together with the data they access, must be at least partially in main
memory during execution.

To improve both the utilization of the CPU and the speed of its response
to users, a general-purpose computer must keep several processes in memory.
Many memory-management schemes exist, reflecting various approaches, and
the effectiveness of each algorithm depends on the situation. Selection of a
memory-management scheme for a system depends on many factors, especially
on the hardware design of the system. Most algorithms require hardware
support.

Main Memory

 Background

Memory is central to the operation of a modern computer system.
Memory consists of a large array of bytes, each with its own address. The CPU
fetches instructions from memory according to the value of the program
counter. These instructions may cause additional loading from and storing to
specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an
instruction from memory. The instruction is then decoded and may cause
operands to be fetched from memory. After the instruction has been executed
on the operands, results may be stored back in memory. The memory unit sees
only a stream of memory addresses; it does not know how they are generated
(by the instruction counter, indexing, indirection, literal addresses, and so on)
or what they are for (instructions or data). Accordingly, we can ignore how a
program generates a memory address. We are interested only in the sequence
of memory addresses generated by the running program.

 Basic Hardware
Main memory and the registers built into the processor itself are the

only general-purpose storage that the CPU can access directly. There are
machine instructions that take memory addresses as arguments, but none that
take disk addresses. Therefore, any instructions in execution, and any data
being used by the instructions, must be in one of these direct-access storage
devices. If the data are not in memory, they must be moved there before the
CPU can operate on them.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform
simple operations on register contents at the rate of one or more operations per
clock tick. The same cannot be said of main memory, which is accessed via a

transaction on the memory bus. Completing a memory access may take many
cycles of the CPU clock. In such cases, the processor normally needs to stall,
since it does not have the data required to complete the instruction that it is
executing. This situation is intolerable because of the frequency of memory
accesses. The remedy is to add fast memory between the CPU and main
memory, typically on the CPU chip for fast access. To manage a cache built
into the CPU, the hardware automatically speeds up memory access without
any operating-system control.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation. For proper system
operation we must protect the operating system from access by user processes.
On multiuser systems, we must additionally protect user processes from one
another. This protection must be provided by the hardware because the
operating system doesn’t usually intervene between the CPU and its memory
accesses (because of the resulting performance penalty).

We first need to make sure that each process has a separate memory
space. Separate per-process memory space protects the processes from each
other and is fundamental to having multiple processes loaded in memory for
concurrent execution. To separate memory spaces, we need the ability to
determine the range of legal addresses that the process may access and to
ensure that the process can access only these legal addresses. We can provide
this protection by using two registers, usually a base and a limit, as illustrated
in Figure 8.1. The base register holds the smallest legal physical memory
address; the limit register specifies the size of the range. For example, if the
base register holds

0

256000

300040

420940

880000

1024000

base

limit

Figure 8.1 A base and a limit register define a logical address space.

120900

300040

operating
system

process

process

process

300040 and the limit register is 120900, then the program can legally access all
addresses from 300040 through 420939 (inclusive).

Protection of memory space is accomplished by having the CPU
hardware compare every address generated in user mode with the registers.
Any attempt by a program executing in user mode to access operating-system
memory or other users’ memory results in a trap to the operating system, which
treats the attempt as a fatal error (Figure 8.2). This scheme prevents a user
program from (accidentally or deliberately) modifying the code or data
structures of either the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can be
executed only in kernel mode, and since only the operating system executes in
kernel mode, only the operating system can load the base and limit registers.

base baselimit

address

Yes

yes

CPU ≥ <
 No no

trap to operating
system

monitor—addressing
error

memory

Figure 8.2 Hardware address protection with base and limit registers.

This scheme allows the operating system to change the value of the
registers but prevents user programs from changing the registers’ contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating-system memory and users’ memory. This provision
allows the operating system to load users’ programs into users’ memory, to
dump out those programs in case of errors, to access and modify parameters of
system calls, to perform I/O to and from user memory, and to provide many
other services. Consider, for example, that an operating system for a
multiprocessing system must execute context switches, storing the state of one
process from the registers into main memory before loading the next process’s
context from main memory into the registers.

 Address Binding

Usually, a program resides on a disk as a binary executable file. To be
executed, the program must be brought into memory and placed within a
process. Depending on the memory management in use, the process may be
moved between disk and memory during its execution. The processes on the
disk that are waiting to be brought into memory for execution form the input
queue.

The normal single-tasking procedure is to select one of the processes in
the input queue and to load that process into memory. As the process is
executed, it accesses instructions and data from memory. Eventually, the
process terminates, and its memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer may start at 00000,
the first address of the user process need not be 00000. You will see later how a
user program actually places a process in physical memory.

In most cases, a user program goes through several steps — some of
which may be optional — before being executed (Figure 8.3). Addresses may
be represented in different ways during these steps. Addresses in the source
program are generally symbolic (such as the variable count). A compiler
typically binds these symbolic addresses to relocatable addresses (such as ―14
bytes from the beginning of this module‖). The linkage editor or loader in turn
binds the relocatable addresses to absolute addresses (such as 74014). Each
binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses
can be done at any step along the way:

Compile time. If you know at compile time where the process will reside in
memory, then absolute code can be generated. For example, if you know that a
user process will reside starting at location R, then the generated compiler code
will start at that location and extend up from there. If, at some later time, the
starting location changes, then it will be necessary to recompile this code. The
MS-DOS .COM-format programs are bound at compile time.

Load time. If it is not known at compile time where the process will reside in
memory, then the compiler must generate relocatable code. In this case, final
binding is delayed until load time. If the starting address changes, we need only
reload the user code to incorporate this changed value.

Execution time. If the process can be moved during its execution from one
memory segment to another, then binding must be delayed until run time.
Special hardware must be available for this scheme to work, as will be
discussed in Section 8.1.3. Most general-purpose operating systems use this
method.

source
program

compiler or
Compi
le

assembler time

other
object
modules

system
library

dynamic

ally
loaded
system
library

dynam

object
module

linkage
editor

load load
module time

loader

in-memory executi

on
ic binary time

(run
linking memory

image

time)

Figure 8.3 Multistep processing of a user program.

 Logical Versus Physical Address Space
An address generated by the CPU is commonly referred to as a logical

address, whereas an address seen by the memory unit — that is, the one loaded
into the memory-address register of the memory — is commonly referred to
as a physical address.

The compile-time and load-time address-binding methods generate
identical logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In this case,
we usually refer to the logical address as a virtual address. We use logical
address and virtual address interchangeably in this text. The set of all logical
addresses generated by a program is a logical address space. The set of all
physical addresses corresponding to these logical addresses is a physical
address space. Thus, in the execution-time address-binding scheme, the
logical and physical address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can
choose from many different methods to accomplish such mapping, as we
discuss in Section 8.3 through Section 8.5. For the time being, we illustrate this
mapping with a simple MMU scheme that is a generalization of the base-
register scheme described in Section 8.1.1. The base register is now called a
relocation register. The value in the relocation register is added to every
address generated by a user process at the time the address is sent to memory
(see Figure 8.4). For example, if the base is at 14000, then an attempt by the
user to address location 0 is dynamically relocated to location 14000; an access
to location 346 is mapped to location 14346.

The user program never sees the real physical addresses. The program
can create a pointer to location 346, store it in memory, manipulate it, and
compare it with other addresses — all as the number 346. Only when it is used
as a memory address (in an indirect load or store, perhaps) is it relocated
relative to the base register. The user program deals with logical addresses. The
memory-mapping hardware converts logical addresses into physical addresses.
This form of execution-time binding was discussed in Section 8.1.2. The final
location of a referenced memory address is not determined until the reference
is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a
base value R). The user program generates only logical addresses and thinks
that the process runs in locations 0 to max. However, these logical addresses
must be mapped to physical addresses before they are used. The concept of a
logical address space that is bound to a separate physical address space is
central to proper memory management.

relocation
Regis

ter

14000
logical physical
address address

CP
U

 memo
ry

346 14346

MMU

Figure 8.4 Dynamic relocation using a relocation register.

 Dynamic Loading

In our discussion so far, it has been necessary for the entire program
and all data of a process to be in physical memory for the process to execute.
The size of a process has thus been limited to the size of physical memory.
To obtain better memory-space utilization, we can use dynamic loading.
With dynamic loading, a routine is not loaded until it is called. All routines
are kept on disk in a relocatable load format. The main program is loaded
into memory and is executed. When a routine needs to call another routine,
the calling routine first checks to see whether the other routine has been
loaded. If it has not, the relocatable linking loader is called to load the
desired routine into memory and to update the program’s address tables to
reflect this change. Then control is passed to the newly loaded routine.

The advantage of dynamic loading is that a routine is loaded only
when it is needed. This method is particularly useful when large amounts of
code are needed to handle infrequently occurring cases, such as error
routines. In this case, although the total program size may be large, the
portion that is used (and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

 Dynamic Linking and Shared Libraries
Dynamically linked libraries are system libraries that are linked to

user programs when the programs are run (refer back to Figure 8.3). Some
operating systems support only static linking, in which system libraries are
treated like any other object module and are combined by the loader into the
binary program image. Dynamic linking, in contrast, is similar to dynamic
loading. Here, though, linking, rather than loading, is postponed until execution
time. This feature is usually used with system libraries, such as language
subroutine libraries. Without this facility, each program on a system must
include a copy of its language library (or at least the routines referenced by the
program) in the executable image. This requirement wastes both disk space and
main memory.

With dynamic linking, a stub is included in the image for each library-
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if the
routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If it is not, the program loads
the routine into memory. Either way, the stub replaces itself with the address of
the routine and executes the routine. Thus, the next time that particular code
segment is reached, the library routine is executed directly, incurring no cost
for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and all programs that reference the
library will automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library. So
that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to use.
Versions with minor changes retain the same version number, whereas versions
with major changes increment the number. Thus, only programs that are
compiled with the new library version are affected by any incompatible
changes incorporated in it. Other programs linked before the new library was
installed will continue using the older library. This system is also known as
shared libraries.

Unlike dynamic loading, dynamic linking and shared libraries generally
require help from the operating system. If the processes in memory are
protected from one another, then the operating system is the only entity that
can check to see whether the needed routine is in another process’s memory
space or that can allow multiple processes to access the same memory
addresses.

 Swapping

A process must be in memory to be executed. A process, however,
can be swapped temporarily out of memory to a backing store and then
brought back into memory for continued execution (Figure 8.5). Swapping
makes it possible for the total physical address space of all processes to
exceed the real physical memory of the system, thus increasing the degree of
multiprogramming in a system.

 Standard Swapping

Standard swapping involves moving processes between main memory and a
backing store. The backing store is commonly a fast disk. It must be large
enough to accommodate copies of all memory images for all users, and it
must provide direct access to these memory images. The system maintains a
ready queue consisting of all processes whose memory images are on the
backing store or in memory and are ready to run. Whenever the CPU
scheduler decides to execute a process, it calls the dispatcher. The dispatcher
checks to see whether the next process in the queue is in memory. If it is not,
and if there is no free memory region, the dispatcher swaps out a process
currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

operating
system

process P1

1 swap out
 process

P2
2 swap in

user

space
 backing store

main
memory

Figure 8.5 Swapping of two processes using a disk as a backing store.

The context-switch time in such a swapping system is fairly high. To
get an idea of the context-switch time, let’s assume that the user process is 100
MB in size and the backing store is a standard hard disk with a transfer rate of
50 MB per second. The actual transfer of the 100-MB process to or from main
memory takes

100 MB/50 MB per second = 2 seconds
The swap time is 200 milliseconds. Since we must swap both out and

in, the total swap time is about 4,000 milliseconds.
Notice that the major part of the swap time is transfer time. The total

transfer time is directly proportional to the amount of memory swapped. If we
have a computer system with 4 GB of main memory and a resident operating
system taking 1 GB, the maximum size of the user process is 3 GB. However,
many user processes may be much smaller than this — say, 100 MB. A 100-
MB process could be swapped out in 2 seconds, compared with the 60 seconds
required for swapping 3 GB. Clearly, it would be useful to know exactly how
much memory a user process is using, not simply how much it might be using.
Then we would need to swap only what is actually used, reducing swap time.
For this method to be effective, the user must keep the system informed of any
changes in memory requirements. Thus, a process with dynamic memory
requirements will need to issue system calls (request memory() and release
memory()) to inform the operating system of its changing memory needs.

Swapping is constrained by other factors as well. If we want to swap a
process, we must be sure that it is completely idle. Of particular concern is any
pending I/O. A process may be waiting for an I/O operation when we want to
swap that process to free up memory. However, if the I/O is asynchronously
accessing the user memory for I/O buffers, then the process cannot be
swapped. Assume that the I/O operation is queued because the device is busy.
If we were to swap out process P1 and swap in process P2, the I/O operation
might then attempt to use memory that now belongs to process P2. There are
two main solutions to this problem: never swap a process with pending I/O, or
execute I/O operations only into operating-system buffers. Transfers between
operating-system buffers and process memory then occur only when the
process is swapped in. Note that this double buffering itself adds overhead.
We now need to copy the data again, from kernel memory to user memory,
before the user process can access it.

Standard swapping is not used in modern operating systems. It requires
too much swapping time and provides too little execution time to be a
reasonable memory-management solution. Modified versions of swapping,
however, are found on many systems, including UNIX, Linux, and Windows.
In one common variation, swapping is normally disabled but will start if the
amount of free memory (unused memory available for the operating system or
processes to use) falls below a threshold amount. Swapping is halted when the
amount of free memory increases. Another variation involves swapping
portions of processes — rather than entire processes — to decrease swap time.

 Swapping on Mobile Systems
Although most operating systems for PCs and servers support some

modified version of swapping, mobile systems typically do not support
swapping in any form. Mobile devices generally use flash memory rather
than more spacious hard disks as their persistent storage. The resulting space
constraint is one reason why mobile operating-system designers avoid
swapping. Other reasons include the limited number of writes that flash
memory can tolerate before it becomes unreliable and the poor throughput
between main memory and flash memory in these devices.

Instead of using swapping, when free memory falls below a certain
threshold, Apple’s iOS asks applications to voluntarily relinquish allocated
memory. Read-only data (such as code) are removed from the system and
later reloaded from flash memory if necessary. Data that have been modified
(such as the stack) are never removed. However, any applications that fail to
free up sufficient memory may be terminated by the operating system.

Android does not support swapping and adopts a strategy similar to
that used by iOS. It may terminate a process if insufficient free memory is
available. However, before terminating a process, Android writes its
application state to flash memory so that it can be quickly restarted.

Because of these restrictions, developers for mobile systems must
carefully allocate and release memory to ensure that their applications do not
use too much memory or suffer from memory leaks. Note that both iOS and
Android support paging, so they do have memory-management abilities.

 Contiguous Memory Allocation

The main memory must accommodate both the operating
system and the various user processes. We therefore need to allocate main
memory in the most efficient way possible. This section explains one early
method, contiguous memory allocation. The memory is usually divided into
two partitions: one for the resident operating system and one for the user
processes. We can place the operating system in either low memory or high
memory. The major factor affecting this decision is the location of the
interrupt vector. Since the interrupt vector is often in low memory,
programmers usually place the operating system in low memory as well.
Thus, in this text, we discuss only the situation in which the operating
system resides in low memory. The development of the other situation is
similar.

We usually want several user processes to reside in memory at the
same time. We therefore need to consider how to allocate available memory
to the processes that are in the input queue waiting to be brought into
memory. In contiguous memory allocation, each process is contained in a
single section of memory that is contiguous to the section containing the next
process.

 Memory Protection

Before discussing memory allocation further, we must discuss the issue
of memory protection. We can prevent a process from accessing memory it
does not own by combining two ideas previously discussed. If we have a
system with a relocation register (Section 8.1.3), together with a limit register
(Section 8.1.1), we accomplish our goal. The relocation register contains the
value of the smallest physical address; the limit register contains the range of
logical addresses (for example, relocation = 100040 and limit = 74600). Each
logical address must fall within the range specified by the limit register. The
MMU maps the logical address dynamically by adding the value in the
relocation register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by a CPU is checked against
these registers, we can protect both the operating system and the other users’
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating system’s size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.

 Memory Allocation

Now we are ready to turn to memory allocation. One of the simplest
methods for allocating memory is to divide memory into several fixed-sized
partitions. Each partition may contain exactly one process. Thus, the degree of
multiprogramming is bound by the number of partitions. In this multiple-
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originally
used by the IBM OS/360 operating system (called MFT) but is no longer in
use. The method described next is a generalization of the fixed-partition
scheme (called MVT); it is used primarily in batch environments. Many of the
ideas presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.4).

limit

relocatio
n

register register

logical

physical
address yes address

CPU memory

no

trap: addressing error

Figure 8.6 Hardware support for relocation and limit registers.

In the variable-partition scheme, the operating system keeps a table

indicating which parts of memory are available and which are occupied.
Initially, all memory is available for user processes and is considered one large
block of available memory, a hole. Eventually, as you will see, memory
contains a set of holes of various sizes.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory,
and it can then compete for CPU time. When a process terminates, it releases
its memory, which the operating system may then fill with another process
from the input queue.

At any given time, then, we have a list of available block sizes and an
input queue. The operating system can order the input queue according to a
scheduling algorithm. Memory is allocated to processes until, finally, the
memory requirements of the next process cannot be satisfied — that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until a large enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements of
some other process can be met.

In general, as mentioned, the memory blocks available comprise a set of
holes of various sizes scattered throughout memory. When a process arrives
and needs memory, the system searches the set for a hole that is large enough
for this process. If the hole is too large, it is split into two parts. One part is
allocated to the arriving process; the other is returned to the set of holes. When
a process terminates, it releases its block of memory, which is then placed back
in the set of holes. If the new hole is adjacent to other holes, these adjacent
holes are merged to form one larger hole. At this point, the system may need to
check whether there are processes waiting for memory and whether this newly

freed and recombined memory could satisfy the demands of any of these
waiting processes.

This procedure is a particular instance of the general dynamic storage-
allocation problem, which concerns how to satisfy a request of size n from a
list of free holes. There are many solutions to this problem. The first-fit, best-
fit, and worst-fit strategies are the ones most commonly used to select a free
hole from the set of available holes.

First fit. Allocate the first hole that is big enough. Searching can start either at
the beginning of the set of holes or at the location where the previous first-fit
search ended. We can stop searching as soon as we find a free hole that is large
enough.
Best fit. Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the smallest
leftover hole.
Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst fit
in terms of decreasing time and storage utilization. Neither first fit nor best fit
is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer
from external fragmentation. As processes are loaded and removed from
memory, the free memory space is broken into little pieces. External
fragmentation exists when there is enough total memory space to satisfy a
request but the available spaces are not contiguous: storage is fragmented into a
large number of small holes. This fragmentation problem can be severe. In the
worst case, we could have a block of free (or wasted) memory between every
two processes. If all these small pieces of memory were in one big free block
instead, we might be able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the
amount of fragmentation. (First fit is better for some systems, whereas best fit
is better for others.) Another factor is which end of a free block is allocated.
(Which is the leftover piece — the one on the top or the one on the bottom?)
No matter which algorithm is used, however, external fragmentation will be a
problem.

Depending on the total amount of memory storage and the average
process size, external fragmentation may be a minor or a major problem.
Statistical analysis of first fit, for instance, reveals that, even with some
optimization, given N allocated blocks, another 0.5 N blocks will be lost to
fragmentation. That is, one-third of memory may be unusable! This property
is known as the 50-percent rule.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose
that the next process requests 18,462 bytes. If we allocate exactly the
requested block, we are left with a hole of 2 bytes. The overhead to keep
track of this hole will be substantially larger than the hole itself. The general
approach to avoiding this problem is to break the physical memory into
fixed-sized blocks and allocate memory in units based on block size. With
this approach, the memory allocated to a process may be slightly larger than
the requested memory. The difference between these two numbers is
internal fragmentation — unused memory that is internal to a partition.

One solution to the problem of external fragmentation is compaction.
The goal is to shuffle the memory contents so as to place all free memory
together in one large block. Compaction is not always possible, however. If
relocation is static and is done at assembly or load time, compaction cannot
be done. It is possible only if relocation is dynamic and is done at execution
time. If addresses are relocated dynamically, relocation requires only moving
the program and data and then changing the base register to reflect the new
base address. When compaction is possible, we must determine its cost. The
simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to
permit the logical address space of the processes to be noncontiguous, thus
allowing a process to be allocated physical memory wherever such memory
is available. Two complementary techniques achieve this solution:
segmentation (Section 8.4) and paging (Section 8.5). These techniques can
also be combined.
 Segmentation

As we’ve already seen, the user’s view of memory is not the same as
the actual physical memory. This is equally true of the programmer’s view of
memory. Indeed, dealing with memory in terms of its physical properties is
inconvenient to both the operating system and the programmer. What if the
hardware could provide a memory mechanism that mapped the
programmer’s view to the actual physical memory? The system would have
more freedom to manage memory, while the programmer would have a more
natural programming environment. Segmentation provides such a
mechanism.
 Basic Method

Do programmers think of memory as a linear array of bytes, some
containing instructions and others containing data? Most programmers would

subroutine stack

symbol
table

Sqrt

main
program

say ―no.‖ Rather, they prefer to view memory as a collection of variable-
sized segments, with no necessary ordering among the segments (Figure 8.7).

When writing a program, a programmer thinks of it as a main
program with a set of methods, procedures, or functions. It may also include
various data structures: objects, arrays, stacks, variables, and so on. Each of
these modules or data elements is referred to by name. The programmer talks
about ―the stack,‖ ―the math library,‖ and ―the main program‖ without caring
what addresses in memory these elements occupy. She is not concerned with
whether the stack is stored before or after the Sqrt() function. Segments vary
in length, and the length of each is intrinsically defined by its purpose in the
program. Elements within a segment are identified by their offset from the
beginning of the segment: the first statement of the program, the seventh
stack frame entry in the stack, the fifth instruction of the Sqrt(), and so on.

Segmentation is a memory-management scheme that supports this
programmer view of memory. A logical address space is a collection of
segments.

logical address

Figure 8.7 Programmer’s view of a program.

Each segment has a name and a length. The addresses specify both
the segment name and the offset within the segment. The programmer
therefore specifies each address by two quantities: a segment name and an
offset.

For simplicity of implementation, segments are numbered and are
referred to by a segment number, rather than by a segment name. Thus, a
logical address consists of a two tuple:

<segment-number, offset>.

s
limit base

CPU s d
segme

nt
table

yes
< +

no

Normally, when a program is compiled, the compiler automatically
constructs segments reflecting the input program.

A C compiler might create separate segments for the following:

The code

Global variables
The heap, from which memory is allocated

The stacks used by each thread
The standard C library

Libraries that are linked in during compile time might be assigned

separate segments. The loader would take all these segments and assign them
segment numbers.

 Segmentation Hardware

Although the programmer can now refer to objects in the program by
a two-dimensional address, the actual physical memory is still, of course, a
one-dimensional sequence of bytes. Thus, we must define an implementation
to map two-dimensional user-defined addresses into one-dimensional
physical addresses.

trap: addressing error physical memory

Figure 8.8 Segmentation hardware.

This mapping is effected by a segment table. Each entry in the segment table
has a segment base and a segment limit. The segment base contains the
starting physical address where the segment resides in memory, and the
segment limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.8. A logical
address consists of two parts: a segment number, s, and an offset into that
segment, d. The segment number is used as an index to the segment table.
The offset d of the logical address must be between 0 and the segment limit.
If it is not, we trap to the operating system (logical addressing attempt
beyond end of segment). When an offset is legal, it is added to the segment
base to produce the address in physical memory of the desired byte. The
segment table is thus essentially an array of base – limit register pairs.

As an example, consider the situation shown in Figure 8.9. We have
five segments numbered from 0 through 4. The segments are stored in
physical memory as shown. The segment table has a separate entry for each
segment, giving the beginning address of the segment in physical memory
(or base) and the length of that segment (or limit). For example, segment 2 is
400 bytes long and begins at location 4300. Thus, a reference to byte 53 of
segment 2 is mapped onto location 4300 + 53 = 4353. A reference to segment
3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052. A
reference to byte 1222 of segment 0 would result in a trap to the operating
system, as this segment is only 1,000 bytes long.

 Paging

Segmentation permits the physical address space of a process to be
non-contiguous. Paging is another memory-management scheme that offers
this advantage. However, paging avoids external fragmentation and the need
for compaction, whereas segmentation does not. It also solves the
considerable problem of fitting memory chunks of varying sizes onto the
backing store. Most memory-management schemes used before the
introduction of paging suffered from this problem. The problem arises
because, when code fragments or data residing in main memory need to be
swapped out, space must be found on the backing store. The backing store
has the same fragmentation problems discussed in connection with main
memory, but access is much slower, so compaction is impossible. Because of
its advantages over earlier methods, paging in its various forms is used in
most operating systems, from those for mainframes through those for
smartphones. Paging is implemented through cooperation between the
operating system and the computer hardware.

symbol

table

St qr

segment 3

1400

2400

segmen
t 0

segment

segm4 ent

0
1

2

3

4
segment

table

3200

1 segment 2

logical address
space

4300

4700

5700

6300

6700
physical
memory

Figure 8.9 Example of segmentation.

main

progra
m

stack

Subrou
tine

segme
nt 0

segme
nt 3

segme
nt 2

segme
nt 4

segme
nt 1

lim it
bas e

10
0 14

0
40
0

630
430

40
0

0

11
0

32
0

0 0

 Basic Method
The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from their source (a file
system or the backing store). The backing store is divided into fixed-sized
blocks that are the same size as the memory frames or clusters of multiple
frames. This rather simple idea has great functionality and wide
ramifications. For example, the logical address space is now totally separate
from the physical address space, so a process can have a logical 64-bit
address space even though the system has less than 264 bytes of physical
memory.

The hardware support for paging is illustrated in Figure 8.10. Every
address generated by the CPU is divided into two parts: a page number (p)
and a page

f

logica
l

 p hysi
cal

 addre
ss

 ad dre
ss

f0000 …
0000

CPU p d f d
 f1111 …

1111

pf
page table

hysical
memory

Figure 8.10 Paging hardware.

offset (d). The page number is used as an index into a page table. The page
table contains the base address of each page in physical memory. This base
address is combined with the page offset to define the physical memory
address that is sent to the memory unit. The paging model of memory is
shown in Figure 8.11.

 fram
e

number

page 0 0

 0 1
page 1 1 page 0
 1 4
 2 3
page 2 2
 3 7

page 3 page table 3 page 2

logical 4 page 1
memory
 5

 6

 7 page 3

 Physical
 Memory

Figure 8.11 Paging model of logical and physical memory.

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page,
depending on the computer architecture. The selection of a power of 2 as a
page size makes the translation of a logical address into a page number and
page offset particularly easy. If the size of the logical address space is 2m,
and a page size is 2n bytes, then the high-order m − n bits of a logical
address designate the page number, and the n low-order bits designate the
page offset. Thus, the logical address is as follows:

page number page offset

P D
m – n N

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in Figure
8.12. Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes
and a physical memory of 32 bytes (8 pages), we show how the programmer’s
view of memory can be mapped into physical memory. Logical address 0 is
page 0, offset 0. Indexing into the page table, we find that page 0

0

1
2

3

page table

logical
memory

physical
memory

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.

0 a
1 b
2 c
3 d
4 e

5 f

6 g
7 h
8 i

9 j

1
0

k

1
1

l

1
2

m

1

n

0

4 i

j

k
l

8 m

n

o
p

12

16

20

a

b
c
d

24

e

f
g
h

28

5

6
1

2

is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 ×
4) + 0]. Logical address 3 (page 0, offset 3) maps to physical address 23
[= (5 × 4) + 3]. Logical address 4 is page 1, offset 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to
physical address 24 [= (6 4) + 0]. Logical address 13 maps to physical
address 9.

You may have noticed that paging itself is a form of dynamic
relocation. Every logical address is bound by the paging hardware to some
physical address. Using paging is similar to using a table of base (or
relocation) registers, one for each frame of memory.

When we use a paging scheme, we have no external
fragmentation: any free frame can be allocated to a process that needs it.
However, we may have some internal fragmentation. Notice that frames
are allocated as units. If the memory requirements of a process do not
happen to coincide with page boundaries, the last frame allocated may not
be completely full. For example, if page size is 2,048 bytes, a process of
72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36
frames, resulting in internal fragmentation of 2,048 − 1,086 =962 bytes. In
the worst case, a process would need n pages plus 1 byte. It would be
allocated n + 1 frames, resulting in internal fragmentation of almost an
entire frame.

If process size is independent of page size, we expect internal
fragmentation to average one-half page per process. This consideration
suggests that small page sizes are desirable. However, overhead is
involved in each page-table entry, and this overhead is reduced as the size
of the pages increases. Also, disk I/O is more efficient when the amount
data being transferred is larger (Chapter 10). Generally, page sizes have
grown over time as processes, data sets, and main memory have become
larger. Today, pages typically are between 4 KB and 8 KB in size, and
some systems support even larger page sizes. Some CPUs and kernels
even support multiple page sizes. For instance, Solaris uses page sizes of
8 KB and 4 MB, depending on the data stored by the pages. Researchers
are now developing support for variable on-the-fly page size.

Frequently, on a 32-bit CPU, each page-table entry is 4 bytes long,
but that size can vary as well. A 32-bit entry can point to one of 232
physical page frames. If frame size is 4 KB (212), then a system with 4-
byte entries can address 244 bytes (or 16 TB) of physical memory. We
should note here that the size of physical memory in a paged memory
system is different from the maximum logical size of a process. As we
further explore paging, we introduce other information that must be kept
in the page-table entries. That information reduces the number

0

free-
frame list free-frame list

14
13

13
18
20 14

15

15

16

17

new
process

18

15 1
3

1
4

1
5

1
6

1
7

new process 1
8

1

19 9
0
1

20 2 2
3

new-process page 2
21 table 1

(a) (b)

Figure 8.13 Free frames (a) before allocation and (b) after allocation.

of bits available to address page frames. Thus, a system with 32-bit page-table
entries may address less physical memory than the possible maximum. A 32-
bit CPU uses 32-bit addresses, meaning that a given process space can only be
232 bytes (4 TB). Therefore, paging lets us use physical memory that is larger
than what can be addressed by the CPU’s address pointer length.

When a process arrives in the system to be executed, its size, expressed in
pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number

page

1

page
0

page

2

page 3

page
0

 page
1 page

 2
 page

3

page
0

 page
1 page

 2
 page

3

1
4

3
1
8
0

is put in the page table for this process. The next page is loaded into another
frame, its frame number is put into the page table, and so on (Figure 8.13).

An important aspect of paging is the clear separation between the
programmer’s view of memory and the actual physical memory. The
programmer views memory as one single space, containing only this one
program. In fact, the user program is scattered throughout physical memory,
which also holds other programs. The difference between the programmer’s
view of memory and the actual physical memory is reconciled by the address-
translation hardware. The logical addresses are translated into physical
addresses. This mapping is hidden from the programmer and is controlled by
the operating system. Notice that the user process by definition is unable to
access memory it does not own. It has no way of addressing memory outside of
its page table, and the table includes only those pages that the process owns.
Since the operating system is managing physical memory, it must be aware of
the allocation details of physical memory — which frames are allocated, which
frames are available, how many total frames there are, and so on. This
information is generally kept in a data structure called a frame table. The
frame table has one entry for each physical page frame, indicating whether the
latter is free or allocated and, if it is allocated, to which page of which process
or processes.

In addition, the operating system must be aware that user processes
operate in user space, and all logical addresses must be mapped to produce
physical addresses. If a user makes a system call (to do I/O, for example) and
provides an address as a parameter (a buffer, for instance), that address must be
mapped to produce the correct physical address. The operating system
maintains a copy of the page table for each process, just as it maintains a copy
of the instruction counter and register contents. This copy is used to translate
logical addresses to physical addresses whenever the operating system must
map a logical address to a physical address manually. It is also used by the
CPU dispatcher to define the hardware page table when a process is to be
allocated the CPU. Paging therefore increases the context-switch time.

 Hardware Support

Each operating system has its own methods for storing page tables.
Some allocate a page table for each process. A pointer to the page table is
stored with the other register values (like the instruction counter) in the process
control block. When the dispatcher is told to start a process, it must reload the
user registers and define the correct hardware page-table values from the stored
user page table. Other operating systems provide one or at most a few page
tables, which decreases the overhead involved when processes are context-
switched.

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
registers. These registers should be built with very high-speed logic to make
the paging-address translation efficient. Every access to memory must go
through the paging map, so efficiency is a major consideration.

The CPU dispatcher reloads these registers, just as it reloads the other
registers. Instructions to load or modify the page-table registers are, of
course, privileged, so that only the operating system can change the memory
map. The DEC PDP-11 is an example of such an architecture. The address
consists of 16 bits, and the page size is 8 KB. The page table thus consists of
eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table
is reasonably small (for example, 256 entries). Most contemporary
computers, however, allow the page table to be very large (for example, 1
million entries). For these machines, the use of fast registers to implement
the page table is not feasible. Rather, the page table is kept in main memory,
and a page-table base register (PTBR) points to the page table. Changing
page tables requires changing only this one register, substantially reducing
context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into the
page table, using the value in the PTBR offset by the page number for i. This
task requires a memory access. It provides us with the frame number, which
is combined with the page offset to produce the actual address. We can then
access the desired place in memory. With this scheme, two memory accesses
are needed to access a byte (one for the page-table entry, one for the byte).
Thus, memory access is slowed by a factor of 2. This delay would be
intolerable under most circumstances.

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The
TLB is associative, high-speed memory. Each entry in the TLB consists of
two parts: a key (or tag) and a value. When the associative memory is
presented with an item, the item is compared with all keys simultaneously. If
the item is found, the corresponding value field is returned. The search is
fast; a TLB lookup in modern hardware is part of the instruction pipeline,
essentially adding no performance penalty. To be able to execute the search
within a pipeline step, however, the TLB must be kept small. It is typically
between 32 and 1,024 entries in size. Some CPUs implement separate
instruction and data address TLBs. That can double the number of TLB
entries available, because those lookups occur in different pipeline steps. We
can see in this development an example of the evolution of CPU technology:
systems have evolved from having no TLBs to having multiple levels of
TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB
contains only a few of the page-table entries. When a logical address is
generated by the CPU, its page number is presented to the TLB. If the page
number is found, its frame number is immediately available and is used to
access memory. As just mentioned, these steps are executed as part of the
instruction pipeline within the CPU, adding no performance penalty
compared with a system that does not implement paging.

CPU

logical
address

p d

page frame
number number

physic
al
addres
s

TLB

If the page number is not in the TLB (known as a TLB miss), a
memory reference to the page table must be made. Depending on the CPU, this
may be done automatically in hardware or via an interrupt to the operating
system. When the frame number is obtained, we can use it to access memory
(Figure 8.14). In addition, we add the page number and frame number to the
TLB, so that they will be found quickly on the next reference. If the TLB is
already full of entries, an existing entry must be selected for replacement.
Replacement policies range from least recently used (LRU) through round-
robin to random. Some CPUs allow the operating system to participate in LRU
entry replacement, while others handle the matter themselves. Furthermore,
some TLBs allow certain entries to be wired down, meaning that they cannot
be removed from the TLB. Typically, TLB entries for key kernel code are
wired down.

TLB hit

Pf TLB miss
f

page table

physical
memory

Figure 8.14Paging hardware with TLB.
Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An
ASID uniquely identifies each process and is used to provide address-space
protection for that process. When the TLB attempts to resolve virtual page
numbers, it ensures that the ASID for the currently running process matches
the ASID associated with the virtual page. If the ASIDs do not match, the
attempt is treated as a TLB miss. In addition to providing address-space
protection, an ASID allows the TLB to contain entries for several different
processes simultaneously. If the TLB does not support separate ASIDs, then

f d

every time a new page table is selected (for instance, with each context
switch), the TLB must be flushed (or erased) to ensure that the next
executing process does not use the wrong translation information. Otherwise,
the TLB could include old entries that contain valid virtual addresses but have
incorrect or invalid physical addresses left over from the previous process.

The percentage of times that the page number of interest is found in the
TLB is called the hit ratio. An 80-percent hit ratio, for example, means that we
find the desired page number in the TLB 80 percent of the time. If it takes 100
nanoseconds to access memory, then a mapped-memory access takes 100
nanoseconds when the page number is in the TLB. If we fail to find the page
number in the TLB then we must first access memory for the page table and
frame number (100 nanoseconds) and then access the desired byte in memory
(100 nanoseconds), for a total of 200 nanoseconds. (We are assuming that a
page-table lookup takes only one memory access, but it can take more, as we
shall see.) To find the effective memory-access time, we weight the case by its
probability:

effective access time = 0.80 × 100 + 0.20 × 200 =
120 nanoseconds

In this example, we suffer a 20-percent slowdown in average memory-access
time (from 100 to 120 nanoseconds).For a 99-percent hit ratio, which is much
more realistic, we have

effective access time = 0.99 × 100 + 0.01 × 200 = 101 nanoseconds
This increased hit rate produces only a 1 percent slowdown in access time.

As we noted earlier, CPUs today may provide multiple levels of TLBs.
Calculating memory access times in modern CPUs is therefore much more
complicated than shown in the example above. For instance, the Intel Core i7
CPU has a 128-entry L1 instruction TLB and a 64-entry L1 data TLB. In the
case of a miss at L1, it takes the CPU six cycles to check for the entry in the L2
512-entry TLB. A miss in L2 means that the CPU must either walk through the
page-table entries in memory to find the associated frame address, which can
take hundreds of cycles, or interrupt to the operating system to have it do the
work.

A complete performance analysis of paging overhead in such a system
would require miss-rate information about each TLB tier. We can see from the
general information above, however, that hardware features can have a signif-
icant effect on memory performance and that operating-system improvements
(such as paging) can result in and, in turn, be affected by hardware changes
(such as TLBs).

TLBs are a hardware feature and therefore would seem to be of little
concern to operating systems and their designers. But the designer needs to
understand the function and features of TLBs, which vary by hardware
platform. For optimal operation, an operating-system design for a given
platform must implement paging according to the platform’s TLB design.
Likewise, a change in the TLB design (for example, between generations of
Intel CPUs) may necessitate a change in the paging implementation of the
operating systems that use it.

 Protection

Memory protection in a paged environment is accomplished by
protection bits associated with each frame. Normally, these bits are kept in the
page table.

One bit can define a page to be read – write or read-only. Every
reference to memory goes through the page table to find the correct frame
number. At the same time that the physical address is being computed, the
protection bits can be checked to verify that no writes are being made to a read-
only page. An attempt to write to a read-only page causes a hardware trap to
the operating system (or memory-protection violation).

We can easily expand this approach to provide a finer level of
protection. We can create hardware to provide read-only, read – write, or
execute-only protection; or, by providing separate protection bits for each kind
of access, we can allow any combination of these accesses. Illegal attempts will
be trapped to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid – invalid bit. When this bit is set to valid, the associated page is in the
process’s logical address space and is thus a legal (or valid) page. When the bit
is set toinvalid, the page is not in the process’s logical address space. Illegal
addresses are trapped by use of the valid – invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468. Given a
page size of 2 KB, we have the situation shown in Figure 8.15. Addresses in
pages 0, 1, 2, 3, 4, and 5 are mapped normally through the page table. Any
attempt to generate an address in pages 6 or 7, however, will find that the valid
– invalid bit is set to invalid, and the computer will trap to the operating system
(invalid page reference).

Notice that this scheme has created a problem. Because the program
extends only to address 10468, any reference beyond that address is illegal.
However, references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid.
This problem is a result of the 2-KB page size and reflects the internal
fragmentation of paging.

Rarely does a process use all its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

 Shared Pages
An advantage of paging is the possibility of sharing common code.

This con-sideration is particularly important in a time-sharing environment.
Consider a system that supports 40 users, each of whom executes a text editor.
If the text editor consists of 150 KB of code and 50 KB of data space, we need
8,000 KB to support the 40 users. If the code is reentrant code (or pure code),
however, it can be shared, as shown in Figure 8.16.

Here, we see three processes sharing a three-page editor — each page
50 KB in size (the large page size is used to simplify the figure). Each process
has its own data page.

Reentrant code is non-self-modifying code: it never changes during
execution. Thus, two or more processes can execute the same code at the same
time.

Each process has its own copy of registers and data storage to hold the
data for the process’s execution. The data for two different processes will, of
course, be different.

Only one copy of the editor need be kept in physical memory. Each
user’s page table maps onto the same physical copy of the editor, but data
pages are mapped onto different frames. Thus, to support 40 users, we need
only one copy of the editor (150 KB), plus 40 copies of the 50 KB of data
space per user. The total space required is now 2,150 KB instead of 8,000 KB
— a significant savings.

Other heavily used programs can also be shared — compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the
code must be reentrant. The read-only nature of shared code should not be left
to the correctness of the code; the operating system should enforce this
property.

 0

 1

 2 page 0
0000

0

frame number
 valid–invalid

bit

 page 0 3 page 1

 0 2 v
 page 1 4 page 2
 1 3 v
 2 4 v
 page 2 5
 3 7 v
 page 3 4 8 v 6

 5 9 v

10,46
8

page 4 6 0 i 7 page 3
 7 0 i

 page 5 8 page 4
12,28

7

page tab

le

 9 page 5

 •
 •
 •
 page n

Figure 8.15 Valid (v) or invalid (i) bit in a page table.

0

1

2

proce
ss P1

page
table 3

for P1

4

5

ed
6 3

page
table dat

7 a 2
proce
ss P2

for P2

8

9

10

dat
a 1

data
3

ed
1

ed
2

ed 1

ed 2

ed 3

data

1

3

4
6

1

ed 1

ed 2

ed 3

data

2

3

4

6

7

ed 1

ed 2

ed 3

data

3

4

6

2

Figure 8.16 Sharing of code in a paging environment.

 Structure of the Page Table
In this section, we explore some of the most common techniques for

structuring the page table, including hierarchical paging, hashed page tables,
and inverted page tables.

 Hierarchical Paging

Most modern computer systems support a large logical address space
(232 to 264). In such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit logical address space. If
the page size in such a system is 4 KB (212), then a page table may consist of
up to 1 million entries (232/212). Assuming that each entry consists of 4 bytes,
each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page
table itself is also paged (Figure 8.17). For example, consider again the system
with a 32-bit logical address space and a page size of 4 KB. A logical address
is divided into a page number consisting of 20 bits and a page offset consisting
of 12 bits. Because we page the page table, the page number is further divided
into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

3
 page

table

proce
ss P3

for P3 11

1

100

•
•
•

500

•
•

708

900

929
page table

page of

900

•
•
•

929

•

708

•

•
•

100

500

•
•
•

1

emory

•

•
•

outer page

Table

0

page table

Figure 8.17 A two-level page-table scheme.

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

logical address
p1 p2 d

p1

p2

outer
page

d

Table

page of
page table

Figure 8.18 Address translation for a two-level 32-bit paging architecture.

page number page offset

10 10 12

where p1 is an index into the outer page table and p2 is the displacement within
the page of the inner page table. The address-translation method for this
architecture is shown in Figure 8.18. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

Consider the memory management of one of the classic systems, the
VAX minicomputer from Digital Equipment Corporation (DEC). The VAX
was the most popular minicomputer of its time and was sold from 1977 through
2000. The VAX architecture supported a variation of two-level paging. The
VAX is a 32-bit machine with a page size of 512 bytes. The logical address
space of a process is divided into four equal sections, each of which consists of
230 bytes. Each section represents a different part of the logical address space
of a process. The first 2 high-order bits of the logical address designate the
appropriate section. The next 21 bits represent the logical page number of that
section, and the final 9 bits represent an offset in the desired page. By
partitioning the page table in this manner, the operating system can leave
partitions unused until a process needs them. Entire sections of virtual address
space are frequently unused, and multilevel page tables have no entries for
these spaces, greatly decreasing the amount of memory needed to store virtual
memory data structures.

An address on the VAX architecture is as follows:

section page offset
s p d
2 21 9

p1 p2 d

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size of
a one-level page table for a VAX process using one section is 221 bits ∗ 4 bytes
per entry = 8 MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging
scheme is no longer appropriate. To illustrate this point, let’s suppose that the
page size in such a system is 4 KB (212). In this case, the page table consists of
up to 252 entries. If we use a two-level paging scheme, then the inner page
tables can conveniently be one page long, or contain 210 4-byte entries. The
addresses look like this:

outer page inner page offset

p1 p2 d
42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious
way to avoid such a large table is to divide the outer page table into smaller
pieces.

We can divide the outer page table in various ways. For example, we
can page the outer page table, giving us a three-level paging scheme. Suppose
that the outer page table is made up of standard-size pages (210 entries, or 212
bytes). In this case, a 64-bit address space is still daunting:

2nd outer

page

outer page

inner
page

offset

p1 p2 p3 d
32 10 10 12

The outer page table is still 234 bytes (16 GB) in size.
The next step would be a four-level paging scheme, where the second-

level outer page table itself is also paged, and so forth. The 64-bit UltraSPARC
would require seven levels of paging — a prohibitive number of memory
accesses — to translate each logical address. You can see from this example
why, for 64-bit architectures, hierarchical page tables are generally considered
inappropriate.
 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is
to use a hashed page table, with the hash value being the virtual page number.
Each entry in the hash table contains a linked list of elements that hash to the
same location (to handle collisions). Each element consists of three fields: (1)
the virtual page number, (2) the value of the mapped page frame, and (3) a
pointer to the next element in the linked list.

logical
address

d p

The algorithm works as follows: The virtual page number in the
virtual address is hashed into the hash table. The virtual page number is
compared with field 1 in the first element in the linked list. If there is a
match, the corresponding page frame (field 2) is used to form the desired
physical address. If there is no match, subsequent entries in the linked list are
searched for a matching virtual page number. This scheme is shown in Figure
8.19.

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar
to

physic

 al
 addres

s

r d

hash

 physi
cal

fuonnct
i

 q s

 p r • • • moreym

hash table

Figure 8.19 Hashed page table.

hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.
 Inverted Page Tables

Usually, each process has an associated page table. The page table
has one entry for each page that the process is using (or one slot for each
virtual address, regardless of the latter’s validity). This table representation is
a natural one, since processes reference pages through the pages’ virtual
addresses. The operating system must then translate this reference into a
physical memory address. Since the table is sorted by virtual address, the
operating system is able to calculate where in the table the associated

logic
al

physica
l

address
physic
al
memo ry

search i

pid p

d i d p Pdi

address

CPU

physical address entry is located and to use that value directly. One of the
drawbacks of this method is that each page table may consist of millions of
entries. These tables may consume large amounts of physical memory just to
keep track of how other physical memory is being used.
To solve this problem, we can use an inverted page table. An inverted page
table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.20 shows the operation of an inverted page table. Compare
it with Figure 8.10, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.5.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-
space identifier ensures that a logical page for a particular process is mapped
to the corresponding physical page frame. Examples of systems using
inverted page tables include the 64-bit UltraSPARC and PowerPC.

page table

Figure 8.20 Inverted page table.

To illustrate this method, we describe a simplified version of the
inverted page table used in the IBM RT. IBM was the first major company to
use inverted page tables, starting with the IBM System 38 and continuing
through the RS/6000 and the current IBM Power CPUs. For the IBM RT,
each virtual address in the system consists of a triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where
the process-id assumes the role of the address-space identifier. When a
memory reference occurs, part of the virtual address, consisting of <process-
id, page-number>, is presented to the memory subsystem. The inverted page
table is then searched for a match. If a match is found — say, at entry i —
then the physical address <i, offset> is generated. If no match is found, then
an illegal address access has been attempted.

Although this scheme decreases the amount of memory needed to
store each page table, it increases the amount of time needed to search the
table when a page reference occurs. Because the inverted page table is sorted
by physical address, but lookups occur on virtual addresses, the whole table
might need to be searched before a match is found. This search would take
far too long. To alleviate this problem, we use a hash table, as described in
Section 8.6.2, to limit the search to one — or at most a few — page-table
entries. Of course, each access to the hash table adds a memory reference to
the procedure, so one virtual memory reference requires at least two real
memory reads — one for the hash-table entry and one for the page table.
(Recall that the TLB is searched first, before the hash table is consulted,
offering some performance improvement.)

Systems that use inverted page tables have difficulty implementing
shared memory. Shared memory is usually implemented as multiple virtual
addresses (one for each process sharing the memory) that are mapped to one
physical address. This standard method cannot be used with inverted page
tables; because there is only one virtual page entry for every physical page,
one physical page cannot have two (or more) shared virtual addresses. A
simple technique for addressing this issue is to allow the page table to
contain only one mapping of a virtual address to the shared physical address.
This means that references to virtual addresses that are not mapped result in
page faults.
 Oracle SPARC Solaris

Consider as a final example a modern 64-bit CPU and operating
system that are tightly integrated to provide low-overhead virtual memory.
Solaris running on the SPARC CPU is a fully 64-bit operating system and as
such has to solve the problem of virtual memory without using up all of its
physical memory by keeping multiple levels of page tables. Its approach is a
bit complex but solves the problem efficiently using hashed page tables.
There are two hash tables — one for the kernel and one for all user processes.
Each maps memory addresses from virtual to physical memory. Each hash-
table entry represents a contiguous area of mapped virtual memory, which is
more efficient than having a separate hash-table entry for each page. Each
entry has a base address and a span indicating the number of pages the entry
represents.

Virtual-to-physical translation would take too long if each address
required searching through a hash table, so the CPU implements a TLB that
holds translation table entries (TTEs) for fast hardware lookups. A cache of
these TTEs reside in a translation storage buffer (TSB), which includes an

entry per recently accessed page. When a virtual address reference occurs,
the hardware searches the TLB for a translation. If none is found, the
hardware walks through the in-memory TSB looking for the TTE that
corresponds to the virtual address that caused the lookup. This TLB walk
functionality is found on many modern CPUs. If a match is found in the
TSB, the CPU copies the TSB entry into the TLB, and the memory
translation completes. If no match is found in the TSB, the kernel is
interrupted to search the hash table. The kernel then creates a TTE from the
appropriate hash table and stores it in the TSB for automatic loading into the
TLB by the CPU memory-management unit. Finally, the interrupt handler
returns control to the MMU, which completes the address translation and
retrieves the requested byte or word from main memory.

Example: Intel 32 and 64-bit Architectures
The architecture of Intel chips has dominated the personal computer

landscape for several years. The 16-bit Intel 8086 appeared in the late 1970s
and was soon followed by another 16-bit chip — the Intel 8088 — which
was notable for being the chip used in the original IBM PC. Both the 8086
chip and the 8088 chip were based on a segmented architecture. Intel later
produced a series of 32-bit chips. The IA-32, which included the family of
32-bit Pentium processors. The IA-32 architecture supported both paging and
segmentation. More recently, Intel has produced a series of 64-bit chips
based on the x86-64 architecture. Currently, all the most popular PC
operating systems run on Intel chips, including Windows, Mac OS X, and
Linux (although Linux, of course, runs on several other architectures as
well). Notably, however, Intel’s dominance has not spread to mobile
systems, where the ARM architecture currently enjoys considerable success
(see Section 8.8).

logical linear physical

address

segmentatio
n

address

paging

address

physica
l

CPU memor
y unit unit

Figure 8.21 Logical to physical address translation in IA-32.

In this section, we examine address translation for both IA-32 and

x86-64 architectures. Before we proceed, however, it is important to note that
because Intel has released several versions — as well as variations — of its
architectures over the years, we cannot provide a complete description of the
memory-management structure of all its chips. Nor can we provide all of the
CPU details, as that information is best left to books on computer
architecture. Rather, we present the major memory-management concepts of
these Intel CPUs.

 IA-32 Architecture

Memory management in IA-32 systems is divided into two
components — segmentation and paging — and works as follows: The CPU
generates logical addresses, which are given to the segmentation unit. The
segmentation unit produces a linear address for each logical address. The
linear address is then given to the paging unit, which in turn generates the
physical address in main memory. Thus, the segmentation and paging units
form the equivalent of the memory-management unit (MMU). This scheme is
shown in Figure 8.21.

 IA-32 Segmentation
The IA-32 architecture allows a segment to be as large as 4 GB, and

the maximum number of segments per process is 16 K. The logical address
space of a process is divided into two partitions. The first partition consists of
up to 8 K segments that are private to that process. The second partition
consists of up to 8 K segments that are shared among all the processes.
Information about the first partition is kept in the local descriptor table
(LDT); information about the second partition is kept in the global
descriptor table (GDT). Each entry in the LDT and GDT consists of an 8-
byte segment descriptor with detailed information about a particular segment,
including the base location and limit of that segment.

The logical address is a pair (selector, offset), where the selector is a
16-bit number:

s g p

13 1 2

in which s designates the segment number, g indicates whether the segment
is in the GDT or LDT, and p deals with protection. The offset is a 32-bit
number specifying the location of the byte within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

The linear address on the IA-32 is 32 bits long and is formed as
follows. The segment register points to the appropriate entry in the LDT or
GDT. The base and limit information about the segment in question is used
to generate a linear address. First, the limit is used to check for address
validity. If the address is not valid, a memory fault is generated, resulting in a
trap to the operating system. If it is valid, then the value of the offset is added
to the value of the base, resulting in a 32-bit linear address. This is shown in
Figure 8.22. In the following section, we discuss how the paging unit turns
this linear address into a physical address.

descriptor table

segment descriptor +

logical
address

selector

offset

32-bit linear address

Figure 8.22 IA-32 segmentation.

 IA-32 Paging
The IA-32 architecture allows a page size of either 4 KB or 4 MB. For

4-KB pages, IA-32 uses a two-level paging scheme in which the division of the
32-bit linear address is as follows:

page number page offset

10 10 12
The address-translation scheme for this architecture is similar to the

scheme shown in Figure 8.18. The IA-32 address translation is shown in more
detail in Figure 8.23. The 10 high-order bits reference an entry in the outermost
page table, which IA-32 terms the page directory. (The CR3 register points to
the page directory for the current process.) The page directory entry points to
an inner page table that is indexed by the contents of the innermost 10 bits in
the linear address. Finally, the low-order bits 0 – 11 refer to the offset in the 4-
KB page pointed to in the page table.

One entry in the page directory is the Page Size flag, which — if set —
indicates that the size of the page frame is 4 MB and not the standard 4 KB. If
this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

To improve the efficiency of physical memory use, IA-32 page tables
can be swapped to disk. In this case, an invalid bit is used in the page directory
entry to indicate whether the table to which the entry is pointing is in memory
or on disk. If the table is on disk, the operating system can use the other 31 bits
to specify the disk location of the table. The table can then be brought into
memory on demand.

p1 p2 d

page
directory offset

3
1 22 21 0

Figure 8.23 Paging in the IA-32 architecture.

As software developers began to discover the 4-GB memory
limitations of 32-bit architectures, Intel adopted a page address extension
(PAE), which allows 32-bit processors to access a physical address space
larger than 4 GB. The fundamental difference introduced by PAE support
was that paging went from a two-level scheme (as shown in Figure 8.23) to a
three-level scheme, where the top two bits refer to a page directory pointer
table. Figure 8.24 illustrates a PAE system with 4-KB pages. (PAE also
supports 2-MB pages.)

(linear
address)

page
directory

22
21

page
table

offset

31 12 11 0

page

4-KB

 table page

page

directory

CR
3

4-MB
register

 page

 page
directory

page table

offset

3
1

30
29

21 20

12 11

0

CR3
regist

er

4-KB
page

page directory page page
directo

pointer table ry table

Figure 8.24 Page address extensions.

page mappage directory page page

unused

level 4

pointer table

director
y

table

offset

63

48
47

39 38

30 29

21 20

12 11

0

Figure 8.25 x86-64 linear address.

PAE also increased the page-directory and page-table entries from 32
to 64 bits in size, which allowed the base address of page tables and page
frames to extend from 20 to 24 bits. Combined with the 12-bit offset, adding
PAE support to IA-32 increased the address space to 36 bits, which supports
up to 64 GB of physical memory. It is important to note that operating
system support is required to use PAE. Both Linux and Intel Mac OS X
support PAE. However, 32-bit versions of Windows desktop operating
systems still provide support for only 4 GB of physical memory, even if PAE
is enabled.
8.7.2 x86-64

Intel has had an interesting history of developing 64-bit architectures.

Its initial entry was the IA-64 (later named Itanium) architecture, but that
architecture was not widely adopted. Meanwhile, another chip manufacturer
— AMD — began developing a 64-bit architecture known as x86-64 that
was based on extending the existing IA-32 instruction set. The x86-64
supported much larger logical and physical address spaces, as well as several
other architectural advances. Historically, AMD had often developed chips

based on Intel’s architecture, but now the roles were reversed as Intel
adopted AMD’s x86-64 architecture. In discussing this architecture, rather
than using the commercial names AMD64 and Intel 64, we will use the more
general term x86-64.

Support for a 64-bit address space yields an astonishing 264 bytes of

addressable memory — a number greater than 16 quintillion (or 16
exabytes). However, even though 64-bit systems can potentially address this
much memory, in practice far fewer than 64 bits are used for address
representation in current designs. The x86-64 architecture currently provides
a 48-bit virtual address with support for page sizes of 4 KB, 2 MB, or 1 GB
using four levels of paging hierarchy. The representation of the linear
address appears in Figure 8.25. Because this addressing scheme can use
PAE, virtual addresses are 48 bits in size but support 52-bit physical
addresses (4096 terabytes).

 Virtual Memory

In previous, we discussed various memory-management strategies
used in computer systems. All these strategies have the same goal: to keep
many processes in memory simultaneously to allow multiprogramming.
However, they tend to require that an entire process be in memory before it
can execute.

Virtual memory is a technique that allows the execution of processes
that are not completely in memory. One major advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from the concerns of memory-storage
limitations. Virtual memory also allows processes to share files easily and to
implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this
chapter, we discuss virtual memory in the form of demand paging and
examine its complexity and cost.
Background

The memory-management algorithms outlined in Chapter 8 are
necessary because of one basic requirement: The instructions being executed
must be in physical memory. The first approach to meeting this requirement
is to place the entire logical address space in physical memory. Dynamic
loading can help to ease this restriction, but it generally requires special
precautions and extra work by the programmer.

The requirement that instructions must be in physical memory to be
executed seems both necessary and reasonable; but it is also unfortunate,
since it limits the size of a program to the size of physical memory. In fact,
an examination of real programs shows us that, in many cases, the entire
program is not needed. For instance, consider the following:

Programs often have code to handle unusual error conditions. Since
these errors seldom, if ever, occur in practice, this code is almost never
executed.

Arrays, lists, and tables are often allocated more memory than they
actually need. An array may be declared 100 by 100 elements, even though it
is seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

Certain options and features of a program may be used rarely. For
instance, the routines on U.S. government computers that balance the budget
have not been used in many years.

Even in those cases where the entire program is needed, it may not all
be needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.

Because each user program could take less physical memory, more
programs could be run at the same time, with a corresponding increase in
CPU utilization and throughput but with no increase in response time or
turnaround time.

Less I/O would be needed to load or swap user programs into memory,
so each user program would run faster. Thus, running a program that is not
entirely in memory would benefit both the system and the user.

Virtual memory involves the separation of logical memory as
perceived by users from physical memory. This separation allows an
extremely large virtual memory to be provided for programmers when only a
smaller physical memory is available (Figure 8.26). Virtual memory makes
the task of programming much easier, because the programmer no longer
needs to worry about the amount of physical memory available; she can
concentrate instead on the problem to be programmed.

The virtual address space of a process refers to the logical (or virtual)
view of how a process is stored in memory. Typically, this view is that a
process begins at a certain logical address — say, address 0 — and exists in
contiguous memory, as shown in Figure 8.27. Recall, that in fact physical
memory may be organized in page frames and that the physical page frames
assigned to a process may not be contiguous. It is up to the memory-
management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 8.27 that we allow the heap to grow upward in memory
as it is used for dynamic memory allocation. Similarly, we allow for the stack
to grow downward in memory through successive function calls. The large

page 1

page 2

•

•
•

Mem ory
map

page v

 physi
cal

 memo
ry

virtual
memo

ry

blank space (or hole) between the heap and the stack is part of the virtual
address space but will require actual physical pages only if the heap or stack
grows. Virtual address spaces that include holes are known as sparse address
spaces. Using a sparse address space is beneficial because the holes can be
filled as the stack or heap segments grow or if we wish to dynamically link
libraries (or possibly other shared objects) during program execution.

page 0

Figure 8.26 Diagram showing virtual memory that is larger than physical
memory.

.

stack

heap

data

Stack stack

Max

code
0

Figure 8.27 Virtual address space.

 shared shared
library shared library pages

Heap heap

Data data

Code code

Figure 8.28 Shared library using virtual memory.

In addition to separating logical memory from physical memory, virtual
memory allows files and memory to be shared by two or more processes
through page sharing (Section 8.5.4). This leads to the following benefits:

System libraries can be shared by several processes through mapping of the
shared object into a virtual address space. Although each process considers the
libraries to be part of its virtual address space, the actual pages where the
libraries reside in physical memory are shared by all the processes (Figure
8.28). Typically, a library is mapped read-only into the space of each process
that is linked with it.

Virtual memory allows one process to create a region of memory that it
can share with another process. Processes sharing this region consider it part of
their virtual address space, yet the actual physical pages of memory are shared,
much as is illustrated in Figure 8.28.

Pages can be shared during process creation with the fork() system call,
thus speeding up process creation.

 Demand Paging
Consider how an executable program might be loaded from disk into

memory. One option is to load the entire program in physical memory at
program execution time. However, a problem with this approach is that we
may not initially need the entire program in memory. Suppose a program starts
with a list of available options from which the user is to select. Loading the
entire program into memory results in loading the executable code for all
options, regardless of whether or not an option is ultimately selected by the
user. An alternative strategy is to load pages only as they are needed. This
technique is known as demand paging and is commonly used in virtual
memory systems. With demand-paged virtual memory, pages are loaded only
when they are demanded during program execution. Pages that are never
accessed are thus never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 8.29) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, though, we use a lazy swapper. A
lazy swapper never swaps a page into memory unless that page will be needed.
In the context of a demand-paging system, use of the term ―swapper‖ is
technically incorrect. A swapper manipulates entire processes, whereas a
pager is concerned with the individual pages of a process. We thus use
―pager,‖ rather than ―swapper,‖ in connection with demand paging.

progra

m

swap out

0

1

2

3

A

 4 5 6 7

8

9

1
0

1
1

 12 13 1

4
 1

5
progra

m

B swap in 16 17 1
8

 1
9

20

21

2
2

2
3

main
memory

Figure 8.29 Transfer of a paged memory to contiguous disk space.

 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will
be used before the process is swapped out again. Instead of swapping in a
whole process, the pager brings only those pages into memory. Thus, it avoids
reading into memory pages that will not be used anyway, decreasing the swap
time and the amount of physical memory needed.

With this scheme, we need some form of hardware support to
distinguish between the pages that are in memory and the pages that are on the
disk. The valid – invalid bit scheme described in Section 8.5.3 can be used for
this purpose. This time, however, when this bit is set to ―valid,‖ the associated
page is both legal and in memory. If the bit is set to ―invalid,‖ the page either
is not valid (that is, not in the logical address space of the process) or is valid
but is currently on the disk. The page-table entry for a page that is brought into

memory is set as usual, but the page-table entry for a page that is not currently
in memory is either simply marked invalid or contains the address of the page
on disk. This situation is depicted in Figure 8.30.

Notice that marking a page invalid will have no effect if the process
never attempts to access that page. Hence, if we guess right and page in all
pages that are actually needed and only those pages, the process will run
exactly as though we had brought in all pages. While the process executes and
accesses pages that are memory resident, execution proceeds normally.

0

1

0 2
valid–invalid

1 frame bit 3

2 4
0

3 1 5

4
5

6
7

logical

2
3 6
4 7
5
6 8
7 9

page table

10

 C D E

 F G H

memor

y

11

12

13

14

15

physical
memory

Figure 8.30 Page table when some pages are not in main memory.

B

A

A

C

F

A

B

C

D

E
F

G
H

4

v

i

6

v

 i
 i
9 v
 i
 i

3

Operati
on

system

reference

1

load M i
6

restart page table
instruction

page is on

2

trap

free frame
5 4

reset
page bring in

missing
table page

physical
memory

Figure 8.31 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought into
memory? Access to a page marked invalid causes a page fault. The paging
hardware, in translating the address through the page table, will notice that the
invalid bit is set, causing a trap to the operating system. This trap is the result
of the operating system’s failure to bring the desired page into memory. The
procedure for handling this page fault is straightforward (Figure 8.31):

We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an invalid
memory access.

If the reference was invalid, we terminate the process. If it was valid
but we have not yet brought in that page, we now page it in.

We find a free frame (by taking one from the free-frame list, for example).
We schedule a disk operation to read the desired page into the newly allocated
frame.
When the disk read is complete, we modify the internal table kept with the
process and the page table to indicate that the page is now in memory.

We restart the instruction that was interrupted by the trap. The process can now
access the page as though it had always been in memory.
In the extreme case, we can start executing a process with no pages in memory.
When the operating system sets the instruction pointer to the first instruction of
the process, which is on a non-memory-resident page, the process immediately
faults for the page. After this page is brought into memory, the process
continues to execute, faulting as necessary until every page that it needs is in
memory. At that point, it can execute with no more faults. This scheme is pure
demand paging: never bring a page into memory until it is required.

Theoretically, some programs could access several new pages of
memory with each instruction execution (one page for the instruction and many
for data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, which results in reasonable performance
from demand paging.
The hardware to support demand paging is the same as the hardware for paging
and swapping:

Page table. This table has the ability to mark an entry invalid
through a valid – invalid bit or a special value of protection bits.
Secondary memory. This memory holds those pages that are not
present in main memory. The secondary memory is usually a high-
speed disk. It is known as the swap device, and the section of disk
used for this purpose is known as swap space.

A crucial requirement for demand paging is the ability to restart any
instruction after a page fault. Because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault occurs,
we must be able to restart the process in exactly the same place and state,
except that the desired page is now in memory and is accessible. In most cases,
this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as
ADD the content of A to B, placing the result in C. These are the steps to
execute this instruction:

Fetch and decode the instruction (ADD).
Fetch A.
Fetch B.

Add A and B.
Store the sum in C.

If we fault when we try to store in C (because C is in a page not
currently in memory), we will have to get the desired page, bring it in,
correct the page table, and restart the instruction. The restart will require
fetching the instruction again, decoding it again, fetching the two operands
again, and then adding again. However, there is not much repeated work
(less than one complete instruction), and the repetition is necessary only
when a page fault occurs.

The major difficulty arises when one instruction may modify several
different locations. For example, consider the IBM System 360/370 MVC
(move character) instruction, which can move up to 256 bytes from one
location to another (possibly overlapping) location. If either block (source
or destination) straddles a page boundary, a page fault might occur after the
move is partially done. In addition, if the source and destination blocks
overlap, the source block may have been modified, in which case we cannot
simply restart the instruction.

This problem can be solved in two different ways. In one solution, the

microcode computes and attempts to access both ends of both blocks. If a
page fault is going to occur, it will happen at this step, before anything is
modified. The move can then take place; we know that no page fault can
occur, since all the relevant pages are in memory. The other solution uses
temporary registers to hold the values of overwritten locations. If there is a
page fault, all the old values are written back into memory before the trap
occurs. This action restores memory to its state before the instruction was
started, so that the instruction can be repeated.

This is by no means the only architectural problem resulting from
adding paging to an existing architecture to allow demand paging, but it
illustrates some of the difficulties involved. Paging is added between the
CPU and the memory in a computer system. It should be entirely transparent
to the user process. Thus, people often assume that paging can be added to
any system. Although this assumption is true for a non-demand-paging
environment, where a page fault represents a fatal error, it is not true where a
page fault means only that an additional page must be brought into memory
and the process restarted.

 Performance of Demand Paging
Demand paging can significantly affect the performance of a

computer system. To see why, let’s compute the effective access time for a
demand-paged memory. For most computer systems, the memory-access
time, denoted ma, ranges from 10 to 200 nanoseconds. As long as we have
no page faults, the effective access time is equal to the memory access time.
If, however, a page fault occurs, we must first read the relevant page from
disk and then access the desired word.

Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect
p to be close to zero — that is, we would expect to have only a few page
faults. The effective access time is then

effective access time = (1 − p) × ma + p × page fault time.

To compute the effective access time, we must know how much
time is needed to service a page fault. A page fault causes the following
sequence to occur:

Trap to the operating system.
Save the user registers and process state.
Determine that the interrupt was a page fault.
Check that the page reference was legal and determine the location of
the page on the disk.
Issue a read from the disk to a free frame:
Wait in a queue for this device until the read request is serviced.
Wait for the device seek and/or latency time.
Begin the transfer of the page to a free frame.
While waiting, allocate the CPU to some other user (CPU scheduling,
optional).
Receive an interrupt from the disk I/O subsystem (I/O completed).
Save the registers and process state for the other user (if step 6 is
executed).
Determine that the interrupt was from the disk.
Correct the page table and other tables to show that the desired page is
now in memory.
Wait for the CPU to be allocated to this process again.
Restore the user registers, process state, and new page table, and then
resume the interrupted instruction.

Not all of these steps are necessary in every case. For example, we are
assuming that, in step 6, the CPU is allocated to another process while the
I/O occurs. This arrangement allows multiprogramming to maintain CPU
utilization but requires additional time to resume the page-fault service
routine when the I/O transfer is complete.

In any case, we are faced with three major components of the page-fault
service time:

Service the page-fault interrupt.
Read in the page.
Restart the process.
The first and third tasks can be reduced, with careful coding, to

several hundred instructions. These tasks may take from 1 to 100
microseconds each. The page-switch time, however, will probably be close
to 8 milliseconds. (A typical hard disk has an average latency of 3
milliseconds, a seek of 5 milliseconds, and a transfer time of 0.05
milliseconds. Thus, the total paging time is about 8 milliseconds, including
hardware and software time.) Remember also that we are looking at only
the device-service time. If a queue of processes is waiting for the device,
we have to add device-queueing time as we wait for the paging device to be
free to service our request, increasing even more the time to swap.

With an average page-fault service time of 8 milliseconds and a
memory-access time of 200 nanoseconds, the effective access time in
nanoseconds is

effective access time = (1 − p) × (200) + p (8 milliseconds)

(1 − p) × 200 + p × 8,000,000
200 + 7,999,800 × p.

We see, then, that the effective access time is directly proportional

to the page-fault rate. If one access out of 1,000 causes a page fault, the
effective access time is 8.2 microseconds. The computer will be slowed
down by a factor of 40 because of demand paging! If we want performance
degradation to be less than 10 percent, we need to keep the probability of
page faults at the following level:

220 > 200 + 7,999,800 × p,
20 > 7,999,800 × p,
p < 0.0000025.

That is, to keep the slowdown due to paging at a reasonable level, we can
allow fewer than one memory access out of 399,990 to page-fault. In sum, it
is important to keep the page-fault rate low in a demand-paging system.
Otherwise, the effective access time increases, slowing process execution
dramatically.

An additional aspect of demand paging is the handling and overall use of
swap space. Disk I/O to swap space is generally faster than that to the file
system. It is a faster file system because swap space is allocated in much
larger blocks, and file lookups and indirect allocation methods are not used
(Chapter 10). The system can therefore gain better paging throughput by
copying an entire file image into the swap space at process startup and then
performing demand paging from the swap space. Another option is to
demand pages from the file system initially but to write the pages to swap
space as they are replaced. This approach will ensure that only needed
pages are read from the file system but that all subsequent paging is done
from swap space.

Some systems attempt to limit the amount of swap space used
through demand paging of binary files. Demand pages for such files are
brought directly from the file system. However, when page replacement is
called for, these frames can simply be overwritten (because they are never
modified), and the pages can be read in from the file system again if
needed. Using this approach, the file system itself serves as the backing
store. However, swap space must still be used for pages not associated with
a file (known as anonymous memory); these pages include the stack and
heap for a process. This method appears to be a good compromise and is
used in several systems, including Solaris and BSD UNIX.

Mobile operating systems typically do not support swapping.
Instead, these systems demand-page from the file system and reclaim read-
only pages (such as code) from applications if memory becomes
constrained. Such data can be demand-paged from the file system if it is
later needed. Under iOS, anonymous memory pages are never reclaimed
from an application unless the application is terminated or explicitly
releases the memory.

 Copy-on-Write

We illustrated how a process can start quickly by demand-paging in
the page containing the first instruction. However, process creation using
the fork() system call may initially bypass the need for demand paging by
using a technique similar to page sharing (covered in Section 8.5.4). This
technique provides rapid process creation and minimizes the number of new
pages that must be allocated to the newly created process.

Recall that the fork() system call creates a child process that is a
duplicate of its parent. Traditionally, fork() worked by creating a copy of
the parent’s address space for the child, duplicating the pages belonging to
the parent. However, considering that many child processes invoke the
exec() system call immediately after creation, the copying of the parent’s
address space may be unnecessary. Instead, we can use a technique known
as copy-on-write, which works by allowing the parent and child processes
initially to share the same pages. These shared pages are marked as copy-
on-write pages, meaning that if either process writes to a shared page, a
copy of the shared page is created. Copy-on-write is illustrated in Figures

8.32 and 8.33, which show the contents of the physical memory before and
after process 1 modifies page C.

For example, assume that the child process attempts to modify a
page containing portions of the stack, with the pages set to be copy-on-
write. The operating system will create a copy of this page, mapping it to
the address space of the child process. The child process will then modify
its copied page and not the page belonging to the parent process. Obviously,
when the copy-on-write technique is used, only the pages that are modified
by either process are copied; all unmodified pages can be shared by the
parent and child processes. Note, too, that only pages that can be modified
need be marked as copy-on-write. Pages that cannot be modified (pages
containing executable code) can be shared by the parent and child. Copy-
on-write is a common technique used by several operating systems,
including Windows XP, Linux, and Solaris.

When it is determined that a page is going to be duplicated using
copy-on-write, it is important to note the location from which the free page
will be allocated. Many operating systems provide a pool of free pages for
such requests. These free pages are typically allocated when the stack or
heap for a process must expand or when there are copy-on-write pages to be
managed.

 physical proces
s2 process1 memory

Figure 8.32 Before process 1 modifies page C.

page A

page B

page C

 physical
process1 memory process2

page A

 page B

 page C

Copy of page
C

Figure 8.33 After process 1 modifies page C.

Operating systems typically allocate these pages using a technique
known as zero-fill-on-demand. Zero-fill-on-demand pages have been
zeroed-out before being allocated, thus erasing the previous contents.

Several versions of UNIX (including Solaris and Linux) provide a
variation of the fork() system call — vfork() (for virtual memory fork) —
that operates differently from fork() with copy-on-write. With vfork(), the
parent process is suspended, and the child process uses the address space of
the parent. Because vfork() does not use copy-on-write, if the child process
changes any pages of the parent’s address space, the altered pages will be
visible to the parent once it resumes. Therefore, vfork() must be used with
caution to ensure that the child process does not modify the address space
of the parent. vfork() is intended to be used when the child process calls
exec() immediately after creation. Because no copying of pages takes place,
vfork() is an extremely efficient method of process creation and is
sometimes used to implement UNIX command-line shell interfaces.

Page Replacement
In our earlier discussion of the page-fault rate, we assumed that each

page faults at most once, when it is first referenced. This representation is
not strictly accurate, however. If a process of ten pages actually uses only
half of them, then demand paging saves the I/O necessary to load the five
pages that are never used. We could also increase our degree of
multiprogramming by running twice as many processes. Thus, if we had
forty frames, we could run eight processes, rather than the four that could
run if each required ten frames (five of which were never used).

If we increase our degree of multiprogramming, we are over-
allocating memory. If we run six processes, each of which is ten pages in

size but actually uses only five pages, we have higher CPU utilization and
throughput, with ten frames to spare. It is possible, however, that each of
these processes, for a particular data set, may suddenly try to use all ten of
its pages, resulting in a need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding
program pages. Buffers for I/O also consume a considerable amount of
memory. This use

Fra
0 me

 1

PC

2

3

valid–
invalid

bi
t

1

2

3

logical memory page table 4
for user

1 for user 1
5

6

Fra
0 me
1
2

3

valid–
invalid

bi
t

7

physic

al
memor

y

logical memory p
for user

table

2 for user 2

Figure 8.34 Need for page replacement.

M

B

0

H

load
M

J

M

monito

r

D

H

load
M

J

A

E

3 v

4

v

5

v
 i

A

B
D

E

6 v
 i

2

v

7

v

age

can increase the strain on memory-placement algorithms. Deciding how
much memory to allocate to I/O and how much to program pages is a
significant challenge. Some systems allocate a fixed percentage of memory
for I/O buffers, whereas others allow both user processes and the I/O
subsystem to compete for all system memory.

Over-allocation of memory manifests itself as follows. While a user
process is executing, a page fault occurs. The operating system determines
where the desired page is residing on the disk but then finds that there are no
free frames on the free-frame list; all memory is in use (Figure 8.34).

The operating system has several options at this point. It could
terminate the user process. However, demand paging is the operating
system’s attempt to improve the computer system’s utilization and
throughput. Users should not be aware that their processes are running on a
paged system — paging should be logically transparent to the user. So this
option is not the best choice.

The operating system could instead swap out a process, freeing all its
frames and reducing the level of multiprogramming. Here, we discuss the
most common solution: page replacement.

 Basic Page Replacement
Page replacement takes the following approach. If no frame is free, we find
one that is not currently being used and free it. We can free a frame by
writing its contents to swap space and changing the page table (and all other
tables) to indicate that the page is no longer in memory (Figure 8.35). We
can now use the freed frame to hold the page for which the process faulted.
We modify the page-fault service routine to include page replacement:

Find the location of the desired page on the disk.
Find a free frame:

If there is a free frame, use it.
If there is no free frame, use a page-replacement algorithm to
select a victim frame.
Write the victim frame to the disk; change the page and frame
tables accordingly.

Read the desired page into the newly freed frame; change the page and
frame tables.
Continue the user process from where the page fault occurred.

victim

v
f

reset page
page
table

table for
3

 new page
 page in
 Desired
 Page

physical
memory

Figure 8.35 Page replacement.

Notice that, if no frames are free, two page transfers (one out and one

in) are required. This situation effectively doubles the page-fault service time
and increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit).
When this scheme is used, each page or frame has a modify bit associated with
it in the hardware. The modify bit for a page is set by the hardware whenever
any byte in the page is written into, indicating that the page has been modified.
When we select a page for replacement, we examine its modify bit. If the bit is
set, we know that the page has been modified since it was read in from the
disk. In this case, we must write the page to the disk. If the modify bit is not
set, however, the page has not been modified since it was read into memory. In
this case, we need not write the memory page to the disk: it is already there.
This technique also applies to read-only pages (for example, pages of binary
code).

Such pages cannot be modified; thus, they may be discarded when
desired. This scheme can significantly reduce the time required to service a
page fault, since it reduces I/O time by one-half if the page has not been
modified.

frame valid–invalid bit
 page

out
 change Victim
 to

invalid 2 Page
0 i

 1

Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory. With this mechanism, an
enormous virtual memory can be provided for programmers on a smaller
physical memory. With no demand paging, user addresses are mapped into
physical addresses, and the two sets of addresses can be different. All the pages
of a process still must be in physical memory, however. With demand paging,
the size of the logical address space is no longer constrained by physical
memory. If we have a user process of twenty pages, we can execute it in ten
frames simply by using demand paging and using a replacement algorithm to
find a free frame whenever necessary. If a page that has been modified is to be
replaced, its contents are copied to the disk. A later reference to that page will
cause a page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

We must solve two major problems to implement demand paging: we
must develop a frame-allocation algorithm and a page-replacement
algorithm. That is, if we have multiple processes in memory, we must decide
how many frames to allocate to each process; and when page replacement is
required, we must select the frames that are to be replaced. Designing
appropriate algorithms to solve these problems is an important task, because
disk I/O is so expensive. Even slight improvements in demand-paging methods
yield large gains in system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a
particular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

We evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference string. We can generate reference strings
artificially (by using a random-number generator, for example), or we can trace
a given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses per
second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than the
entire address. Second, if we have a reference to a page p, then any references
to page p that immediately follow will never cause a page fault. Page p will be
in memory after the first reference, so the immediately following references
will not fault.

For example, if we trace a particular process, we might record the
following address sequence:

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102,
0103, 0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102,
0105

At 100 bytes per page, this sequence is reduced to the following reference
string:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

16

14

12

1
0

8

6

4

2

1 2 3 4 5 6
number of frames

Figure 8.36 Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string

and page-replacement algorithm, we also need to know the number of page
frames available. Obviously, as the number of frames available increases, the
number of page faults decreases. For the reference string considered
previously, for example, if we had three or more frames, we would have only
three faults — one fault for the first reference to each page. In contrast, with
only one frame available, we would have a replacement with every reference,
resulting in eleven faults. In general, we expect a curve such as that in Figure
8.36. As the number of frames increases, the number of page faults drops to
some minimal level. Of course, adding physical memory increases the number
of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

 FIFO Page Replacement
The simplest page-replacement algorithm is a first-in, first-out (FIFO)

algorithm. A FIFO replacement algorithm associates with each page the time
when that page was brought into memory. When a page must be replaced, the
oldest page is chosen. Notice that it is not strictly necessary to record the time
when a page is brought in. We can create a FIFO queue to hold all pages in

fa
ul

ts

memory. We replace the page at the head of the queue. When a page is brought
into memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty.
The first three references (7, 0, 1) cause page faults and are brought into these
empty frames. The next reference (2) replaces page 7, because page 7 was
brought in first. Since 0 is the next reference and 0 is already in memory, we
have no fault for this reference. The first reference to 3 results in replacement
of page 0, since it is now first in line. Because of this replacement, the next
reference, to 0, will fault. Page 1 is then replaced by page 0. This process
continues as shown in Figure 8.37. Every time a fault occurs, we show which
pages are in our three frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and
program. However, its performance is not always good. On the one hand, the
page replaced may be an initialization module that was used a long time ago
and is no longer needed. On the other hand, it could contain a heavily used
variable that was initialized early and is in constant use.

reference

string
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 4 4 4 0 0 0 7 7 7
 0 0 0 3 3 3 2 2 2 1 1 1 0 0
 1 1 1 0 0 0 3 3 3 2 2 2 1

page frames

Figure 8.37 FIFO page-replacement algorithm.

Notice that, even if we select for replacement a page that is in active
use, everything still works correctly. After we replace an active page with a
new one, a fault occurs almost immediately to retrieve the active page. Some
other page must be replaced to bring the active page back into memory. Thus, a
bad replacement choice increases the page-fault rate and slows process
execution. It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-
replacement algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
Notice that the number of faults for four frames (ten) is greater than the
number of faults for three frames (nine)! This most unexpected result is known
as Belady’s anomaly: for some page-replacement algorithms, the page-fault
rate may increase as the number of allocated frames increases. We would
expect that giving more memory to a process would improve its performance.
In some early research, investigators noticed that this assumption was not
always true. Belady’s anomaly was discovered as a result.

 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal
page-replacement algorithm — the algorithm that has the lowest page-fault
rate of all algorithms and will never suffer from Belady’s anomaly. Such an
algorithm does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-

replacement algorithm would yield nine page faults, as shown in Figure 8.38.
The first three references cause faults that fill the three empty frames. The
reference to page 2 replaces page 7, because page 7 will not be used until
reference 18, whereas page 0 will be used at 5, and page 1 at 14. The reference
to page 3 replaces page 1, as page 1 will be the last of the three pages in
memory to be referenced again. With only nine page faults, optimal
replacement is much better than a FIFO algorithm, which results in fifteen
faults. (If we ignore the first three, which all algorithms must suffer, then
optimal replacement is twice as good as FIFO replacement.) In fact, no
replacement algorithm can process this reference string in three frames with
fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm). As a
result, the optimal algorithm is used mainly for comparison studies. For
instance, it may be useful to know that, although a new algorithm is not
optimal, it is within 12.3 percent of optimal at worst and within 4.7 percent on
average.

reference

string
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 7
 0 0 0 0 4 0 0 0
 1 1 3 3 3 1 1

page
frames

Figure 8.38 Optimal page-replacement algorithm.

 LRU Page Replacement
If the optimal algorithm is not feasible, perhaps an approximation of

the optimal algorithm is possible. The key distinction between the FIFO and
OPT algorithms (other than looking backward versus forward in time) is
that the FIFO algorithm uses the time when a page was brought into
memory, whereas the OPT algorithm uses the time when a page is to be
used. If we use the recent past as an approximation of the near future, then
we can replace the page that has not been used for the longest period of
time. This approach is the least recently used (LRU) algorithm.

LRU replacement associates with each page the time of that page’s
last use. When a page must be replaced, LRU chooses the page that has not
been used for the longest period of time. We can think of this strategy as the
optimal page-replacement algorithm looking backward in time, rather than
forward. (Strangely, if we let SR be the reverse of a reference string S, then
the page-fault rate for the OPT algorithm on S is the same as the page-fault
rate for the OPT algorithm on SR. Similarly, the page-fault rate for the LRU
algorithm on S is the same as the page-fault rate for the LRU algorithm on
SR.)

The result of applying LRU replacement to our example reference
string is shown in Figure 8.39. The LRU algorithm produces twelve faults.
Notice that the first five faults are the same as those for optimal
replacement. When the reference to page 4 occurs, however, LRU
replacement sees that, of the three frames in memory, page 2 was used least
recently. Thus, the LRU algorithm replaces page 2, not knowing that page 2
is about to be used. When it then faults for page 2, the LRU algorithm
replaces page 3, since it is now the least recently used of the three pages in
memory. Despite these problems, LRU replacement with twelve faults is
much better than FIFO replacement with fifteen.

The LRU policy is often used as a page-replacement algorithm and is
considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:
Counters: In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock
is incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use field
in the page-table entry for that page. In this way, we always have

reference
string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4 4 0 1 1 1
 0 0 0 0 0 0 3 3 3 0 0
 1 1 3 3 2 2 2 2 2 7

page
frames

Figure 8.39 LRU page-replacement algorithm.

the ―time‖ of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.
Stack. Another approach to implementing LRU replacement is to keep a
stack of page numbers. Whenever a page is referenced, it is removed from
the stack and put on the top. In this way, the most recently used page is
always at the top of the stack and the least recently used page is always at
the bottom (Figure 8.40). Because entries must be removed from the middle
of the stack, it is best to implement this approach by using a doubly linked
list with a head pointer and a tail pointer. Removing a page and putting it on
the top of the stack then requires changing six pointers at worst. Each
update is a little more expensive, but there is no search for a replacement;
the tail pointer points to the bottom of the stack, which is the LRU page.
This approach is particularly appropriate for software or microcode
implementations of LRU replacement.
Like optimal replacement, LRU replacement does not suffer from Belady’s
anomaly. Both belong to a class of page-replacement algorithms, called
stack algorithms, that can never exhibit Belady’s anomaly. A stack
algorithm is an algorithm for which it can be shown that the set of pages in
memory for n frames is always a subset of the set of pages that would be in
memory with n1 frames. For LRU replacement, the set of pages in memory
would be the n most recently referenced pages. If the number of frames is
increased, these n pages will still be the most recently referenced and so
will still be in memory.

Note that neither implementation of LRU would be conceivable
without hardware assistance beyond the standard TLB registers. The
updating of the clock fields or stack must be done for every memory
reference. If we were to use an interrupt for every reference to allow
software to update such data structures, it would slow every memory
reference by a factor of at least ten, hence slowing every user process by a
factor of ten. Few systems could tolerate that level of overhead for memory
management.

reference
string

4 7 0 7 1 0 1 2 1 2 7 1 2

a b

Stack stack
afte

Before r
A b

Figure 8.40 Use of a stack to record the most recent page references.

 LRU-Approximation Page Replacement
Few computer systems provide sufficient hardware support for true LRU page
replacement. In fact, some systems provide no hardware support, and other
page-replacement algorithms (such as a FIFO algorithm) must be used. Many
systems provide some help, however, in the form of a reference bit. The
reference bit for a page is set by the hardware whenever that page is referenced
(either a read or a write to any byte in the page). Reference bits are associated
with each entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a user
process executes, the bit associated with each page referenced is set (to 1) by
the hardware. After some time, we can determine which pages have been used
and which have not been used by examining the reference bits, although we do
not know the order of use. This information is the basis for many page-
replacement algorithms that approximate LRU replacement.

2

1

0

7

4

7

2

1

0

4

 Additional-Reference-Bits Algorithm
We can gain additional ordering information by recording the reference bits
at regular intervals. We can keep an 8-bit byte for each page in a table in
memory. At regular intervals (say, every 100 milliseconds), a timer interrupt
transfers control to the operating system. The operating system shifts the
reference bit for each page into the high-order bit of its 8-bit byte, shifting
the other bits right by 1 bit and discarding the low-order bit. These 8-bit shift
registers contain the history of page use for the last eight time periods. If the
shift register contains 00000000, for example, then the page has not been
used for eight time periods. A page that is used at least once in each period
has a shift register value of 11111111. A page with a history register value of
11000100 has been used more recently than one with a value of 01110111. If
we interpret these 8-bit bytes as unsigned integers, the page with the lowest
number is the LRU page, and it can be replaced. Notice that the numbers are
not guaranteed to be unique, however. We can either replace (swap out) all
pages with the smallest value or use the FIFO method to choose among them.

The number of bits of history included in the shift register can be
varied, of course, and is selected (depending on the hardware available) to
make the updating as fast as possible. In the extreme case, the number can be
reduced to zero, leaving only the reference bit itself. This algorithm is called
the second-chance page-replacement algorithm.

 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO
replacement algorithm. When a page has been selected, however, we inspect
its reference bit. If the value is 0, we proceed to replace this page; but if the
reference bit is set to 1, we give the page a second chance and move on to
select the next FIFO page. When a page gets a second chance, its reference
bit is cleared, and its arrival time is reset to the current time. Thus, a page
that is given a second chance will not be replaced until all other pages have
been replaced (or given second chances). In addition, if a page is used often
enough to keep its reference bit set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes
referred to as the clock algorithm) is as a circular queue. A pointer (that is, a
hand on the clock) indicates which page is to be replaced next. When a frame
is needed, the pointer advances until it finds a page with a 0 reference bit. As
it advances, it clears the reference bits (Figure 8.41). Once a victim page is
found, the page is replaced, and the new page is inserted in the circular queue
in that position. Notice that, in the worst case, when all bits are set, the
pointer cycles through the whole queue, giving each page a second chance. It
clears all the reference bits before selecting the next page for replacement.
Second-chance replacement degenerates to FIFO replacement if all bits are
set.

Reference

pag
e
s

reference

pages

B its bits

 0

 0

 0

 0

next
victi
m 1 0

 1 0

 0 0

 …

 …

 1

 1

 1 1

cir ular queue of
pages

circular queue of
pages

 (a) (b)

Figure 8.41 Second-chance (clock) page-replacement algorithm.

 Enhanced Second-Chance Algorithm
We can enhance the second-chance algorithm by considering the

reference bit and the modify bit as an ordered pair. With these two bits, we
have the following four possible classes:

(0, 0) neither recently used nor modified — best page to replace
(0, 1) not recently used but modified — not quite as good, because the
page will need to be written out before replacement
(1, 0) recently used but clean — probably will be used again soon
(1, 1) recently used and modified — probably will be used again soon,
and the page will be need to be written out to disk before it can be
replaced

Each page is in one of these four classes. When page replacement is
called for, we use the same scheme as in the clock algorithm; but instead of
examining whether the page to which we are pointing has the reference bit
set to 1, we examine the class to which that page belongs. We replace the

first page encountered in the lowest nonempty class. Notice that we may
have to scan the circular queue several times before we find a page to be
replaced.

The major difference between this algorithm and the simpler clock
algo-rithm is that here we give preference to those pages that have been
modified in order to reduce the number of I/Os required.

 Counting-Based Page Replacement
There are many other algorithms that can be used for page

replacement. For example, we can keep a counter of the number of
references that have been made to each page and develop the following two
schemes.

The least frequently used (LFU) page-replacement algorithm
requires that the page with the smallest count be replaced. The reason for
this selection is that an actively used page should have a large reference
count. A problem arises, however, when a page is used heavily during the
initial phase of a process but then is never used again. Since it was used
heavily, it has a large count and remains in memory even though it is no
longer needed. One solution is to shift the counts right by 1 bit at regular
intervals, forming an exponentially decaying average usage count.

The most frequently used (MFU) page-replacement algorithm is
based on the argument that the page with the smallest count was probably
just brought in and has yet to be used.

As you might expect, neither MFU nor LFU replacement is common.
The implementation of these algorithms is expensive, and they do not
approximate OPT replacement well.

 Page-Buffering Algorithms
Other procedures are often used in addition to a specific page-

replacement algorithm. For example, systems commonly keep a pool of free
frames. When a page fault occurs, a victim frame is chosen as before.
However, the desired page is read into a free frame from the pool before the
victim is written out. This procedure allows the process to restart as soon as
possible, without waiting for the victim page to be written out. When the
victim is later written out, its frame is added to the free-frame pool.

An expansion of this idea is to maintain a list of modified pages.
Whenever the paging device is idle, a modified page is selected and is
written to the disk. Its modify bit is then reset. This scheme increases the
probability that a page will be clean when it is selected for replacement and
will not need to be written out.

Another modification is to keep a pool of free frames but to remember
which page was in each frame. Since the frame contents are not modified
when a frame is written to the disk, the old page can be reused directly from
the free-frame pool if it is needed before that frame is reused. No I/O is
needed in this case. When a page fault occurs, we first check whether the

desired page is in the free-frame pool. If it is not, we must select a free
frame and read into it.

This technique is used in the VAX/VMS system along with a FIFO

replace-ment algorithm. When the FIFO replacement algorithm mistakenly
replaces a page that is still in active use, that page is quickly retrieved from
the free-frame pool, and no I/O is necessary. The free-frame buffer provides
protection against the relatively poor, but simple, FIFO replacement
algorithm. This method is necessary because the early versions of VAX did
not implement the reference bit correctly.

Some versions of the UNIX system use this method in conjunction with
the second-chance algorithm. It can be a useful augmentation to any page-
replacement algorithm, to reduce the penalty incurred if the wrong victim
page is selected.

Allocation of Frames

We turn next to the issue of allocation. How do we allocate the fixed
amount of free memory among the various processes? If we have 93 free
frames and two processes, how many frames does each process get?

The simplest case is the single-user system. Consider a single-user
system with 128 KB of memory composed of pages 1 KB in size. This
system has 128 frames. The operating system may take 35 KB, leaving 93
frames for the user process. Under pure demand paging, all 93 frames
would initially be put on the free-frame list. When a user process started
execution, it would generate a sequence of page faults. The first 93 page
faults would all get free frames from the free-frame list. When the free-
frame list was exhausted, a page-replacement algorithm would be used to
select one of the 93 in-memory pages to be replaced with the 94th, and so
on. When the process terminated, the 93 frames would once again be placed
on the free-frame list.

There are many variations on this simple strategy. We can require that
the operating system allocate all its buffer and table space from the free-
frame list. When this space is not in use by the operating system, it can be
used to support user paging. We can try to keep three free frames reserved
on the free-frame list at all times. Thus, when a page fault occurs, there is a
free frame available to page into. While the page swap is taking place, a
replacement can be selected, which is then written to the disk as the user
process continues to execute. Other variants are also possible, but the basic
strategy is clear: the user process is allocated any free frame.

 Minimum Number of Frames
Our strategies for the allocation of frames are constrained in various ways.
We cannot, for example, allocate more than the total number of available
frames (unless there is page sharing). We must also allocate at least a
minimum number of frames. Here, we look more closely at the latter
requirement.

One reason for allocating at least a minimum number of frames
involves performance. Obviously, as the number of frames allocated to each
process decreases, the page-fault rate increases, slowing process execution.
In addition, remember that, when a page fault occurs before an executing
instruction is complete, the instruction must be restarted. Consequently, we
must have enough frames to hold all the different pages that any single
instruction can reference.

For example, consider a machine in which all memory-reference
instructions may reference only one memory address. In this case, we need
at least one frame for the instruction and one frame for the memory
reference. In addition, if one-level indirect addressing is allowed (for
example, a load instruction on page 16 can refer to an address on page 0,
which is an indirect reference to page 23), then paging requires at least
three frames per process. Think about what might happen if a process had
only two frames.

The minimum number of frames is defined by the computer
architecture. For example, the move instruction for the PDP-11 includes
more than one word for some addressing modes, and thus the instruction
itself may straddle two pages. In addition, each of its two operands may be
indirect references, for a total of six frames. Another example is the IBM
370 MVC instruction. Since the instruction is from storage location to
storage location, it takes 6 bytes and can straddle two pages. The block of
characters to move and the area to which it is to be moved can each also
straddle two pages. This situation would require six frames. The worst case
occurs when the MVC instruction is the operand of an EXECUTE
instruction that straddles a page boundary; in this case, we need eight
frames.

The worst-case scenario occurs in computer architectures that allow
multiple levels of indirection (for example, each 16-bit word could contain
15-bit address plus a 1-bit indirect indicator). Theoretically, a simple load
instruction could reference an indirect address that could reference an
indirect address (on another page) that could also reference an indirect
address (on yet another page), and so on, until every page in virtual
memory had been touched. Thus, in the worst case, the entire virtual
memory must be in physical memory. To overcome this difficulty, we must
place a limit on the levels of indirection (for example, limit an instruction to
at most 16 levels of indirection). When the first indirection occurs, a
counter is set to 16; the counter is then decremented for each successive
indirection for this instruction. If the counter is decremented to 0, a trap

occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same
number of frames.

Whereas the minimum number of frames per process is defined by the
architecture, the maximum number is defined by the amount of available
physical memory. In between, we are still left with significant choice in
frame allocation.

 Allocation Algorithms

The easiest way to split m frames among n processes is to give
everyone an equal share, m/n frames (ignoring frames needed by the
operating system for the moment). For instance, if there are 93 frames and
five processes, each process will get 18 frames. The three leftover frames
can be used as a free-frame buffer pool. This scheme is called equal
allocation.

An alternative is to recognize that various processes will need
differing amounts of memory. Consider a system with a 1-KB frame size. If
a small student process of 10 KB and an interactive database of 127 KB are
the only two processes running in a system with 62 free frames, it does not
make much sense to give each process 31 frames. The student process does
not need more than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use proportional allocation, in which
we allocate available memory to each process according to its size. Let the
size of the virtual memory for process pi be si , and define

S = si .
Then, if the total number of available frames is m, we allocate ai frames to
process pi , where ai is approximately

i = si /S × m.

Of course, we must adjust each ai to be an integer that is greater than the
minimum number of frames required by the instruction set, with a sum not
exceeding m.

With proportional allocation, we would split 62 frames between two
processes, one of 10 pages and one of 127 pages, by allocating 4 frames and
57 frames, respectively, since

10/137 × 62 ≈ 4, and
127/137 × 62 ≈ 57.

In this way, both processes share the available frames according to their
―needs,‖ rather than equally.

In both equal and proportional allocation, of course, the allocation
may vary according to the multiprogramming level. If the
multiprogramming level is increased, each process will lose some frames to
provide the memory needed for the new process. Conversely, if the
multiprogramming level decreases, the frames that were allocated to the
departed process can be spread over the remaining processes.

Notice that, with either equal or proportional allocation, a high-
priority process is treated the same as a low-priority process. By its
definition, however, we may want to give the high-priority process more
memory to speed its execution, to the detriment of low-priority processes.
One solution is to use a proportional allocation scheme wherein the ratio of
frames depends not on the relative sizes of processes but rather on the
priorities of processes or on a combination of size and priority.

 Global versus Local Allocation

Another important factor in the way frames are allocated to the various
processes is page replacement. With multiple processes competing for
frames, we can classify page-replacement algorithms into two broad
categories: global replacement and local replacement. Global
replacement allows a process to select a replacement frame from the set of
all frames, even if that frame is currently allocated to some other process;
that is, one process can take a frame from another. Local replacement
requires that each process select from only its own set of allocated frames.

For example, consider an allocation scheme wherein we allow high-
priority processes to select frames from low-priority processes for
replacement. A process can select a replacement from among its own
frames or the frames of any lower-priority process. This approach allows a
high-priority process to increase its frame allocation at the expense of a
low-priority process. With a local replacement strategy, the number of
frames allocated to a process does not change. With global replacement, a
process may happen to select only frames allocated to other processes, thus
increasing the number of frames allocated to it (assuming that other
processes do not choose its frames for replacement).

One problem with a global replacement algorithm is that a process
cannot control its own page-fault rate. The set of pages in memory for a
process depends not only on the paging behavior of that process but also on
the paging behavior of other processes. Therefore, the same process may
perform quite differently (for example, taking 0.5 seconds for one execution
and 10.3 seconds for the next execution) because of totally external
circumstances. Such is not the case with a local replacement algorithm.
Under local replacement, the set of pages in memory for a process is
affected by the paging behavior of only that process. Local replacement
might hinder a process, however, by not making available to it other, less
used pages of memory. Thus, global replacement generally results in
greater system throughput and is therefore the more commonly used
method.

 Non-Uniform Memory Access
Thus far in our coverage of virtual memory, we have assumed that all

main memory is created equal — or at least that it is accessed equally. On
many computer systems, that is not the case. Often, in systems with
multiple CPUs (Section 1.3.2), a given CPU can access some sections of
main memory faster than it can access others. These performance
differences are caused by how CPUs and memory are interconnected in the
system. Frequently, such a system is made up of several system boards,
each containing multiple CPUs and some memory. The system boards are
interconnected in various ways, ranging from system buses to high-speed
network connections like InfiniBand. As you might expect, the CPUs on a
particular board can access the memory on that board with less delay than
they can access memory on other boards in the system. Systems in which
memory access times vary significantly are known collectively as non-
uniform memory access (NUMA) systems, and without exception, they
are slower than systems in which memory and CPUs are located on the
same motherboard.

Managing which page frames are stored at which locations can
significantly affect performance in NUMA systems. If we treat memory as
uniform in such a system, CPUs may wait significantly longer for memory
access than if we modify memory allocation algorithms to take NUMA into
account. Similar changes must be made to the scheduling system. The goal
of these changes is to have memory frames allocated ―as close as possible‖
to the CPU on which the process is running. The definition of ―close‖ is
―with minimum latency,‖ which typically means on the same system board
as the CPU.

The algorithmic changes consist of having the scheduler track the last
CPU on which each process ran. If the scheduler tries to schedule each
process onto its previous CPU, and the memory-management system tries
to allocate frames for the process close to the CPU on which it is being
scheduled, then improved cache hits and decreased memory access times
will result.

The picture is more complicated once threads are added. For example,
a process with many running threads may end up with those threads
scheduled on many different system boards. How is the memory to be
allocated in this case? Solaris solves the problem by creating lgroups (for
―latency groups‖) in the kernel. Each lgroup gathers together close CPUs
and memory. In fact, there is a hierarchy of lgroups based on the amount of
latency between the groups. Solaris tries to schedule all threads of a process
and allocate all memory of a process within an lgroup. If that is not
possible, it picks nearby lgroups for the rest of the resources needed. This
practice minimizes overall memory latency and maximizes CPU cache hit
rates.

Thrashing
If the number of frames allocated to a low-priority process falls below

the minimum number required by the computer architecture, we must
suspend that process’s execution. We should then page out its remaining
pages, freeing all its allocated frames. This provision introduces a swap-in,
swap-out level of intermediate CPU scheduling.

In fact, look at any process that does not have ―enough‖ frames. If the
process does not have the number of frames it needs to support pages in
active use, it will quickly page-fault. At this point, it must replace some
page. However, since all its pages are in active use, it must replace a page
that will be needed again right away. Consequently, it quickly faults again,
and again, and again, replacing pages that it must bring back in
immediately.

This high paging activity is called thrashing. A process is thrashing
if it is spending more time paging than executing.

 Cause of Thrashing
Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is
too low, we increase the degree of multiprogramming by introducing a new
process to the system. A global page-replacement algorithm is used; it
replaces pages without regard to the process to which they belong. Now
suppose that a process enters a new phase in its execution and needs more
frames. It starts faulting and taking frames away from other processes.
These processes need those pages, however, and so they also fault, taking
frames from other processes. These faulting processes must use the paging
device to swap pages in and out. As they queue up for the paging device,
the ready queue empties. As processes wait for the paging device, CPU
utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases
the degree of multiprogramming as a result. The new process tries to get
started by taking frames from running processes, causing more page faults
and a longer queue for the paging device. As a result, CPU utilization drops
even further, and the CPU scheduler tries to increase the degree of
multiprogramming even more. Thrashing has occurred, and system
throughput plunges. The page-fault rate increases tremendously. As a result,
the effective memory-access time increases. No work is getting done,
because the processes are spending all their time paging.

This phenomenon is illustrated in Figure 8.42, in which CPU
utilization is plotted against the degree of multiprogramming. As the degree
of multi-programming increases, CPU utilization also increases, although
more slowly, until a maximum is reached. If the degree of
multiprogramming is increased even further, thrashing sets in, and CPU
utilization drops sharply. At this point, to increase CPU utilization and stop
thrashing, we must decrease the degree of multiprogramming.

degree of multiprogramming

Figure 8.42 Thrashing.

We can limit the effects of thrashing by using a local replacement
algorithm (or priority replacement algorithm). With local replacement, if
one process starts thrashing, it cannot steal frames from another process and
cause the latter to thrash as well. However, the problem is not entirely
solved. If processes are thrashing, they will be in the queue for the paging
device most of the time. The average service time for a page fault will
increase because of the longer average queue for the paging device. Thus,
the effective access time will increase even for a process that is not
thrashing.

To prevent thrashing, we must provide a process with as many frames
as it needs. But how do we know how many frames it ―needs‖? There are
several techniques. The working-set strategy starts by looking at how many
frames a process is actually using. This approach defines the locality model
of process execution.

The locality model states that, as a process executes, it moves from
locality to locality. A locality is a set of pages that are actively used
together (Figure 8.42). A program is generally composed of several
different localities, which may overlap.

For example, when a function is called, it defines a new locality. In
this locality, memory references are made to the instructions of the function
call, its local variables, and a subset of the global variables. When we exit
the function, the process leaves this locality, since the local variables and
instructions of the function are no longer in active use. We may return to
this locality later. Thus, we see that localities are defined by the program
structure and its data structures. The locality model states that all programs
will exhibit this basic memory reference structure. Note that the locality
model is the unstated principle behind the caching discussions so far in this
book. If accesses to any types of data were random rather than patterned,
caching would be useless.

thrashing
ut

ili
za

tio
n

Suppose we allocate enough frames to a process to accommodate its
current locality. It will fault for the pages in its locality until all these pages
are in memory; then, it will not fault again until it changes localities. If we do
not allocate enough frames to accommodate the size of the current locality,
the process will thrash, since it cannot keep in memory all the pages that it is
actively using.
 Working-Set Model

As mentioned, the working-set model is based on the assumption of
locality. This model uses a parameter, , to define the working-set window.
The idea is to examine the most recent page references. The set of pages in
the most recent page references is the working set (Figure 8.43). If a page is
in active use, it will be in the working set. If it is no longer being used, it will
drop from the working set time units after its last reference. Thus, the
working set is an approximation of the program’s locality.

For example, given the sequence of memory references shown in Figure
9.20, if = 10 memory references, then the working set at time t1 is {1, 2, 5, 6,
7}. By time t2, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of . If is too
small, it will not encompass the entire locality; if is too large, it may overlap
several localities. In the extreme, if is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSi , for each process in the system, we can
then consider that

D = WSSi ,
where D is the total demand for frames. Each process is actively using the
pages in its working set. Thus, process i needs WSSi frames. If the total
demand is greater than the total number of available frames (D > m),
thrashing will occur, because some processes will not have enough frames.

Once has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4
4 4 . . .

t 1 t

2
WS(t 1) = {1,2,5,6,7} WS(t 2) = {3,4}

Figure 8.43 Working-set model.

that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree
of multiprogramming as high as possible. Thus, it optimizes CPU utilization.
The difficulty with the working-set model is keeping track of the working set.
The working-set window is a moving window. At each memory reference, a
new reference appears at one end, and the oldest reference drops off the other
end. A page is in the working set if it is referenced anywhere in the working-
set window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for
each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will
be on. If it has not been used, these bits will be off. Pages with at least one bit
on will be considered to be in the working set.

Note that this arrangement is not entirely accurate, because we cannot
tell where, within an interval of 5,000, a reference occurred. We can reduce
the uncertainty by increasing the number of history bits and the frequency of
inter-rupts (for example, 10 bits and interrupts every 1,000 references).
However, the cost to service these more frequent interrupts will be
correspondingly higher.

 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging, but it seems a clumsy way to control thrashing. A
strategy that uses the page-fault frequency (PFF) takes a more direct
approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-
fault rate is too low, then the process may have too many frames. We can
establish upper and lower bounds on the desired page-fault rate (Figure 8.44).
If the actual page-fault rate exceeds the upper limit, we allocate the process
another frame. If the page-fault rate falls below the lower limit, we remove a
frame from the process. Thus, we can directly measure and control the page-
fault rate to prevent thrashing.

increase number
of frames

upper bound

lower bound
decrease number
of frames

number of frames

Figure 8.44 Page-fault frequency.

As with the working-set strategy, we may have to swap out a process.
If the page-fault rate increases and no free frames are available, we must
select some process and swap it out to backing store. The freed frames are
then distributed to processes with high page-fault rates.

 Concluding Remarks
Practically speaking, thrashing and the resulting swapping have a
disagreeably large impact on performance. The current best practice in
implementing a computer facility is to include enough physical memory,
whenever possible, to avoid thrashing and swapping. From smartphones
through mainframes, providing enough memory to keep all working sets in
memory concurrently, except under extreme conditions, gives the best user
experience.

Memory-Mapped Files
Consider a sequential read of a file on disk using the standard system calls
open(), read(), and write(). Each file access requires a system call and disk
access. Alternatively, we can use the virtual memory techniques discussed
so far to treat file I/O as routine memory accesses. This approach, known as
memory mapping a file, allows a part of the virtual address space to be
logically associated with the file. As we shall see, this can lead to
significant performance increases.

 Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page
(or pages) in memory. Initial access to the file proceeds through ordinary

ra
te

demand paging, resulting in a page fault. However, a page-sized portion of
the file is read from the file system into a physical page (some systems may
opt to read in more than a page-sized chunk of memory at a time).
Subsequent reads and writes to the file are handled as routine memory
accesses. Manipulating files through memory rather than incurring the
overhead of using the read() and write() system calls simplifies and speeds
up file access and usage.

Note that writes to the file mapped in memory are not necessarily
immediate (synchronous) writes to the file on disk. Some systems may
choose to update the physical file when the operating system periodically
checks whether the page in memory has been modified. When the file is
closed, all the memory-mapped data are written back to disk and removed
from the virtual memory of the process.

Some operating systems provide memory mapping only through a
specific system call and use the standard system calls to perform all other
file I/O. However, some systems choose to memory-map a file regardless of
whether the file was specified as memory-mapped. Let’s take Solaris as an
example. If a file is specified as memory-mapped (using the mmap() system
call), Solaris maps the file into the address space of the process. If a file is
opened and accessed using ordinary system calls, such as open(), read(),
and write(),Solaris still memory-maps the file; however, the file is mapped
to the kernel address space. Regardless of how the file is opened, then,
Solaris treats all file I/O as memory-mapped, allowing file access to take
place via the efficient memory subsystem.

Multiple processes may be allowed to map the same file concurrently,
to allow sharing of data. Writes by any of the processes modify the data in
virtual memory and can be seen by all others that map the same section of
the file. Given our earlier discussions of virtual memory, it should be clear
how the sharing of memory-mapped sections of memory is implemented:
the virtual memory map of each sharing process points to the same page of
physical memory — the page that holds a copy of the disk block. This
memory sharing is illustrated in Figure 8.45. The memory-mapping system
calls can also support copy-on-write functionality, allowing processes to
share a file in read-only mode but to have their own copies of any data they
modify. So that access to the shared data is coordinated, the processes
involved might use one of the mechanisms for achieving mutual exclusion.

Quite often, shared memory is in fact implemented by memory
mapping files. Under this scenario, processes can communicate using
shared memory by having the communicating processes memory-map the
same file into their virtual address spaces. The memory-mapped file serves
as the region of shared memory between the communicating processes
(Figure 8.46). We have already seen this, where a POSIX shared memory
object is created and each communicating process memory-maps the object
into its address space. In the following section, we illustrate support in the
Windows API for shared memory using memory-mapped files.

4
2

 1
 2
 3

1 4
2 3 5
3 6
4
5 6
6

 1

process A process B
virtual

memory
5 virtual

memory

physical memory

1 2 3 4 5 6
disk file

Figure 8.45 Memory-mapped files.

process1 process2

shared memory-mapped
memory file

 shared
 memory

 shared
 memory

Figure 8.46 Shared memory using memory-mapped I/O.

 Shared Memory in the Windows API
The general outline for creating a region of shared memory using memory-
mapped files in the Windows API involves first creating a file mapping for
the file to be mapped and then establishing a view of the mapped file in a
process’s virtual address space. A second process can then open and create a
view of the mapped file in its virtual address space. The mapped file
represents the shared-memory object that will enable communication to take
place between the processes.

We next illustrate these steps in more detail. In this example, a producer
process first creates a shared-memory object using the memory-mapping
features available in the Windows API. The producer then writes a message
to shared memory. After that, a consumer process opens a mapping to the
shared-memory object and reads the message written by the consumer.

To establish a memory-mapped file, a process first opens the file to be
mapped with the CreateFile() function, which returns a HANDLE to the
opened file. The process then creates a mapping of this file HANDLE using
the CreateFileMapping() function. Once the file mapping is established, the
process then establishes a view of the mapped file in its virtual address space
with the MapViewOfFile() function. The view of the mapped file represents
the portion of the file being mapped in the virtual address space of the process
the entire file or only a portion of it may be mapped. We illustrate this
sequence in the program shown in Figure 8.47. (We eliminate much of the
error checking for code brevity.)

The call to CreateFileMapping() creates a named shared-memory
object called SharedObject. The consumer process will communicate using
this shared-memory segment by creating a mapping to the same named
object. The producer then creates a view of the memory-mapped file in its
virtual address space. By passing the last three parameters the value 0, it
indicates that the mapped view is the entire file. It could instead have passed
values specifying an offset and size, thus creating a view containing only a
subsection of the file. (It is important to note that the entire mapping may not
be loaded into memory when the mapping is established. Rather, the mapped
file may be demand-paged, thus bringing pages into memory only as they are
accessed.) The MapViewOfFile() function returns a pointer to the shared-
memory object; any accesses to this memory location are thus accesses to the
memory-mapped file. In this instance, the producer process writes the
message ―Shared memory message‖ to shared memory.

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

HANDLE hFile, hMapFile;
LPVOID lpMapAddress;

hFile = CreateFile("temp.txt", /* file name */

GENERIC READ | GENERIC WRITE, /* read/write access */
0, /* no sharing of the file */
NULL, /* default security */
OPEN ALWAYS, /* open new or existing file */
FILE ATTRIBUTE NORMAL, /* routine file attributes */
NULL); /* no file template */

hMapFile = CreateFileMapping(hFile, /* file handle */

NULL, /* default security */
PAGE READWRITE, /* read/write access to mapped pages */
0, /* map entire file */
0,
TEXT("SharedObject")); /* named shared memory object */

lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */

FILE MAP ALL ACCESS, /* read/write access */
0, /* mapped view of entire file */
0,
0);

/* write to shared memory */
sprintf(lpMapAddress,"Shared memory message");

UnmapViewOfFile(lpMapAddress);
CloseHandle(hFile);
CloseHandle(hMapFile);

}

Figure 8.47 Producer writing to shared memory using the Windows API.

A program illustrating how the consumer process establishes a view of the
named shared-memory object is shown in Figure 8.48. This program is
somewhat simpler than the one shown in Figure 8.47, as all that is
necessary is for the process to create a mapping to the existing named
shared-memory object. The consumer process must also create a view of
the mapped file, just as the producer process did in the program in Figure
9.24. The consumer then reads from shared memory the message ―Shared
memory message‖ that was written by the producer process.

#include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

HANDLE hMapFile;
LPVOID lpMapAddress;

hMapFile = OpenFileMapping(FILE MAP ALL ACCESS, /* R/W

access */ FALSE, /* no inheritance */
TEXT("SharedObject")); /* name of mapped file object */

lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */
FILE MAP ALL ACCESS, /* read/write access */
0, /* mapped view of entire file */
0,
0);

/* read from shared memory */ printf("Read
message %s", lpMapAddress);

UnmapViewOfFile(lpMapAddress);
CloseHandle(hMapFile);

}

Figure 8.48 Consumer reading from shared memory using the Windows API.

Finally, both processes remove the view of the mapped file with a call to
UnmapViewOfFile(). We provide a programming exercise at the end of
this chapter using shared memory with memory mapping in the
Windows API.

8.14.3 Memory-Mapped I/O
In the case of I/O, as mentioned in Section 1.2.1, each I/O controller
includes registers to hold commands and the data being transferred.
Usually, special I/O instructions allow data transfers between these
registers and system memory. To allow more convenient access to I/O
devices, many computer architectures provide memory-mapped I/O. In
this case, ranges of memory addresses are set aside and are mapped to
the device registers. Reads and writes to these memory addresses cause
the data to be transferred to and from the device registers. This method
is appropriate for devices that have fast response times, such as video
controllers. In the IBM PC, each location on the screen is mapped to a
memory location. Displaying text on the screen is almost as easy as
writing the text into the appropriate memory-mapped locations.

Memory-mapped I/O is also convenient for other devices, such as
the serial and parallel ports used to connect modems and printers to a
computer. The CPU transfers data through these kinds of devices by
reading and writing a few device registers, called an I/O port. To send
out a long string of bytes through a memory-mapped serial port, the
CPU writes one data byte to the data register and sets a bit in the control
register to signal that the byte is available. The device takes the data
byte and then clears the bit in the control register to signal that it is
ready for the next byte. Then the CPU can transfer the next byte. If the
CPU uses polling to watch the control bit, constantly looping to see
whether the device is ready, this method of operation is called
programmed I/O (PIO). If the CPU does not poll the control bit, but
instead receives an interrupt when the device is ready for the next byte,
the data transfer is said to be interrupt driven.

Allocating Kernel Memory
When a process running in user mode requests additional memory,

pages are allocated from the list of free page frames maintained by the
kernel. This list is typically populated using a page-replacement algorithm
such as those discussed in Section 9.4 and most likely contains free pages
scattered throughout physical memory, as explained earlier. Remember,
too, that if a user process requests a single byte of memory, internal
fragmentation will result, as the process will be granted an entire page
frame.

Kernel memory is often allocated from a free-memory pool different
from the list used to satisfy ordinary user-mode processes. There are two
primary reasons for this:

The kernel requests memory for data structures of varying sizes, some
of which are less than a page in size. As a result, the kernel must use
memory conservatively and attempt to minimize waste due to
fragmentation. This is especially important because many operating
systems do not subject kernel code or data to the paging system.

Pages allocated to user-mode processes do not necessarily have to be
in contiguous physical memory. However, certain hardware devices interact
directly with physical memory — without the benefit of a virtual memory
interface — and consequently may require memory residing in physically
contiguous pages.

In the following sections, we examine two strategies for managing
free memory that is assigned to kernel processes: the ―buddy system‖ and
slab allocation.

 Buddy System
The buddy system allocates memory from a fixed-size segment consisting
of physically contiguous pages. Memory is allocated from this segment
using a power-of-2 allocator, which satisfies requests in units sized as a
power of 2 (4 KB, 8 KB, 16 KB, and so forth). A request in units not

appropriately sized is rounded up to the next highest power of 2. For
example, a request for 11 KB is satisfied with a 16-KB segment.

Let’s consider a simple example. Assume the size of a memory
segment is initially 256 KB and the kernel requests 21 KB of memory. The
segment is initially divided into two buddies — which we will call AL and
AR — each 128 KB in size. One of these buddies is further divided into two
64-KB buddies — BL and BR. However, the next-highest power of 2 from
21 KB is 32 KB so either BL or BR is again divided into two 32-KB
buddies, CL and CR. One of these buddies is used to satisfy the 21-KB
request. This scheme is illustrated in Figure 9.26, where CL is the segment
allocated to the 21-KB request.

An advantage of the buddy system is how quickly adjacent buddies
can be combined to form larger segments using a technique known as
coalescing. In Figure 8.49, for example, when the kernel releases the CL
unit it was allocated, the system can coalesce CL and CR into a 64-KB
segment. This segment, BL , can in turn be coalesced with its buddy BR to
form a 128-KB segment. Ultimately, we can end up with the original 256-
KB segment.

The obvious drawback to the buddy system is that rounding up to the
next highest power of 2 is very likely to cause fragmentation within
allocated segments. For example, a 33-KB request can only be satisfied
with a 64-KB segment. In fact, we cannot guarantee that less than 50
percent of the allocated unit will be wasted due to internal fragmentation. In
the following section, we explore a memory allocation scheme where no
space is lost due to fragmentation.

 Slab Allocation

A second strategy for allocating kernel memory is known as slab
allocation. A slab is made up of one or more physically contiguous pages.
A cache consists of one or more slabs. There is a single cache for each
unique kernel data structure — for example, a separate cache for the data
structure representing process descriptors, a separate cache for file objects,
a separate cache for semaphores, and so forth. Each cache is populated with
objects that are instantiations of the kernel data structure the cache
represents. For example, the cache representing semaphores stores instances
of semaphore objects, the cache representing process descriptors stores
instances of process descriptor objects, and so forth. The relationship
among slabs, caches, and objects is shown in Figure 8.50. The figure shows
two kernel objects 3 KB in size and three objects 7 KB in size, each stored
in a separate cache.

physically contiguous pages

CL

Figure 8.49 Buddy system allocation.

kernel objects caches slabs

3-KB
objects

physically
contiguous
pages

7-KB

objects

Figure 8.50 Slab allocation.

256 KB

128
KB
AL

128 KB
AR

64 KB
BL

64
KB
BR

K
B

KB
CR

The slab-allocation algorithm uses caches to store kernel objects.
When a cache is created, a number of objects — which are initially marked
as free— are allocated to the cache. The number of objects in the cache
depends on the size of the associated slab. For example, a 12-KB slab
(made up of three continguous 4-KB pages) could store six 2-KB objects.
Initially, all objects in the cache are marked as free. When a new object for
a kernel data structure is needed, the allocator can assign any free object
from the cache to satisfy the request. The object assigned from the cache is
marked as used.

Let’s consider a scenario in which the kernel requests memory from
the slab allocator for an object representing a process descriptor. In Linux
systems, a process descriptor is of the type struct task struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new
task, it requests the necessary memory for the struct task struct object from
its cache. The cache will fulfill the request using a struct task struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

Full. All objects in the slab are marked as used.
Empty. All objects in the slab are marked as free.
Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exists, a free object is assigned from an empty slab. If
no empty slabs are available, a new slab is allocated from contiguous
physical pages and assigned to a cache; memory for the object is allocated
from this slab.

The slab allocator provides two main benefits:

No memory is wasted due to fragmentation. Fragmentation is not an issue
because each unique kernel data structure has an associated cache, and each
cache is made up of one or more slabs that are divided into chunks the size
of the objects being represented. Thus, when the kernel requests memory
for an object, the slab allocator returns the exact amount of memory
required to represent the object.

Memory requests can be satisfied quickly. The slab allocation scheme
is thus particularly effective for managing memory when objects are
frequently allocated and deallocated, as is often the case with requests from
the kernel. The act of allocating — and releasing — memory can be a time-
consuming process. However, objects are created in advance and thus can
be quickly allocated from the cache. Furthermore, when the kernel has
finished with an object and releases it, it is marked as free and returned to
its cache, thus making it immediately available for subsequent requests
from the kernel.

The slab allocator first appeared in the Solaris 2.4 kernel. Because of
its general-purpose nature, this allocator is now also used for certain user-
mode memory requests in Solaris. Linux originally used the buddy system;
however, beginning with Version 2.2, the Linux kernel adopted the slab
allocator.

Recent distributions of Linux now include two other kernel memory
allocators — the SLOB and SLUB allocators. (Linux refers to its slab
implementation as SLAB.)

The SLOB allocator is designed for systems with a limited amount of
memory, such as embedded systems. SLOB (which stands for Simple List of
Blocks) works by maintaining three lists of objects: small (for objects less
than 256 bytes), medium (for objects less than 1,024 bytes), and large (for
objects less than 1,024 bytes). Memory requests are allocated from an object
on an appropriately sized list using a first-fit policy.

Beginning with Version 2.6.24, the SLUB allocator replaced SLAB as
the default allocator for the Linux kernel. SLUB addresses performance
issues with slab allocation by reducing much of the overhead required by the
SLAB allocator. One change is to move the metadata that is stored with each
slab under SLAB allocation to the page structure the Linux kernel uses for
each page. Additionally, SLUB removes the per-CPU queues that the SLAB
allocator maintains for objects in each cache. For systems with a large
number of processors, the amount of memory allocated to these queues was
not insignificant. Thus, SLUB provides better performance as the number of
processors on a system increases.

UNIT 5
Deadlocks

In a multiprogramming environment, several processes may compete for a finite
number of resources. A process requests resources; if the resources are not
available at that time, the process enters a waiting state. Sometimes, a waiting
process is never again able to change state, because the resources it has requested
are held by other waiting processes. This situation is called a deadlock.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: ―When two
trains approach each other at a crossing, both shall come to a full stop and neither
shall start up again until the other has gone.‖

In this, we describe methods that an operating system can use to prevent
or deal with deadlocks. Although some applications can identify programs that
may deadlock, operating systems typically do not provide deadlock-prevention
facilities, and it remains the responsibility of programmers to ensure that they
design deadlock-free programs. Deadlock problems can only become more
common, given current trends, including larger numbers of processes,
multithreaded programs, many more resources within a system, and an emphasis
on long-lived file and database servers rather than batch systems.

 System Model
A system consists of a finite number of resources to be distributed among a
number of competing processes. The resources may be partitioned into several
types (or classes), each consisting of some number of identical instances. CPU
cycles, files, and I/O devices (such as printers and DVD drives) are examples of
resource types. If a system has two CPUs, then the resource type CPU has two
instances. Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type should satisfy the request. If it does not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement, then
people on the ninth floor may not see both printers as equivalent, and separate
resource classes may need to be defined for each printer.

Mutex locks and semaphores are also considered system resources, and
they are a common source of deadlock. However, a lock is typically associated
with protecting a specific data structure — that is, one lock may be used to
protect access to a queue, another to protect access to a linked list, and so forth.
For that reason, each lock is typically assigned its own resource class, and
definition is not a problem.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires to
carry out its designated task. Obviously, the number of resources requested may

not exceed the total number of resources available in the system. In other words, a
process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

Request. The process requests the resource. If the request cannot be granted

immediately (for example, if the resource is being used by another
process), then the requesting process must wait until it can acquire the
resource.

Use. The process can operate on the resource (for example, if the resource is a

printer, the process can print on the printer).
Release. The process releases the resource.

The request and release of resources may be system calls,. Examples are
the request() and release() device, open() and close() file, and allocate() and free()
memory system calls. Similarly, as we saw in Chapter 5, the request and release
of semaphores can be accomplished through the wait() and signal() operations on
semaphores or through acquire() and release() of a mutex lock. For each use of a
kernel-managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource. A
system table records whether each resource is free or allocated. For each resource
that is allocated, the table also records the process to which it is allocated. If a
process requests a resource that is currently allocated to another process, it can be
added to a queue of processes waiting for this resource.

A set of processes is in a deadlocked state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
semaphores, mutex locks, and files). However, other types of events may result in
deadlocks (for example, the IPC facilities discussed in Chapter 3).

To illustrate a deadlocked state, consider a system with three CD RW
drives. Suppose each of three processes holds one of these CD RW drives. If each
process now requests another drive, the three processes will be in a deadlocked
state. Each is waiting for the event ―CD RW is released,‖ which can be caused
only by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example,
consider a system with one printer and one DVD drive. Suppose that process Pi is
holding the DVD and process Pj is holding the printer. If Pi requests the printer
and Pj requests the DVD drive, a deadlock occurs.

Developers of multithreaded applications must remain aware of the
possibility of deadlocks. The locking tools presented in Chapter 5 are designed to
avoid race conditions. However, in using these tools, developers must pay careful

attention to how locks are acquired and released. Otherwise, deadlock can occur,
as illustrated in the dining-philosophers problem.

 Deadlock Characterization
In a deadlock, processes never finish executing, and system resources are

tied up, preventing other jobs from starting. Before we discuss the various
methods for dealing with the deadlock problem, we look more closely at features
that characterize deadlocks.

 Necessary Conditions
A deadlock situation can arise if the following four conditions hold
simultaneously in a system:

Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released.
Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.
No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.
Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist
such that P0 is waiting for a resource held by P1, P1 is waiting for a
resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn
is waiting for a resource held by P0.

We emphasize that all four conditions must hold for a deadlock to occur. The
circular-wait condition implies the hold-and-wait condition, so the four
conditions are not completely independent.

 Resource-Allocation Graph
Deadlocks can be described more precisely in terms of a directed graph

called a system resource-allocation graph. This graph consists of a set of
vertices V and a set of edges E. The set of vertices V is partitioned into two
different types of nodes: P = {P1, P2, ..., Pn}, the set consisting of all the active
processes in the system, and R = {R1, R2, ..., Rm}, the set consisting of all resource
types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ;
it signifies that process Pi has requested an instance of resource type Rj and is
currently waiting for that resource. A directed edge from resource type Rj to
process Pi is denoted by Rj → Pi ; it signifies that an instance of resource type Rj
has been allocated to process Pi . A directed edge Pi → R j is called a request
edge; a directed edge Rj → Pi is called an assignment edge.

Pictorially, we represent each process Pi as a circle and each resource type
j as a rectangle. Since resource type Rj may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle Rj , whereas an assignment edge must also
designate one of the dots in the rectangle.

P1 P2 P3

R2

When process Pi requests an instance of resource type Rj , a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled, the
request edge is instantaneously transformed to an assignment edge. When the
process no longer needs access to the resource, it releases the resource. As a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 5.1 depicts the following
situation.

The sets P, R, and E:
P = {P1, P2, P3}

R1 R3

R4
Figure 5.1 Resource-allocation graph.

R = {R1, R2, R3, R4}
◦ E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

Resource instances:
One instance of resource type R1
Two instances of resource type R2
One instance of resource type R3
Three instances of resource type R4

Process states:
Process P1 is holding an instance of resource type R2 and is waiting
for an instance of resource type R1.
Process P2 is holding an instance of R1 and an instance of R2 and is
waiting for an instance of R3.
Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if

the graph contains no cycles, then no process in the system is deadlocked. If the
graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each of
which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

P1 P2 P3

R2

If each resource type has several instances, then a cycle does not
necessarily imply that a deadlock has occurred. In this case, a cycle in the graph is
a necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 5.1. Suppose that process P3 requests an instance of resource
type R2. Since no resource instance is currently available, we add a request edge
P3 → R2 to the graph (Figure 5.2). At this point, two minimal cycles exist in the
system:

R1 R3

R4

Figure 5.2 Resource-allocation graph with a deadlock.

P1 → R1 → P2 → R3 → P3 → R2 → P1
P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource
R3, which is held by process P3. Process P3 is waiting for either process P1 or
process P2 to release resource R2. In addition, process P1 is waiting for process
P2 to release resource R1.

Now consider the resource-allocation graph in Figure 7.3. In this
example, we also have a cycle:

R1
P2

P3
P1

R2 P4

P1 → R1 → P3 → R2 → P1

Figure 5.3 Resource-allocation graph with a cycle but no deadlock.

However, there is no deadlock. Observe that process P4 may release its
instance of resource type R2. That resource can then be allocated to P3 , breaking
the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or may
not be in a deadlocked state. This observation is important when we deal with the
deadlock problem.
 Methods for Handling Deadlocks
Generally speaking, we can deal with the deadlock problem in one of three ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.
• We can ignore the problem altogether and pretend that deadlocks never

occur in the system.

The third solution is the one used by most operating systems, including Linux and
Windows. It is then up to the application developer to write programs that handle
deadlocks.

To ensure that deadlocks never occur, the system can use either a
deadlock-prevention or a deadlock-avoidance scheme. Deadlock prevention
provides a set of methods to ensure that at least one of the necessary conditions
cannot hold. These methods prevent deadlocks by constraining how requests for
resources can be made.

Deadlock avoidance requires that the operating system be given
additional information in advance concerning which resources a process will
request and use during its lifetime. With this additional knowledge, the operating
system can decide for each request whether or not the process should wait. To
decide whether the current request can be satisfied or must be delayed, the system

must consider the resources currently available, the resources currently allocated
to each process, and the future requests and releases of each process.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment, the
system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from the
deadlock (if a deadlock has indeed occurred).

In the absence of algorithms to detect and recover from deadlocks, we may
arrive at a situation in which the system is in a deadlocked state yet has no way of
recognizing what has happened. In this case, the undetected deadlock will cause
the system‘s performance to deteriorate, because resources are being held by
processes that cannot run and because more and more processes, as they make
requests for resources, will enter a deadlocked state. Eventually, the system will
stop functioning and will need to be restarted manually.

Although this method may not seem to be a viable approach to the
deadlock problem, it is nevertheless used in most operating systems, as mentioned
earlier. Expense is one important consideration. Ignoring the possibility of
deadlocks is cheaper than the other approaches. Since in many systems, deadlocks
occur infrequently (say, once per year), the extra expense of the other methods
may not seem worthwhile. In addition, methods used to recover from other
conditions may be put to use to recover from deadlock. In some circumstances, a
system is in a frozen state but not in a deadlocked state. We see this situation, for
example, with a real-time process running at the highest priority (or any process
running on a nonpreemptive scheduler) and never returning control to the
operating system. The system must have manual recovery methods for such
conditions and may simply use those techniques for deadlock recovery.
 Deadlock Prevention
As we noted in Section 5.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this approach
by examining each of the four necessary conditions separately.
 Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one resource
must be nonsharable. Sharable resources, in contrast, do not require mutually
exclusive access and thus cannot be involved in a deadlock. Read-only files are a
good example of a sharable resource. If several processes attempt to open a read-
only file at the same time, they can be granted simultaneous access to the file. A
process never needs to wait for a sharable resource. In general, however, we
cannot prevent deadlocks by denying the mutual-exclusion condition, because
some resources are intrinsically nonsharable. For example, a mutex lock cannot be
simultaneously shared by several processes.
 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we
must guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that we can use requires each process to request and
be allocated all its resources before it begins execution. We can implement this

provision by requiring that system calls requesting resources for a process precede
all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, it must release all the resources that it is
currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and then
prints the results to a printer. If all resources must be requested at the beginning of
the process, then the process must initially request the DVD drive, disk file, and
printer. It will hold the printer for its entire execution, even though it needs the
printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases both
the DVD drive and the disk file. The process must then request the disk file and
the printer. After copying the disk file to the printer, it releases these two
resources and terminates.

Both these protocols have two main disadvantages. First, resource
utilization may be low, since resources may be allocated but unused for a long
period. In the example given, for instance, we can release the DVD drive and disk
file, and then request the disk file and printer, only if we can be sure that our data
will remain on the disk file. Otherwise, we must request all resources at the
beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources that
it needs is always allocated to some other process.
 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition does
not hold, we can use the following protocol. If a process is holding some
resources and requests another resource that cannot be immediately allocated to it
(that is, the process must wait), then all resources the process is currently holding
are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check whether
they are allocated to some other process that is waiting for additional resources. If
so, we preempt the desired resources from the waiting process and allocate them
to the requesting process. If the resources are neither available nor held by a
waiting process, the requesting process must wait. While it is waiting, some of its
resources may be preempted, but only if another process requests them. A process
can be restarted only when it is allocated the new resources it is requesting and
recovers any resources that were preempted while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as mutex locks and semaphores.
 Circular Wait
The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of all
resource types and to require that each process requests resources in an increasing
order of enumeration.

To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to compare
two resources and to determine whether one precedes another in our ordering.
Formally, we define a one-to-one function F: R → N, where N is the set of natural
numbers. For example, if the set of resource types R includes tape drives, disk
drives, and printers, then the function F might be defined as follows:

F (tape drive) = 1
F (disk drive) = 5
F (printer) = 12

We can now consider the following protocol to prevent deadlocks: Each

process can request resources only in an increasing order of enumeration. That is,
a process can initially request any number of instances of a resource type — say,
Ri . After that, the process can request instances of resource type Rj if and only if
F(Rj) > F(Ri). For example, using the function defined previously, a process that
wants to use the tape drive and printer at the same time must first request the tape
drive and then request the printer. Alternatively, we can require that a process
requesting an instance of resource type Rj must have released any resources Ri
such that F(Ri) ≥ F(Rj). Note also that if several instances of the same resource
type are needed, a single request for all of them must be issued.

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists (proof
by contradiction). Let the set of processes involved in the circular wait be {P0, P1,
..., Pn}, where Pi is waiting for a resource Ri , which is held by process Pi +1.
(Modulo arithmetic is used on the indexes, so that Pn is waiting for a resource Rn
held by P0.) Then, since process Pi +1 is holding resource Ri while requesting
resource Ri +1, we must have F(Ri) < F(Ri +1) for all i. But this condition means
that F(R0) < F(R1) < ... < F(Rn) < F (R0). By transitivity, F(R0) < F(R0), which is
impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Figure 5.4 was

F (first mutex) = 1
F (second mutex) = 5

then thread two could not request the locks out of order.

Keep in mind that developing an ordering, or hierarchy, does not in itself
prevent deadlock. It is up to application developers to write programs that follow
the ordering. Also note that the function F should be defined according to the
normal order of usage of the resources in a system. For example, because the tape
drive is usually needed before the printer, it would be reasonable to define F(tape
drive) < F(printer).

/* thread one runs in this function */ void
*do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex);
/**
Do some
work */

pthread mutex unlock(&second
mutex); pthread mutex unlock(&first
mutex);
pthread exit(0);

}
/* thread two runs in this function */ void
*do work two(void *param)
{

pthread mutex lock(&second mutex);
pthread mutex lock(&first mutex);
/**
Do some
work */

pthread mutex unlock(&first mutex);
pthread mutex unlock(&second
mutex);
pthread exit(0);

}

Figure 5.4 Deadlock example.

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings when
locks are acquired out of order and deadlock is possible. One lock-order verifier,
which works on BSD versions of UNIX such as FreeBSD, is known as witness. It
works by dynamically maintaining the relationship of lock orders in a system.
Let‘s use the program shown in Figure 5.4 as an example. Assume that thread one
is the first to acquire the locks and does so in the order (1) first mutex, (2) second
mutex. Witness records the relationship that first mutex must be acquired before
second mutex. If thread two later acquires the locks out of order, witness
generates a warning message on the system console.

It is also important to note that imposing a lock ordering does not
guarantee deadlock prevention if locks can be acquired dynamically. For
example, assume we have a function that transfers funds between two accounts.
To prevent a race condition, each account has an associated mutex lock that is
obtained from a get lock() function such as shown in Figure 5.5:

void transaction(Account from, Account to, double amount)
{

mutex lock1, lock2;
lock1 = get lock(from);
lock2 = get lock(to);

acquire(lock1);
acquire(lock2);

withdraw(from, amount);
deposit(to, amount);

release(lock2);
release(lock1);

}

Figure 5.5 Deadlock example with lock ordering.
 Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in Section 5.4, prevent
deadlocks by limiting how requests can be made. The limits ensure that at least
one of the necessary conditions for deadlock cannot occur. Possible side effects
of preventing deadlocks by this method, however, are low device utilization and
reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that process P
will request first the tape drive and then the printer before releasing both
resources, whereas process Q will request first the printer and then the tape drive.
With this knowledge of the complete sequence of requests and releases for each
process, the system can decide for each request whether or not the process should
wait in order to avoid a possible future deadlock. Each request requires that in

making this decision the system consider the resources currently available, the
resources currently allocated to each process, and the future requests and releases
of each process.

The various algorithms that use this approach differ in the amount and
type of information required. The simplest and most useful model requires that
each process declare the maximum number of resources of each type that it may
need. Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. A deadlock-avoidance
algorithm dynamically examines the resource-allocation state to ensure that a
circular-wait condition can never exist. The resource-allocation state is defined
by the number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.
 Safe State

A state is safe if the system can allocate resources to each process (up to
its maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes <
P1, P2, ..., Pn> is a safe sequence for the current allocation state if, for each Pi ,
the resource requests that Pi can still make can be satisfied by the currently
available resources plus the resources held by all Pj , with j < i. In this situation,
if the resources that Pi needs are not immediately available, then Pi can wait until
all Pj have finished. When they have finished, Pi can obtain all of its needed
resources, complete its designated task, return its allocated resources, and
terminate. When Pi terminates, Pi +1 can obtain its needed resources, and so on. If
no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an
unsafe state. Not all unsafe states are deadlocks, however (Figure 5.6). An unsafe
state may lead to a deadlock. As long as the state is safe, the operating system can
avoid unsafe (and deadlocked) states. In an unsafe state, the operating system
cannot prevent processes from requesting resources in such a way that a deadlock
occurs. The behavior of the processes controls unsafe states.

To illustrate, we consider a system with twelve magnetic tape drives and
three processes: P0, P1, and P2. Process P0 requires ten tape drives, process P1
may need as many as four tape drives, and process P2 may need up to nine tape
drives. Suppose that, at time t0, process P0 is holding five tape drives, process P1
is holding two tape drives, and process P2 is holding two tape drives. (Thus, there
uarnesathferee free tape drives.)

deadlock

safe

Figure 5.6 Safe, unsafe, and deadlocked state spaces.

 Maximum Needs Current Needs
P0 10 5
P1 4 2
P2 9 2

At time t0, the system is in a safe state. The sequence < P1, P0, P2>
satisfies the safety condition. Process P1 can immediately be allocated all its
tape drives and then return them (the system will then have five available tape
drives); then process P0 can get all its tape drives and return them (the system
will then have ten available tape drives); and finally process P2 can get all its
tape drives and return them (the system will then have all twelve tape drives
available).

A system can go from a safe state to an unsafe state. Suppose that, at
time t1, process P2 requests and is allocated one more tape drive. The system is
no longer in a safe state. At this point, only process P1 can be allocated all its
tape drives. When it returns them, the system will have only four available tape
drives. Since process P0 is allocated five tape drives but has a maximum of ten,
it may request five more tape drives. If it does so, it will have to wait, because
they are unavailable. Similarly, process P2 may request six additional tape
drives and have to wait, resulting in a deadlock. Our mistake was in granting the
request from process P2 for one more tape drive. If we had made P2 wait until
either of the other processes had finished and released its resources, then we
could have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms
that ensure that the system will never deadlock. The idea is simply to ensure that
the system will always remain in a safe state. Initially, the system is in a safe
state. Whenever a process requests a resource that is currently available, the
system must decide whether the resource can be allocated immediately or
whether the process must wait. The request is granted only if the allocation
leaves the system in a safe state.

In this scheme, if a process requests a resource that is currently
available, it may still have to wait. Thus, resource utilization may be lower than
it would otherwise be.
 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each
resource type, we can use a variant of the resource-allocation graph defined in
Section 5.2.2 for deadlock avoidance. In addition to the request and assignment
edges already described, we introduce a new type of edge, called a claim edge.
A claim edge Pi → Rj indicates that process Pi may request resource Rj at some
time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process Pi requests resource Rj
, the claim edge Pi → Rj is converted to a request edge. Similarly, when a
resource Rj is released by Pi , the assignment edge Rj → Pi is reconverted to a
claim edge Pi → Rj .

Note that the resources must be claimed a priori in the system. That is,
before process Pi starts executing, all its claim edges must already appear in the
resource-allocation graph. We can relax this condition by allowing a claim edge
Pi → Rj to be added to the graph only if all the edges associated with process Pi
are claim edges.

P1 P2

R1

R2

Figure 5.7 Resource-allocation graph for deadlock avoidance.

Now suppose that process Pi requests resource Rj . The request can be
granted only if converting the request edge Pi → Rj to an assignment edge Rj → Pi
does not result in the formation of a cycle in the resource-allocation graph. We
check for safety by using a cycle-detection algorithm. An algorithm for detecting
a cycle in this graph requires an order of n2 operations, where n is the number of
processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in an
unsafe state. In that case, process Pi will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 5.7. Suppose that P2 requests R2. Although R2 is currently free, we cannot
allocate it to P2, since this action will create a cycle in the graph (Figure 5.8). A
cycle, as mentioned, indicates that the system is in an unsafe state. If P1 requests
R2, and P2 requests R1, then a deadlock will occur.

 Banker’s Algorithm
The resource-allocation-graph algorithm is not applicable to a resource-

allocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but is
less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker’s algorithm. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the needs
of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may not
exceed the total number of resources in the system. When a user requests a set of
resources, the system must determine whether the allocation of these resources
will leave the system in a safe state. If it will, the resources are allocated;
otherwise, the process must wait until some other process releases enough
resources.

P1 P2

R1

R2
Figure 5.8 An unsafe state in a resource-allocation graph.

Several data structures must be maintained to implement the banker‘s

algorithm. These data structures encode the state of the resource-allocation
system. We need the following data structures, where n is the number of
processes in the system and m is the number of resource types:

Available. A vector of length m indicates the number of available
resources of each type. If Available[j] equals k, then k instances of
resource type Rj are available.
Max. An n × m matrix defines the maximum demand of each process. If
Max[i][j] equals k, then process Pi may request at most k instances of
resource type Rj .
Allocation. An n × m matrix defines the number of resources of each
type currently allocated to each process. If Allocation[i][j] equals k, then
process Pi is currently allocated k instances of resource type Rj .
Need. An n × m matrix indicates the remaining resource need of each
process. If Need[i][j] equals k, then process Pi may need k more
instances of resource type Rj to complete its task. Note that Need[i][j]
equals Max[i][j] – Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker‘s algorithm, we next
establish some notation. Let X and Y be vectors of length n. We say that X ≤ Y if
and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y =
(0,3,2,1), then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X.

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocationi and Needi . The vector Allocationi specifies the
resources currently allocated to process Pi ; the vector Needi specifies the
additional resources that process Pi may still request to complete its task.

 Safety Algorithm
We can now present the algorithm for finding out whether or not a system is in
a safe state. This algorithm can be described as follows:

Let Work and Finish be vectors of length m and n, respectively.
Initialize Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

Find an index i such that both
Finish[i] == false
Needi ≤ Work

If no such i exists, go to step 4.
Work = Work +
Allocationi Finish[i] =
true
Go to step 2.
If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m × n2 operations to determine whether
a state is safe.

 Resource-Request Algorithm
Next, we describe the algorithm for determining whether requests can be safely
granted.

Let Requesti be the request vector for process Pi . If Requesti [j] == k,
then process Pi wants k instances of resource type Rj . When a request for
resources is made by process Pi , the following actions are taken:

If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition,
since the process has exceeded its maximum claim.
If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since
the resources are not available.
Have the system pretend to have allocated the requested resources to
process Pi by modifying the state as follows:

Available = Available – Requesti ;

Allocationi = Allocationi + Requesti ;
Needi = Needi – Requesti ;

If the resulting resource-allocation state is safe, the transaction is com-pleted,
and process Pi is allocated its resources. However, if the new state is unsafe,
then Pi must wait for Requesti , and the old resource-allocation state is restored.

 An Illustrative Example

To illustrate the use of the banker‘s algorithm, consider a system with five
processes P0 through P4 and three resource types A, B, and C. Resource type A
has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time T0, the following snapshot of the system
has been taken:

 Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max − Allocation and is as
follows:

Need

 A B
C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence P1,
P3, P4, P2, P0> satisfies the safety criteria. Suppose now that process P1 requests
one additional instance of resource type A and two instances of resource type C,
so Req uest1 = (1,0,2). To decide whether this request can be immediately
granted, we first check that Req uest1 ≤ Available — that is, that (1,0,2) ≤
(3,3,2), which is true. We then pretend that this request has been fulfilled, and
we arrive at the following new state:

 Allocation Need Available

A B C
A B
C

A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence < P1, P3, P4, P0, P2>
satisfies the safety requirement. Hence, we can immediately grant the request of
process P1.

P5

P1 P2 P3

P4

You should be able to see, however, that when the system is in this state,
a request for (3,3,0) by P4 cannot be granted, since the resources are not
available. Furthermore, a request for (0,2,0) by P0 cannot be granted, even
though the resources are available, since the resulting state is unsafe.

 Deadlock Detection
If a system does not employ either a deadlock-prevention or a deadlock-

avoidance algorithm, then a deadlock situation may occur. In this environment,
the system may provide:
An algorithm that examines the state of the system to determine whether a
deadlock has occurred
An algorithm to recover from the deadlock

R1 R3 R4

R2 R5
(a) (b)

Figure 5.9(a) Resource-allocation graph. (b) Corresponding wait-for graph.

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as
to systems with several instances of each resource type. At this point, however,
we note that a detection-and-recovery scheme requires overhead that includes
not only the run-time costs of maintaining the necessary information and
executing the detection algorithm but also the potential losses inherent in
recovering from a deadlock.
7.6.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a
deadlock-detection algorithm that uses a variant of the resource-allocation
graph, called a wait-for graph. We obtain this graph from the resource-
allocation graph by removing the resource nodes and collapsing the
appropriate edges.

More precisely, an edge from Pi to Pj in a wait-for graph implies that
process Pi is waiting for process Pj to release a resource that Pi needs. An edge

P5

P1 P2 P3

P4

Pi → Pj exists in a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges Pi → Rq and Rq → Pj for some resource
Rq. In Figure 7.9, we present a resource-allocation graph and the corresponding
wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for
graph contains a cycle. To detect deadlocks, the system needs to maintain the
wait-for graph and periodically invoke an algorithm that searches for a cycle
in the graph. An algorithm to detect a cycle in a graph requires an order of n2
operations, where n is the number of vertices in the graph.

 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker‘s algorithm (Section 5.5.3):

Available. A vector of length m indicates the number of available
resources of each type.
Allocation. An n × m matrix defines the number of resources of each
type currently allocated to each process.
Request. An n × m matrix indicates the current request of each process.
If Request[i][j] equals k, then process Pi is requesting k more instances
of resource type Rj .

The ≤ relation between two vectors is defined as in Section 7.5.3. To

simplify notation, we again treat the rows in the matrices Allocation and
Request as vectors; we refer to them as Allocationi and Requesti . The
detection algorithm described here simply investigates every possible
allocation sequence for the processes that remain to be completed. Compare
this algorithm with the banker‘s algorithm of Section 5.5.3.

Let Work and Finish be vectors of length m and n, respectively. Initialize
Work = Available. For i = 0, 1, ..., n – 1, if Allocationi = 0, then Finish[i] =
false. Otherwise, Finish[i] = true.

Find an index i such that both

Finish[i] == false
Requesti ≤ Work

If no such i exists, go to step 4.
Work = Work + Allocationi
Finish[i] = true
Go to step 2.

If Finish[i] == false for some i, 0 ≤ i < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process Pi is deadlocked.
This algorithm requires an order of m × n2 operations to detect whether the
system is in a deadlocked state.

You may wonder why we reclaim the resources of process Pi (in step 3)
as soon as we determine that Requesti ≤ Work (in step 2b). We know that Pi is
currently not involved in a deadlock (since Requesti ≤ Work). Thus, we take an
optimistic attitude and assume that Pi will require no more resources to complete
its task; it will thus soon return all currently allocated resources to the system. If
our assumption is incorrect, a deadlock may occur later. That deadlock will be
detected the next time the deadlock-detection algorithm is invoked.

To illustrate this algorithm, we consider a system with five processes P0
through P4 and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time T0, we have the following resource-allocation
state:

 Allocation Request Available
 A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed, if we
execute our algorithm, we will find that the sequence < P0, P2, P3, P1, P4>
results in Finish[i] == true for all i.

Suppose now that process P2 makes one additional request for an
instance of type C. The Request matrix is modified as follows:

 Request
 A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim
the resources held by process P0, the number of available resources is not
sufficient to fulfill the requests of the other processes. Thus, a deadlock exists,
consisting of processes P1, P2, P3, and P4.

 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

How often is a deadlock likely to occur?
How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot
be granted immediately. This request may be the final request that completes a
chain of waiting processes. In the extreme, then, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that ―caused‖ the deadlock. (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and ―caused‖ by the one identifiable
process.

Of course, invoking the deadlock-detection algorithm for every
resource request will incur considerable overhead in computation time. A less
expensive alternative is simply to invoke the algorithm at defined intervals —
for example, once per hour or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and causes CPU
utilization to drop.) If the detection algorithm is invoked at arbitrary points in
time, the resource graph may contain many cycles. In this case, we generally
cannot tell which of the many deadlocked processes ―caused‖ the deadlock.

 Recovery from Deadlock
When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

 Process Termination

To eliminate deadlocks by aborting a process, we use one of two
methods. In both methods, the system reclaims all resources allocated to the
terminated processes.
Abort all deadlocked processes. This method clearly will break the deadlock
cycle, but at great expense. The deadlocked processes may have computed for

a long time, and the results of these partial computations must be discarded
and probably will have to be recomputed later.
Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since after each process is aborted, a
deadlock-detection algorithm must be invoked to determine whether any
processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state.
Similarly, if the process was in the midst of printing data on a printer, the
system must reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine
which deadlocked process (or processes) should be terminated. This
determination is a policy decision, similar to CPU-scheduling decisions. The
question is basically an economic one; we should abort those processes whose
termination will incur the minimum cost. Unfortunately, the term minimum
cost is not a precise one. Many factors may affect which process is chosen,
including:

What the priority of the process is

How long the process has computed and how much longer the
process will compute before completing its designated task
How many and what types of resources the process has used (for
example, whether the resources are simple to preempt)
How many more resources the process needs in order to complete
How many processes will need to be terminated
Whether the process is interactive or batch

 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes
until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need
to be addressed:

Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters as the
number of resources a deadlocked process is holding and the amount of time
the process has thus far consumed.
Rollback. If we preempt a resource from a process, what should be done with
that process? Clearly, it cannot continue with its normal execution; it is
missing some needed resource. We must roll back the process to some safe
state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the simplest
solution is a total rollback: abort the process and then restart it. Although it is
more effective to roll back the process only as far as necessary to break the
deadlock, this method requires the system to keep more information about the
state of all running processes.
Starvation. How do we ensure that starvation will not occur? That is, how can
we guarantee that resources will not always be preempted from the same
process?
In a system where victim selection is based primarily on cost factors, it may
happen that the same process is always picked as a victim. As a result, this
process never completes its designated task, a starvation situation any practical
system must address. Clearly, we must ensure that a process can be picked as a
victim only a (small) finite number of times. The most common solution is to
include the number of rollbacks in the cost factor.

File -System Interface

For most users, the file system is the most visible aspect of an operating system.
It provides the mechanism for on-line storage of and access to both data and
programs of the operating system and all the users of the computer system. The
file system consists of two distinct parts: a collection of files, each storing
related data, and a directory structure, which organizes and provides information
about all the files in the system. In this unit, we consider the various aspects of
files and the major directory structures. We also discuss the semantics of
sharing files among multiple processes, users, and computers. Finally, we
discuss ways to handle file protection, necessary when we have multiple users
and we want to control who may access files and how files may be accessed.
 File Concept

Computers can store information on various storage media, such as
magnetic disks, magnetic tapes, and optical disks. So that the computer system
will be convenient to use, the operating system provides a uniform logical view
of stored information. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit, the file. Files are
mapped by the operating system onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent between system reboots.

A file is a named collection of related information that is recorded on
secondary storage. From a user’s perspective, a file is the smallest allotment of
logical secondary storage; that is, data cannot be written to secondary storage
unless they are within a file. Commonly, files represent programs (both source
and object forms) and data. Data files may be numeric, alphabetic,
alphanumeric, or binary. Files may be free form, such as text files, or may be
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records,
the meaning of which is defined by the file’s creator and user. The concept of a
file is thus extremely general.

The information in a file is defined by its creator. Many different types
of information may be stored in a file — source or executable programs,
numeric or text data, photos, music, video, and so on. A file has a certain
defined structure, which depends on its type. A text file is a sequence of
characters organized into lines (and possibly pages). A source file is a sequence
of functions, each of which is further organized as declarations followed by
executable statements. An executable file is a series of code sections that the
loader can bring into memory and execute.
 File Attributes

A file is named, for the convenience of its human users, and is referred
to by its name. A name is usually a string of characters, such as example.c.
Some systems differentiate between uppercase and lowercase characters in
names, whereas other systems do not. When a file is named, it becomes
independent of the process, the user, and even the system that created it. For
instance, one user might create the file example.c, and another user might edit

that file by specifying its name. The file’s owner might write the file to a USB
disk, send it as an e-mail attachment, or copy it across a network, and it could
still be called example.c on the destination system.

A file’s attributes vary from one operating system to another but
typically consist of these:
Name. The symbolic file name is the only information kept in human-readable
form.
Identifier. This unique tag, usually a number, identifies the file within the file
system; it is the non-human-readable name for the file.
Type. This information is needed for systems that support different types of
files.
Location. This information is a pointer to a device and to the location of the file
on that device.
Size. The current size of the file (in bytes, words, or blocks) and possibly the
maximum allowed size are included in this attribute.
Protection. Access-control information determines who can do reading,
writing, executing, and so on.
Time, date, and user identification. This information may be kept for creation,
last modification, and last use. These data can be useful for protection, security,
and usage monitoring.

Figure 4.1 A file info window on Mac OS X.

Some newer file systems also support extended file attributes, including
character encoding of the file and security features such as a file checksum.
Figure 4.1 illustrates a file info window on Mac OS X, which displays a file’s
attributes.
The information about all files is kept in the directory structure, which also
resides on secondary storage. Typically, a directory entry consists of the file’s
name and its unique identifier. The identifier in turn locates the other file
attributes. It may take more than a kilobyte to record this information for each
file. In a system with many files, the size of the directory itself may be megabytes.
Because directories, like files, must be nonvolatile, they must be stored on the
device and brought into memory piecemeal, as needed.
 File Operations
A file is an abstract data type. To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let’s
examine what the operating system must do to perform each of these six basic file
operations. It should then be easy to see how other similar operations, such as
renaming a file, can be implemented.

Creating a file. Two steps are necessary to create a file. First, space in the file
system must be found for the file. We discuss how to allocate space for the file
in Chapter 12. Second, an entry for the new file must be made in the directory.
Writing a file. To write a file, we make a system call specifying both the name
of the file and the information to be written to the file. Given the name of the
file, the system searches the directory to find the file’s location. The system
must keep a write pointer to the location in the file where the next write is to
take place. The write pointer must be updated whenever a write occurs.
Reading a file. To read from a file, we use a system call that specifies the
name of the file and where (in memory) the next block of the file should be put.
Again, the directory is searched for the associated entry, and the system needs
to keep a read pointer to the location in the file where the next read is to take
place. Once the read has taken place, the read pointer is updated. Because a
process is usually either reading from or writing to a file, the current operation
location can be kept as a per-process current-file-position pointer. Both the
read and write operations use this same pointer, saving space and reducing
system complexity.
Repositioning within a file. The directory is searched for the appropriate
entry, and the current-file-position pointer is repositioned to a given value.
Repositioning within a file need not involve any actual I/O. This file operation
is also known as a file seek.
Deleting a file. To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so that it
can be reused by other files, and erase the directory entry.

Truncating a file. The user may want to erase the contents of a file but keep
its attributes. Rather than forcing the user to delete the file and then recreate
it, this function allows all attributes to remain unchanged — except for file
length — but lets the file be reset to length zero and its file space released.

These six basic operations comprise the minimal set of required
file operations. Other common operations include appending new information to
the end of an existing file and renaming an existing file. These primitive
operations can then be combined to perform other file operations. For instance,
we can create a copy of a file — or copy the file to another I/O device, such as a
printer or a display — by creating a new file and then reading from the old and
writing to the new. We also want to have operations that allow a user to get and
set the various attributes of a file. For example, we may want to have operations
that allow a user to determine the status of a file, such as the file’s length, and to
set file attributes, such as the file’s owner.

Most of the file operations mentioned involve searching the directory for
the entry associated with the named file. To avoid this constant searching, many
systems require that an open() system call be made before a file is first used.
The operating system keeps a table, called the open-file table, containing
information about all open files. When a file operation is requested, the file is
specified via an index into this table, so no searching is required. When the file
is no longer being actively used, it is closed by the process, and the operating
system removes its entry from the open-file table. create() and delete() are
system calls that work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made.
The file is automatically closed when the job or program that opened the file
terminates. Most systems, however, require that the programmer open a file
explicitly with the open() system call before that file can be used. The open()
operation takes a file name and searches the directory, copying the directory
entry into the open-file table. The open() call can also accept access-mode
information — create, read-only, read – write, append-only, and so on. This
mode is checked against the file’s permissions. If the request mode is allowed,
the file is opened for the process. The open() system call typically returns a
pointer to the entry in the open-file table. This pointer, not the actual file name,
is used in all I/O operations, avoiding any further searching and simplifying the
system-call interface.

The implementation of the open() and close() operations is more
complicated in an environment where several processes may open the file
simultaneously. This may occur in a system where several different applications
open the same file at the same time. Typically, the operating system uses two
levels of internal tables: a per-process table and a system-wide table. The per-
process table tracks all files that a process has open. Stored in this table is
information regarding the process’s use of the file. For instance, the current file
pointer for each file is found here. Access rights to the file and accounting
information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file table.
The system-wide table contains process-independent information, such as the
location of the file on disk, access dates, and file size. Once a file has been opened
by one process, the system-wide table includes an entry for the file. When another
process executes an open() call, a new entry is simply added to the process’s
open-file table pointing to the appropriate entry in the system-wide table.
Typically, the open-file table also has an open count associated with each file to
indicate how many processes have the file open. Each close() decreases this open
count, and when the open count reaches zero, the file is no longer in use, and the
file’s entry is removed from the open-file table.

In summary, several pieces of information are associated with an open file.
File pointer. On systems that do not include a file offset as part of the read() and
write() system calls, the system must track the last read – write location as a
current-file-position pointer. This pointer is unique to each process operating on
the file and therefore must be kept separate from the on-disk file attributes.
File-open count. As files are closed, the operating system must reuse its open-file
table entries, or it could run out of space in the table. Multiple processes may have
opened a file, and the system must wait for the last file to close before removing
the open-file table entry. The file-open count tracks the number of opens and
closes and reaches zero on the last close. The system can then remove the entry.
Disk location of the file. Most file operations require the system to modify data
within the file. The information needed to locate the file on disk is kept in
memory so that the system does not have to read it from disk for each operation.
Access rights. Each process opens a file in an access mode. This information is
stored on the per-process table so the operating system can allow or deny
subsequent I/O requests.

Some operating systems provide facilities for locking an open file (or
sections of a file). File locks allow one process to lock a file and prevent other
processes from gaining access to it. File locks are useful for files that are shared
by several processes — for example, a system log file that can be accessed and
modified by a number of processes in the system.

A shared lock is akin to a reader lock in that several processes can
acquire the lock concurrently. An exclusive lock behaves like a writer lock; only
one process at a time can acquire such a lock. It is important to note that not all
operating systems provide both types of locks: some systems only provide
exclusive file locking.

Furthermore, operating systems may provide either mandatory or
advisory file-locking mechanisms. If a lock is mandatory, then once a process
acquires an exclusive lock, the operating system will prevent any other process
from accessing the locked file. For example, assume a process acquires an
exclusive lock on the file system.log. If we attempt to open system.log from
another process — for example, a text editor — the operating system will prevent
access until the exclusive lock is released. This occurs even if the text editor is not

written explicitly to acquire the lock. Alternatively, if the lock is advisory, then
the operating system will not prevent the text editor from acquiring access to
system.log. Rather, the text editor must be written so that it manually acquires the
lock before accessing the file. In other words, if the locking scheme is mandatory,
the operating system ensures locking integrity. For advisory locking, it is up to
software developers to ensure that locks are appropriately acquired and released.
As a general rule, Windows operating systems adopt mandatory locking, and
UNIX systems employ advisory locks.

The use of file locks requires the same precautions as ordinary process
synchronization. For example, programmers developing on systems with
mandatory locking must be careful to hold exclusive file locks only while they are
accessing the file. Otherwise, they will prevent other processes from accessing the
file as well. Furthermore, some measures must be taken to ensure that two or more
processes do not become involved in a deadlock while trying to acquire file locks.
 File Types
When we design a file system — indeed, an entire operating system — we always
consider whether the operating system should recognize and support file types. If
an operating system recognizes the type of a file, it can then operate on the file in
reasonable ways. For example, a common mistake occurs when a user tries to
output the binary-object form of a program. This attempt normally produces
garbage; however, the attempt can succeed if the operating system has been told
that the file is a binary-object program.
A common technique for implementing file types is to include the type as part of
the file name. The name is split into two parts — a name and an extension, usually
separated by a period (Figure 4.2). In this way, the user and the operating system
can tell from the name alone what the type of a file is. Most operating systems
allow users to specify a file name as a sequence of characters followed by a period
and terminated by an extension made up of additional characters. Examples
include resume.docx, server.c, and ReaderThread.cpp.

The system uses the extension to indicate the type of the file and the
type of operations that can be done on that file. Only a file with a .com, .exe, or
.sh extension can be executed, for instance. The .com and .exe files are two forms
of binary executable files, whereas the .sh file is a shell script containing, in
ASCII format, commands to the operating system. Application programs also use
extensions to indicate file types in which they are interested. For example, Java
compilers expect source files to have a .java extension, and the Microsoft Word
word processor expects its files to end with a .doc or .docx extension. These
extensions are not always required, so a user may specify a file without the
extension (to save typing), and the application will look for a file with the given
name and the extension it expects. Because these extensions are not supported by
the operating system, they can be considered ―hints‖ to the applications that
operate on them.

file type

usual
extension

function

executable exe, com, bin ready-to-run machine-
or none language program

Object obj, o compiled, machine
language, not linked

source code

c, cc, java,
perl,

source code in various

asm languages

Batch

bat, sh

commands
command

to the

interpreter

markup

xml, html, tex

textual
documents

 data,

word
processor

xml, rtf,

various word-processor

docx formats
Library lib, a, so, dll libraries of routines for

programmers

print or view

gif, pdf, jpg

ASCII or binary file in
a
format for printing or
viewing

archive

rar, zip, tar

related files grouped
into
one file, sometimes
com-
pressed, for archiving
or storage

multimedia

mpeg, mov,
mp3,

binary file containing

mp4, avi

audio or
information

 A/V

Figure 4.2 Common file types.
Consider, too, the Mac OS X operating system. In this system, each file

has a type, such as .app (for application). Each file also has a creator attribute
containing the name of the program that created it. This attribute is set by the
operating system during the create() call, so its use is enforced and supported by
the system. For instance, a file produced by a word processor has the word
processor’s name as its creator. When the user opens that file, by double-clicking
the mouse on the icon representing the file, the word processor is invoked
automatically and the file is loaded, ready to be edited.

The UNIX system uses a crude magic number stored at the beginning
of some files to indicate roughly the type of the file — executable program, shell

script, PDF file, and so on. Not all files have magic numbers, so system features
cannot be based solely on this information. UNIX does not record the name of the
creating program, either. UNIX does allow file-name-extension hints, but these
extensions are neither enforced nor depended on by the operating system; they are
meant mostly to aid users in determining what type of contents the file contains.
Extensions can be used or ignored by a given application, but that is up to the
application’s programmer.

 File Structure
File types also can be used to indicate the internal structure of the file. As
mentioned in Section 4.1.3, source and object files have structures that match the
expectations of the programs that read them. Further, certain files must conform to
a required structure that is understood by the operating system. For example, the
operating system requires that an executable file have a specific structure so that it
can determine where in memory to load the file and what the location of the first
instruction is. Some operating systems extend this idea into a set of system-
supported file structures, with sets of special operations for manipulating files
with those structures.

This point brings us to one of the disadvantages of having the operating
system support multiple file structures: the resulting size of the operating system
is cumbersome. If the operating system defines five different file structures, it
needs to contain the code to support these file structures. In addition, it may be
necessary to define every file as one of the file types supported by the operating
system. When new applications require information structured in ways not
supported by the operating system, severe problems may result.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed) and
executable binary files. Now, if we (as users) want to define an encrypted file to
protect the contents from being read by unauthorized people, we may find neither
file type to be appropriate. The encrypted file is not ASCII text lines but rather is
(apparently) random bits. Although it may appear to be a binary file, it is not
executable. As a result, we may have to circumvent or misuse the operating
system’s file-type mechanism or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, Windows, and others. UNIX
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits is
made by the operating system. This scheme provides maximum flexibility but
little support. Each application program must include its own code to interpret an
input file as to the appropriate structure. However, all operating systems must
support at least one structure — that of an executable file — so that the system is
able to load and run programs.

 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Disk systems typically have a well-defined block size determined by the
size of a sector. All disk I/O is performed in units of one block (physical
record), and all blocks are the same size. It is unlikely that the physical record
size will exactly match the length of the desired logical record. Logical records
may even vary in length. Packing a number of logical records into physical
blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply
streams of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record size is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks —
say, 512 bytes per block — as necessary.

The logical record size, physical block size, and packing technique
deter-mine how many logical records are in each physical block. The packing
can be done either by the user’s application program or by the operating system.
In either case, the file may be considered a sequence of blocks. All the basic I/O
functions operate in terms of blocks. The conversion from logical records to
physical blocks is a relatively simple software problem.

current position

Beginning end

Figure 4.4 Sequential-access file.

Because disk space is always allocated in blocks, some portion of the last block
of each file is generally wasted. If each block were 512 bytes, for example, then
a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last 99
bytes would be wasted. The waste incurred to keep everything in units of blocks
(instead of bytes) is internal fragmentation. All file systems suffer from internal
fragmentation; the larger the block size, the greater the internal fragmentation.

rewind
read or write

 Access Methods
Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. while
others support many access methods, and choosing the right one for a particular
application is a major design problem.

 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far the
most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation — read next()— reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation — write next()— appends to the end of the file and advances to the end
of the newly written material (the new end of file). Such a file can be reset to the
beginning, and on some systems, a program may be able to skip forward or
backward n records for some integer n — perhaps only for n = 1. Sequential
access, which is depicted in Figure 4.4, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

 Direct Access

Another method is direct access (or relative access). Here, a file is made up of
fixed-length logical records that allow programs to read and write records rapidly
in no particular order. The direct-access method is based on a disk model of a file,
since disks allow random access to any file block. For direct access, the file is
viewed as a numbered sequence of blocks or records. Thus, we may read block
14, then read block 53, and then write block 7. There are no restrictions on the
order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and then
read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight 713
is stored in block 713 of the reservation file. To store information about a larger
set, such as people, we might compute a hash function on the people’s names or
search a small in-memory index to determine a block to read and search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read(n), where n is the
block number, rather than read next(), and write(n) rather than write next(). An
alternative approach is to retain read next() and write next(), as with sequential

access, and to add an operation posi-tion file(n) where n is the block number.
Then, to effect a read(n), we would position file(n) and then read next().

The block number provided by the user to the operating system is
normally a relative block number. A relative block number is an index relative
to the beginning of the file. Thus, the first relative block of the file is 0, the next is
1, and so on, even though the absolute disk address may be 14703 for the first
block and 3192 for the second. The use of relative block numbers allows the
operating system to decide where the file should be placed and helps to prevent
the user from accessing portions of the file system that may not be part of her file.
Some systems start their relative block numbers at 0; others start at 1.

How, then, does the system satisfy a request for record N in a file?
Assuming we have a logical record length L, the request for record N is turned
into an I/O request for L bytes starting at location L (N) within the file (assuming
the first record is N = 0). Since logical records are of a fixed size, it is also easy to
read, write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when it
is created. Such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in Figure
4.5. Simulating a direct-access file on a sequential-access file, however, is
extremely inefficient and clumsy.
 Other Access Methods
Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. To
find a record in the file, we first search the index and then use the pointer to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal product codes
(UPCs) for items, with the associated prices. Each record consists of a 10-digit
UPC and a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per
block, we can store 64 records per block. A file of 120,000 records would occupy
about 2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can
define an index consisting of the first UPC in each block. This index would have
2,000 entries of 10 digits each, or 20,000 bytes, and thus could be kept in
memory. To find the price of a particular item, we can make a binary search of
the index. From this search, we learn exactly which block contains the desired
record and access that block. This structure allows us to search a large file doing
little I/O.

sequential access

implementation for direct
access

Reset Cp 0;

read_next
read cp
;

1; Cp cp

write_next

write
cp;

cp cp 1;

Figure 4.5 Simulation of sequential access on a direct-access file.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary index
file contains pointers to secondary index files, which point to the actual data
items.

For example, IBM’s indexed sequential-access method (ISAM) uses a
small master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read in,
and again a binary search is used to find the block containing the desired record.
Finally, this block is searched sequentially. In this way, any record can be located
from its key by at most two direct-access reads. Figure 4.6 shows a similar
situation as implemented by VMS index and relative files.

 Directory and Disk Structure
Next, we consider how to store files. Certainly, no general-purpose computer
stores just one file. There are typically thousands, millions, even billions of files
within a computer. Files are stored on random-access storage devices, including
hard disks, optical disks, and solid-state (memory-based) disks.

A storage device can be used in its entirety for a file system. It can also be
subdivided for finer-grained control. For example, a disk can be partitioned into
quarters, and each quarter can hold a separate file system. Storage devices can
also be collected together into RAID sets that provide protection from the failure
of a single disk. Sometimes, disks are subdivided and also collected into RAID
sets.

Adams
Arthur

Asher

•
•
•

Smith

smith,
john

social-
security

age

logical record
last namenumber

index file relative file
Figure 4.6 Example of index and relative files.

Partitioning is useful for limiting the sizes of individual file systems,
putting multiple file-system types on the same device, or leaving part of the
device available for other uses, such as swap space or unformatted (raw) disk
space. A file system can be created on each of these parts of the disk. Any
entity containing a file system is generally known as a volume. The volume
may be a subset of a device, a whole device, or multiple devices linked
together into a RAID set. Each volume can be thought of as a virtual disk.
Volumes can also store multiple operating systems, allowing a system to boot
and run more than one operating system.

Each volume that contains a file system must also contain information
about the files in the system. This information is kept in entries in a device
directory or volume table of contents. The device directory (more commonly
known simply as the directory) records information — such as name,
location, size, and type — for all files on that volume. Figure 4.7 shows a
typical file-system organization.

directory Directory

partition A disk
2 Files

disk 1
directory

 partition C
 Files
partition B

Files
 disk

3

Figure 4.7 A typical file-system organization.

/ ufs
/devices devfs
/dev dev
/system/contract ctfs
/proc proc
/etc/mnttab mntfs
/etc/svc/volatile tmpfs
/system/object objfs
/lib/libc.so.1 lofs
/dev/fd fd
/var ufs
/tmp tmpfs
/var/run tmpfs
/opt ufs
/zpbge zfs
/zpbge/backup zfs
/export/home zfs
/var/mail zfs
/var/spool/mqueue zfs
/zpbg zfs
/zpbg/zones zfs

Figure 4.8 Solaris file systems.

 Storage Structure
As we have just seen, a general-purpose computer system has multiple storage
devices, and those devices can be sliced up into volumes that hold file systems.
Computer systems may have zero or more file systems, and the file systems may
be of varying types. For example, a typical Solaris system may have dozens of
file systems of a dozen different types, as shown in the file system list in Figure
4.8.

Consider the types of file systems in the Solaris example mentioned above:
tmpfs — a ―temporary‖ file system that is created in volatile main
memory and has its contents erased if the system reboots or crashes
objfs — a ―virtual‖ file system (essentially an interface to the kernel
that looks like a file system) that gives debuggers access to kernel
symbols
ctfs — a virtual file system that maintains ―contract‖ information to
manage which processes start when the system boots and must
continue to run during operation
lofs — a ―loop back‖ file system that allows one file system to be
accessed in place of another one
procfs — a virtual file system that presents information on all
processes as a file system
ufs, zfs — general-purpose file systems

The file systems of computers, then, can be extensive. Even within a file
system, it is useful to segregate files into groups and manage and act on those
groups. This organization involves the use of directories. In the remainder of this
section, we explore the topic of directory structure.
 Directory Overview
The directory can be viewed as a symbol table that translates file names into
their directory entries. If we take such a view, we see that the directory itself can
be organized in many ways. The organization must allow us to insert entries, to
delete entries, to search for a named entry, and to list all the entries in the
directory. In this section, we examine several schemes for defining the logical
structure of the directory system.

When considering a particular directory structure, we need to keep in mind
the operations that are to be performed on a directory:

Search for a file. We need to be able to search a directory structure to find the
entry for a particular file. Since files have symbolic names, and similar names
may indicate a relationship among files, we may want to be able to find all files
whose names match a particular pattern.
Create a file. New files need to be created and added to the directory.
Delete a file. When a file is no longer needed, we want to be able to remove it
from the directory.
List a directory. We need to be able to list the files in a directory and the
contents of the directory entry for each file in the list.
Rename a file. Because the name of a file represents its contents to its users,
we must be able to change the name when the contents or use of the file
changes. Renaming a file may also allow its position within the directory
structure to be changed.
Traverse the file system. We may wish to access every directory and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. Often, we do
this by copying all files to magnetic tape. This technique provides a backup
copy in case of system failure. In addition, if a file is no longer in use, the file
can be copied to tape and the disk space of that file released for reuse by
another file.

In the following sections, we describe the most common schemes for defining
the logical structure of a directory.

 Single-Level Directory

The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand (Figure
4.9).
A single-level directory has significant limitations, however, when the number
of files increases or when the system has more than one user. Since all files are
in the same directory, they must have unique names. If two users call their data
file test.txt, then the unique-name rule is violated. For example, in one
programming class, 23 students called the program for their second assignment
prog2.c; another 11 called it assign2.c. Fortunately, most file systems support

master file
user 1 user 2 user 3 user 4

directory

file names of up to 255 characters, so it is relatively easy to select unique file
names.

files

Figure 4.9 Single-level directory.

Even a single user on a single-level directory may find it difficult to remember
the names of all the files as the number of files increases. It is not uncommon for
a user to have hundreds of files on one computer system and an equal number of
additional files on another system. Keeping track of so many files is a daunting
task.
 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory for
each user.

In the two-level directory structure, each user has his own user file
directory (UFD). The UFDs have similar structures, but each lists only the files
of a single user. When a user job starts or a user logs in, the system’s master file
directory (MFD) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 4.10).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user’s UFD to ascertain whether another file of that name
exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user’s file that has the same name.

user file
cat

bo

a

test

a

data

a

test

x

data

a director

y

Figure 11.10 Two-level directory structure

director
y

cat

bo

a

test

data

mail

cont

hex

recor
ds

The user directories themselves must be created and deleted as
necessary. A special system program is run with the appropriate user name and
account information. The program creates a new UFD and adds an entry for it to
the MFD. The execution of this program might be restricted to system
administrators. The allocation of disk space for user directories can be handled
with the techniques for files themselves.

Although the two-level directory structure solves the name-collision
problem, it still has disadvantages. This structure effectively isolates one user
from another. Isolation is an advantage when the users are completely
independent but is a disadvantage when the users want to cooperate on some
task and to access one another’s files. Some systems simply do not allow local
user files to be accessed by other users.

If access is to be permitted, one user must have the ability to name a file
in another user’s directory. To name a particular file uniquely in a two-level
directory, we must give both the user name and the file name. A two-level
directory can be thought of as a tree, or an inverted tree, of height 2. The root of
the tree is the MFD. Its direct descendants are the UFDs. The descendants of the
UFDs are the files themselves. The files are the leaves of the tree. Specifying a
user name and a file name defines a path in the tree from the root (the MFD) to a
leaf (the specified file). Thus, a user name and a file name define a path name.
Every file in the system has a path name. To name a file uniquely, a user must
know the path name of the file desired.

For example, if user A wishes to access her own test file named test.txt,
she can simply refer to test.txt. To access the file named test.txt of user B (with
directory-entry name userb), however, she might have to refer to /userb/test.txt.
Every system has its own syntax for naming files in directories other than the
user’s own.

Additional syntax is needed to specify the volume of a file. For
instance, in Windows a volume is specified by a letter followed by a colon.
Thus, file specification might be C:\userb\test. Some systems go even further
and separate the volume, directory name, and file name parts of the
specification. In VMS, for instance, the file login.com might be specified as:
u:[sst.jdeck]login.com;1, where u is the name of the volume, sst is the name of
the directory, jdeck is the name of the subdirectory, and 1 is the version number.
Other systems — such as UNIX and Linux — simply treat the volume name as
part of the directory name. The first name given is that of the volume, and the
rest is the directory and file. For instance, /u/pbg/test might specify volume u,
directory pbg, and file test.

A special instance of this situation occurs with the system files.
Programs provided as part of the system — loaders, assemblers, compilers,
utility routines, libraries, and so on — are generally defined as files. When the
appropriate commands are given to the operating system, these files are read by
the loader and executed. Many command interpreters simply treat such a
command as the name of a file to load and execute. In the directory system as we
defined it above, this file name would be searched for in the current UFD. One
solution would be to copy the system files into each UFD. However, copying all

the system files would waste an enormous amount of space. (If the system files
require 5 MB, then supporting 12 users would require 5 × 12 = 60 MB just for
copies of the system files.)

The standard solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user 0).
Whenever a file name is given to be loaded, the operating system first searches
the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the search
path. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used in
UNIX and Windows. Systems can also be designed so that each user has his own
search path.
 Tree-Structured Directories
Once we have seen how to view a two-level directory as a two-level tree, the
natural generalization is to extend the directory structure to a tree of arbitrary
height (Figure 4.11). This generalization allows users to create their own
subdirectories and to organize their files accordingly. A tree is the most common
directory structure. The tree has a root directory, and every file in the system has
a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All directories
have the same internal format. One bit in each directory entry defines the entry
as a file (0) or as a subdirectory (1). Special system calls are used to create and
delete directories.

In normal use, each process has a current directory. The current
directory should contain most of the files that are of current interest to the
process. When reference is made to a file, the current directory is searched. If a
file is needed that is not in the current directory, then the user usually must either
specify a path name or change the current directory to be the directory holding
that file. To change directories, a system call is provided that takes a directory
name as a parameter and uses it to redefine the current directory. Thus, the user
can change her current directory whenever she wants. From one change
directory() system call to the next, all open() system calls search the current
directory for the specified file. Note that the search path may or may not contain
a special entry that stands for ―the current directory.‖

Mai
l

e

p

stat

mai
l

dist

find

coun
t

hex

reord
er

root

pro
g

cop
y

prt

exp

 reord
er

list

find

hex

Cou
nt

list

obj

spel
l

all

last

first

Figure 4.11 Tree-structured directory structure.

The initial current directory of a user’s login shell is designated when
the user job starts or the user logs in. The operating system searches the
accounting file (or some other predefined location) to find an entry for this user
(for accounting purposes). In the accounting file is a pointer to (or the name of)
the user’s initial directory. This pointer is copied to a local variable for this user
that specifies the user’s initial current directory. From that shell, other processes
can be spawned. The current directory of any subprocess is usually the current
directory of the parent when it was spawned.

spe
ll

 bi
n

 progra
ms

Path names can be of two types: absolute and relative. An absolute
path name begins at the root and follows a path down to the specified file,
giving the directory names on the path. A relative path name defines a path
from the current directory. For example, in the tree-structured file system of
Figure 4.11, if the current directory is root/spell/mail, then the relative path
name prt/first refers to the same file as does the absolute path name
root/spell/mail/prt/first.

Allowing a user to define her own subdirectories permits her to
impose a structure on her files. This structure might result in separate
directories for files associated with different topics (for example, a
subdirectory was created to hold the text of this book) or different forms of
information (for example, the directory programs may contain source
programs; the directory bin may store all the binaries).

An interesting policy decision in a tree-structured directory concerns
how to handle the deletion of a directory. If a directory is empty, its entry in
the directory that contains it can simply be deleted. However, suppose the
directory to be deleted is not empty but contains several files or subdirectories.
One of two approaches can be taken. Some systems will not delete a directory
unless it is empty. Thus, to delete a directory, the user must first delete all the
files in that directory. If any subdirectories exist, this procedure must be
applied recursively to them, so that they can be deleted also. This approach can
result in a substantial amount of work. An alternative approach, such as that
taken by the UNIX rm command, is to provide an option: when a request is
made to delete a directory, all that directory’s files and subdirectories are also
to be deleted. Either approach is fairly easy to implement; the choice is one of
policy. The latter policy is more convenient, but it is also more dangerous,
because an entire directory structure can be removed with one command. If
that command is issued in error, a large number of files and directories will
need to be restored (assuming a backup exists).

With a tree-structured directory system, users can be allowed to
access, in addition to their files, the files of other users. For example, user B
can access a file of user A by specifying its path names. User B can specify
either an absolute or a relative path name. Alternatively, user B can change her
current directory to be user A’s directory and access the file by its file names.

 Acyclic-Graph Directories
Consider two programmers who are working on a joint project. The files
associated with that project can be stored in a subdirectory, separating them
from other projects and files of the two programmers. But since both
programmers are equally responsible for the project, both want the
subdirectory to be in their own directories. In this situation, the common
subdirectory should be shared. A shared directory or file exists in the file
system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories. An acyclic
graph that is, a graph with no cycles — allows directories to share
subdirectories and files (Figure 4.12). The same file or subdirectory may be in

two different directories. The acyclic graph is a natural generalization of the
tree-structured directory scheme.

It is important to note that a shared file (or directory) is not the same as
two copies of the file. With two copies, each programmer can view the copy
rather than the original, but if one programmer changes the file, the changes
will not appear in the other’s copy. With a shared file, only one actual file
exists, so any changes made by one person are immediately visible to the
other. Sharing is particularly important for subdirectories; a new file created by
one person will automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can
be put into one directory. The UFD of each team member will contain this
directory of shared files as a subdirectory. Even in the case of a single user, the
user’s file organization may require that some file be placed in different
subdirectories. For example, a program written for a particular project should
be both in the directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file or
subdirectory. For example, a link may be implemented as an absolute or a
relative path name. When a reference to a file is made, we search the directory.
If the directory entry is marked as a link, then the name of the real file is
included in the link information. We resolve the link by using that path name
to locate the real file. Links are easily identified by their format in the directory
entry (or by having a special type on systems that support types) and are
effectively indirect pointers. The operating system ignores these links when
traversing directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus, both
entries are identical and equal. Consider the difference between this approach
and the creation of a link. The link is clearly different from the original
directory entry; thus, the two are not equal. Duplicate directory entries,
however, make the original and the copy indistinguishable. A major problem
with duplicate directory entries is maintaining consistency when a file is
modified.

An acyclic-graph directory structure is more flexible than a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system — to find a file, to accumulate statistics on all files, or to
copy all files to backup storage — this problem becomes significant, since we
do not want to traverse shared structures more than once.

root dict spell

list rade w7

list

all

w

coun
t

 coun
t

word
s

list

Figure 4.12 Acyclic-graph directory structure.

Another problem involves deletion. When can the space allocated to a shared file
be deallocated and reused? One possibility is to remove the file whenever
anyone deletes it, but this action may leave dangling pointers to the now-
nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this
situation is somewhat easier to handle. The deletion of a link need not affect the
original file; only the link is removed. If the file entry itself is deleted, the space
for the file is deallocated, leaving the links dangling. We can search for these
links and remove them as well, but unless a list of the associated links is kept
with each file, this search can be expensive. Alternatively, we can leave the links
until an attempt is made to use them. At that time, we can determine that the file
of the name given by the link does not exist and can fail to resolve the link
name; the access is treated just as with any other illegal file name. (In this case,
the system designer should consider carefully what to do when a file is deleted
and another file of the same name is created, before a symbolic link to the
original file is used.) In the case of UNIX, symbolic links are left when a file is
deleted, and it is up to the user to realize that the original file is gone or has been
replaced. Microsoft Windows uses the same approach.

Another approach to deletion is to preserve the file until all references
to it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When a
link or a copy of the directory entry is established, a new entry is added to the
file-reference list. When a link or directory entry is deleted, we remove its entry
on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size of the
file-reference list. However, we really do not need to keep the entire list — we
need to keep only a count of the number of references. Adding a new link or
directory entry increments the reference count. Deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are no
remaining references to it. The UNIX operating system uses this approach for
nonsymbolic links (or hard links), keeping a reference count in the file
information block. By effectively prohibiting multiple references to
directories, we maintain an acyclic-graph structure.

To avoid problems such as the ones just discussed, some systems
simply do not allow shared directories or links.

 General Graph Directory

A serious problem with using an acyclic-graph structure is ensuring that there
are no cycles. If we start with a two-level directory and allow users to create
subdirectories, a tree-structured directory results. It should be fairly easy to see
that simply adding new files and subdirectories to an existing tree-structured
directory preserves the tree-structured nature. However, when we add links,
the tree structure is destroyed, resulting in a simple graph structure (Figure
4.13).

The primary advantage of an acyclic graph is the relative simplicity of
the algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to
avoid searching any component twice, for reasons of correctness as well as
performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One solution is
to limit arbitrarily the number of directories that will be accessed during a
search. A similar problem exists when we are trying to determine when a file
can be deleted. With acyclic-graph directory structures, a value of 0 in the
reference count means that there are no more references to the file or directory,
and the file can be deleted. However, when cycles exist, the reference count
may not be 0 even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (or a cycle) in the
directory structure. In this case, we generally need to use a garbage collection
scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire file
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or search will cover everything
in the file system once and only once.) Garbage collection for a disk-based file
system, however, is extremely time consuming and is thus seldom attempted.

roo
t

av
i

tc

jim

text

Mai
l

coun
t

boo
k

 boo
k

mail

unhe
x

hyp

avi

coun
t

 unhe
x

hex

Figure 4.13 General graph directory.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure is much easier to work with. The difficulty is to
avoid cycles as new links are added to the structure. How do we know when a
new link will complete a cycle? There are algorithms to detect cycles in graphs;
however, they are computationally expensive, especially when the graph is on
disk storage. A simpler algorithm in the special case of directories and links is to
bypass links during directory traversal. Cycles are avoided, and no extra
overhead is incurred.

 File-System Mounting

Just as a file must be opened before it is used, a file system must be mounted
before it can be available to processes on the system. More specifically, the
directory structure may be built out of multiple volumes, which must be
mounted to make them available within the file-system name space.

The mount procedure is straightforward. The operating system is given
the name of the device and the mount point — the location within the file
structure where the file system is to be attached. Some operating systems require
that a file system type be provided, while others inspect the structures of the
device and determine the type of file system. Typically, a mount point is an
empty directory. For instance, on a UNIX system, a file system containing a
user’s home directories might be mounted as /home; then, to access the directory
structure within that file system, we could precede the directory names with
/home, as in /home/jane. Mounting that file system under /users would result in
the path name /users/jane, which we could use to reach the same directory.

Users

bill
Fre
d sue jane

do
help c

prog

Next, the operating system verifies that the device contains a valid
file system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse its
directory structure, switching among file systems, and even file systems of
varying types, as appropriate.

/

(a) (b)

Figure 4.14 File system. (a) Existing system. (b) Unmounted volume.

To illustrate file mounting, consider the file system depicted in Figure
4.14, where the triangles represent subtrees of directories that are of interest.
Figure 4.14(a) shows an existing file system, while Figure 4.14(b) shows an
unmounted volume residing on /device/dsk. At this point, only the files on the
existing file system can be accessed. Figure 4.15 shows the effects of
mounting the volume residing on /device/dsk over /users. If the volume is
unmounted, the file system is restored to the situation depicted in Figure 4.14.

Systems impose semantics to clarify functionality. For example, a
system may disallow a mount over a directory that contains files; or it may
make the mounted file system available at that directory and obscure the
directory’s existing files until the file system is unmounted, terminating the
use of the file system and allowing access to the original files in that directory.
As another example, a system may allow the same file system to be mounted
repeatedly, at different mount points; or it may only allow one mount per file
system.

sue jane

doc
prog

/

users

Figure 4.15 Mount point.

Consider the actions of the Mac OS X operating system. Whenever the
system encounters a disk for the first time (either at boot time or while the
system is running), the Mac OS X operating system searches for a file system on
the device. If it finds one, it automatically mounts the file system under the
/Volumes directory, adding a folder icon labeled with the name of the file
system (as stored in the device directory). The user is then able to click on the
icon and thus display the newly mounted file system.

The Microsoft Windows family of operating systems maintains an
extended two-level directory structure, with devices and volumes assigned drive
letters. Volumes have a general graph directory structure associated with the
drive letter. The path to a specific file takes the form of drive-letter:\path\to\file.
The more recent versions of Windows allow a file system to be mounted
anywhere in the directory tree, just as UNIX does. Windows operating systems
automatically discover all devices and mount all located file systems at boot
time. In some systems, like UNIX, the mount commands are explicit. A system
configuration file contains a list of devices and mount points for automatic
mounting at boot time, but other mounts may be executed manually.

 File Sharing

In the previous sections, we explored the motivation for file sharing and some of
the difficulties involved in allowing users to share files. Such file sharing is very
desirable for users who want to collaborate and to reduce the effort required to
achieve a computing goal. Therefore, user-oriented operating systems must
accommodate the need to share files in spite of the inherent difficulties.

In this section, we examine more aspects of file sharing. We begin by
discussing general issues that arise when multiple users share files. Once
multiple users are allowed to share files, the challenge is to extend sharing to
multiple file systems, including remote file systems; we discuss that challenge as
well. Finally, we consider what to do about conflicting actions occurring on

shared files. For instance, if multiple users are writing to a file, should all the
writes be allowed to occur, or should the operating system protect the users’
actions from one another?

 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the file
sharing. The system can either allow a user to access the files of other users by
default or require that a user specifically grant access to the files.

To implement sharing and protection, the system must maintain more
file and directory attributes than are needed on a single-user system. Although
many approaches have been taken to meet this requirement, most systems have
evolved to use the concepts of file (or directory) owner (or user) and group.
The owner is the user who can change attributes and grant access and who has
the most control over the file. The group attribute defines a subset of users who
can share access to the file. For example, the owner of a file on a UNIX system
can issue all operations on a file, while members of the file’s group can execute
one subset of those operations, and all other users can execute another subset of
operations. Exactly which operations can be executed by group members and
other users is definable by the file’s owner. More details on permission attributes
are included in the next section.

The owner and group IDs of a given file (or directory) are stored with
the other file attributes. When a user requests an operation on a file, the user ID
can be compared with the owner attribute to determine if the requesting user is
the owner of the file. Likewise, the group IDs can be compared. The result
indicates which permissions are applicable. The system then applies those
permissions to the requested operation and allows or denies it.

Many systems have multiple local file systems, including volumes of a
single disk or multiple volumes on multiple attached disks. In these cases, the ID
checking and permission matching are straightforward, once the file systems are
mounted.

 Remote File Systems

With the advent of networks, communication among remote computers became
possible. Networking allows the sharing of resources spread across a campus or
even around the world. One obvious resource to share is data in the form of files.

Through the evolution of network and file technology, remote file-
sharing methods have changed. The first implemented method involves
manually transferring files between machines via programs like ftp. The second
major method uses a distributed file system (DFS) in which remote directories
are visible from a local machine. In some ways, the third method, the World
Wide Web, is a reversion to the first. A browser is needed to gain access to the
remote files, and separate operations (essentially a wrapper for ftp) are used to
transfer files. Increasingly, cloud computing is being used for file sharing as
well.

ftp is used for both anonymous and authenticated access. Anonymous
access allows a user to transfer files without having an account on the remote
system. The World Wide Web uses anonymous file exchange almost
exclusively. DFS involves a much tighter integration between the machine that is
accessing the remote files and the machine providing the files. This integration
adds complexity, as we describe in this section.

 The Client – Server Model

Remote file systems allow a computer to mount one or more file
systems from one or more remote machines. In this case, the machine containing
the files is the server, and the machine seeking access to the files is the client.
The client – server relationship is common with networked machines. Generally,
the server declares that a resource is available to clients and specifies exactly
which resource (in this case, which files) and exactly which clients. A server can
serve multiple clients, and a client can use multiple servers, depending on the
implementation details of a given client – server facility.

The server usually specifies the available files on a volume or directory
level. Client identification is more difficult. A client can be specified by a
network name or other identifier, such as an IP address, but these can be
spoofed, or imitated. As a result of spoofing, an unauthorized client could be
allowed access to the server. More secure solutions include secure authentication
of the client via encrypted keys. Unfortunately, with security come many
challenges, including ensuring compatibility of the client and server (they must
use the same encryption algorithms) and security of key exchanges (intercepted
keys could again allow unauthorized access). Because of the difficulty of solving
these problems, unsecure authentication methods are most commonly used.

In the case of UNIX and its network file system (NFS), authentication
takes place via the client networking information, by default. In this scheme, the
user’s IDs on the client and server must match. If they do not, the server will be
unable to determine access rights to files. Consider the example of a user who
has an ID of 1000 on the client and 2000 on the server. A request from the client
to the server for a specific file will not be handled appropriately, as the server
will determine if user 1000 has access to the file rather than basing the
determination on the real user ID of 2000. Access is thus granted or denied
based on incorrect authentication information. The server must trust the client to
present the correct user ID. Note that the NFS protocols allow many-to-many
relationships. That is, many servers can provide files to many clients. In fact, a
given machine can be both a server to some NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent
on behalf of the user across the network to the server via the DFS protocol.
Typically, a file-open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user has
credentials to access the file in the mode requested. The request is either allowed
or denied. If it is allowed, a file handle is returned to the client application, and
the application then can perform read, write, and other operations on the file.

The client closes the file when access is completed. The operating system may
apply semantics similar to those for a local file-system mount or may use
different semantics.

 Distributed Information Systems

To make client – server systems easier to manage, distributed information
systems, also known as distributed naming services, provide unified access to
the information needed for remote computing. The domain name system (DNS)
provides host-name-to-network-address translations for the entire Inter-net.
Before DNS became widespread, files containing the same information were
sent via e-mail or ftp between all networked hosts. Obviously, this methodology
was not scalable!

Other distributed information systems provide user
name/password/user ID/group ID space for a distributed facility. UNIX systems
have employed a wide variety of distributed information methods. Sun
Microsystems (now part of Oracle Corporation) introduced yellow pages (since
renamed network information service, or NIS), and most of the industry
adopted its use. It centralizes storage of user names, host names, printer
information, and the like.

Unfortunately, it uses unsecure authentication methods, including
sending user passwords unencrypted (in clear text) and identifying hosts by IP
address. Sun’s NIS+ was a much more secure replacement for NIS but was much
more complicated and was not widely adopted.

In the case of Microsoft’s common Internet file system (CIFS),
network information is used in conjunction with user authentication (user name
and password) to create a network login that the server uses to decide whether to
allow or deny access to a requested file system. For this authentication to be
valid, the user names must match from machine to machine (as with NFS).
Microsoft uses active directory as a distributed naming structure to provide a
single name space for users. Once established, the distributed naming facility is
used by all clients and servers to authenticate users.

The industry is moving toward use of the lightweight directory-access
protocol (LDAP) as a secure distributed naming mechanism. In fact, active
directory is based on LDAP. Oracle Solaris and most other major operating
systems include LDAP and allow it to be employed for user authentication as
well as system-wide retrieval of information, such as availability of printers.
Conceivably, one distributed LDAP directory could be used by an organization
to store all user and resource information for all the organization’s computers.
The result would be secure single sign-on for users, who would enter their
authentication information once for access to all computers within the
organization. It would also ease system-administration efforts by combining, in
one location, information that is currently scattered in various files on each
system or in different distributed information services.

 Failure Modes
Local file systems can fail for a variety of reasons, including failure of the disk
containing the file system, corruption of the directory structure or other disk-
management information (collectively called metadata), disk-controller failure,
cable failure, and host-adapter failure. User or system-administrator failure can
also cause files to be lost or entire directories or volumes to be deleted. Many of
these failures will cause a host to crash and an error condition to be displayed,
and human intervention will be required to repair the damage.

Remote file systems have even more failure modes. Because of the
complexity of network systems and the required interactions between remote
machines, many more problems can interfere with the proper operation of
remote file systems. In the case of networks, the network can be interrupted
between two hosts. Such interruptions can result from hardware failure, poor
hardware configuration, or networking implementation issues. Although some
networks have built-in resiliency, including multiple paths between hosts, many
do not. Any single failure can thus interrupt the flow of DFS commands.

Consider a client in the midst of using a remote file system. It has files
open from the remote host; among other activities, it may be performing
directory lookups to open files, reading or writing data to files, and closing files.
Now consider a partitioning of the network, a crash of the server, or even a
scheduled shutdown of the server. Suddenly, the remote file system is no longer
reachable. This scenario is rather common, so it would not be appropriate for the
client system to act as it would if a local file system were lost. Rather, the system
can either terminate all operations to the lost server or delay operations until the
server is again reachable. These failure semantics are defined and implemented
as part of the remote-file-system protocol. Termination of all operations can
result in users’ losing data — and patience. Thus, most DFS protocols either
enforce or allow delaying of file-system operations to remote hosts, with the
hope that the remote host will become available again.

To implement this kind of recovery from failure, some kind of state
information may be maintained on both the client and the server. If both server
and client maintain knowledge of their current activities and open files, then they
can seamlessly recover from a failure. In the situation where the server crashes
but must recognize that it has remotely mounted exported file systems and
opened files, NFS takes a simple approach, implementing a stateless DFS. In
essence, it assumes that a client request for a file read or write would not have
occurred unless the file system had been remotely mounted and the file had been
previously open. The NFS protocol carries all the information needed to locate
the appropriate file and perform the requested operation. Similarly, it does not
track which clients have the exported volumes mounted, again assuming that if a
request comes in, it must be legitimate. While this stateless approach makes NFS
resilient and rather easy to implement, it also makes it unsecure. For example,
forged read or write requests could be allowed by an NFS server. These issues
are addressed in the industry standard NFS Version 4, in which NFS is made
stateful to improve its security, performance, and functionality.

 Consistency Semantics

Consistency semantics represent an important criterion for evaluating any file
system that supports file sharing. These semantics specify how multiple users
of a system are to access a shared file simultaneously. In particular, they
specify when modifications of data by one user will be observable by other
users. These semantics are typically implemented as code with the file system.

Consistency semantics are directly related to the process
synchronization algorithms. However, the complex algorithms tend not to be
implemented in the case of file I/O because of the great latencies and slow
transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications,
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to perform poorly. A successful implementation of
complex sharing semantics can be found in the Andrew file system.

For the following discussion, we assume that a series of file accesses
(that is, reads and writes) attempted by a user to the same file is always
enclosed between the open() and close() operations. The series of accesses
between the open() and close() operations makes up a file session. To illustrate
the concept, we sketch several prominent examples of consistency semantics.

 UNIX Semantics
The UNIX file system uses the following consistency semantics:

Writes to an open file by a user are visible immediately to other users
who have this file open.

One mode of sharing allows users to share the pointer of current location into
the file. Thus, the advancing of the pointer by one user affects all sharing
users. Here, a file has a single image that interleaves all accesses, regardless of
their origin.

In the UNIX semantics, a file is associated with a single physical
image that is accessed as an exclusive resource. Contention for this single
image causes delays in user processes.
 Session Semantics
The Andrew file system (OpenAFS) uses the following consistency semantics:

Writes to an open file by a user are not visible immediately to other
users that have the same file open.

Once a file is closed, the changes made to it are visible only in sessions
starting later. Already open instances of the file do not reflect these changes.

According to these semantics, a file may be associated temporarily
with several (possibly different) images at the same time. Consequently,
multiple users are allowed to perform both read and write accesses
concurrently on their images of the file, without delay. Almost no constraints
are enforced on scheduling accesses.

 Immutable-Shared-Files Semantics
A unique approach is that of immutable shared files. Once a file is declared as
shared by its creator, it cannot be modified. An immutable file has two key
properties: its name may not be reused, and its contents may not be altered.
Thus, the name of an immutable file signifies that the contents of the file are
fixed. The implementation of these semantics in a distributed system is simple,
because the sharing is disciplined (read-only).

 Protection
When information is stored in a computer system, we want to keep it safe from
physical damage (the issue of reliability) and improper access (the issue of
protection).

Reliability is generally provided by duplicate copies of files. Many
computers have systems programs that automatically (or through computer-
operator intervention) copy disk files to tape at regular intervals (once per day or
week or month) to maintain a copy should a file system be accidentally
destroyed. File systems can be damaged by hardware problems (such as errors
in reading or writing), power surges or failures, head crashes, dirt, temperature
extremes, and vandalism. Files may be deleted accidentally. Bugs in the file-
system soft-ware can also cause file contents to be lost.

Protection can be provided in many ways. For a single-user laptop
system, we might provide protection by locking the computer in a desk drawer
or file cabinet. In a larger multiuser system, however, other mechanisms are
needed.
 Types of Access
The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is controlled access.

Protection mechanisms provide controlled access by limiting the types
of file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

Read. Read from the file.
Write. Write or rewrite the file.
Execute. Load the file into memory and execute it.
Append. Write new information at the end of the file.
Delete. Delete the file and free its space for possible reuse.
List. List the name and attributes of the file.

Other operations, such as renaming, copying, and editing the file, may

also be controlled. For many systems, however, these higher-level functions

may be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each has
advantages and disadvantages and must be appropriate for its intended
application. A small computer system that is used by only a few members of a
research group, for example, may not need the same types of protection as a
large corporate computer that is used for research, finance, and personnel
operations. We discuss some approaches to protection in the following.

 Access Control
The most common approach to the protection problem is to make access
dependent on the identity of the user. Different users may need different types of
access to a file or directory. The most general scheme to implement identity-
dependent access is to associate with each file and directory an access-control
list (ACL) specifying user names and the types of access allowed for each user.
When a user requests access to a particular file, the operating system checks the
access list associated with that file. If that user is listed for the requested access,
the access is allowed. Otherwise, a protection violation occurs, and the user job
is denied access to the file.

This approach has the advantage of enabling complex access
methodologies. The main problem with access lists is their length. If we want to
allow everyone to read a file, we must list all users with read access. This
technique has two undesirable consequences:

Constructing such a list may be a tedious and unrewarding task,
especially if we do not know in advance the list of users in the system.

The directory entry, previously of fixed size, now must be of variable
size, resulting in more complicated space management.
These problems can be resolved by use of a condensed version of the access list.

To condense the length of the access-control list, many systems
recognize three classifications of users in connection with each file:

Owner. The user who created the file is the owner.
Group. A set of users who are sharing the file and need similar access is
a group, or work group.
Universe. All other users in the system constitute the universe.

The most common recent approach is to combine access-control lists with the
more general (and easier to implement) owner, group, and universe access-
control scheme just described. For example, Solaris uses the three categories of
access by default but allows access-control lists to be added to specific files and
directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She
has hired three graduate students (Jim, Dawn, and Jill) to help with the project.

The text of the book is kept in a file named book.tex. The protection associated
with this file is as follows:

Sara should be able to invoke all operations on the file.
Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.
All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain feedback.)

To achieve such protection, we must create a new group — say, text—

with members Jim, Dawn, and Jill. The name of the group, text, must then be
associated with the file book.tex, and the access rights must be set in accordance
with the policy we have outlined.
Now consider a visitor to whom Sara would like to grant temporary access to
Chapter 1. The visitor cannot be added to the text group because that would give
him access to all chapters. Because a file can be in only one group, Sara cannot
add another group to Chapter 1. With the addition of access-control-list
functionality, though, the visitor can be added to the access control list of
Chapter 1.
The first field describes the protection of the file or directory. A d as the first
character indicates a subdirectory. Also shown are the number of links to the
file, the owner’s name, the group’s name, the size of the file in bytes, the date of
last modification, and finally the file’s name (with optional extension).

For this scheme to work properly, permissions and access lists must be
controlled tightly. This control can be accomplished in several ways. For
example, in the UNIX system, groups can be created and modified only by the
manager of the facility (or by any superuser). Thus, control is achieved through
human interaction. With the more limited protection classification, only three
fields are needed to define protection. Often, each field is a collection of bits,
and each bit either allows or prevents the access associated with it. For example,
the UNIX system defines three fields of 3 bits each — rwx, where r controls
read access, w controls write access, and x controls execution. A separate field
is kept for the file owner, for the file’s group, and for all other users. In this
scheme, 9 bits per file are needed to record protection information. Thus, for our
example, the protection fields for the file book.tex are as follows: for the owner
Sara, all bits are set; for the group text, the r and w bits are set; and for the
universe, only the r bit is set.

With the more limited protection classification, only three fields are
needed to define protection. Often, each field is a collection of bits, and each bit
either allows or prevents the access associated with it. For example, the UNIX
system defines three fields of 3 bits each — rwx, where r controls read access, w
controls write access, and x controls execution. A separate field is kept for the
file owner, for the file’s group, and for all other users. In this scheme, 9 bits per
file are needed to record protection information. Thus, for our example, the

protection fields for the file book.tex are as follows: for the owner Sara, all bits
are set; for the group text, the r and w bits are set; and for the universe, only the
r bit is set.

One difficulty in combining approaches comes in the user interface.
Users must be able to tell when the optional ACL permissions are set on a file.
In the Solaris example, a ―+‖ is appended to the regular permissions, as in:

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1
A separate set of commands, setfacl and getfacl, is used to manage the ACLs.

Figure 4.16 Windows 7 access-control list management

Windows users typically manage access-control lists via the GUI. Figure 4.16
shows a file-permission window on Windows 7 NTFS file system. In this
example, user ―guest‖ is specifically denied access to the file ListPanel.java.

Another difficulty is assigning precedence when permission and ACLs
conflict. For example, if Joe is in a file’s group, which has read permission, but
the file has an ACL granting Joe read and write permission, should a write by
Joe be granted or denied? Solaris gives ACLs precedence (as they are more fine-
grained and are not assigned by default). This follows the general rule that
specificity should have priority.

 Other Protection Approaches
Another approach to the protection problem is to associate a password with each
file. Just as access to the computer system is often controlled by a password,
access to each file can be controlled in the same way. If the passwords are
chosen randomly and changed often, this scheme may be effective in limiting
access to a file. The use of passwords has a few disadvantages, however. First,
the number of passwords that a user needs to remember may become large,
making the scheme impractical. Second, if only one password is used for all the
files, then once it is discovered, all files are accessible; protection is on an all-or-
none basis. Some systems allow a user to associate a password with a
subdirectory, rather than with an individual file, to address this problem.

In a multilevel directory structure, we need to protect not only
individual files but also collections of files in subdirectories; that is, we need to
provide a mechanism for directory protection. The directory operations that must
be protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want to
control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file is significant in itself.
Thus, listing the contents of a directory must be a protected operation. Similarly,
if a path name refers to a file in a directory, the user must be allowed access to
both the directory and the file. In systems where files may have numerous path
names (such as acyclic and general graphs), a given user may have different
access rights to a particular file, depending on the path name used.

File -System Implementation
As we saw that, the file system provides the mechanism for on-line storage and
access to file contents, including data and programs. The file system resides
permanently on secondary storage, which is designed to hold a large amount of
data permanently. This chapter is primarily concerned with issues surrounding
file storage and access on the most common secondary-storage medium, the
disk. We explore ways to structure file use, to allocate disk space, to recover
freed space, to track the locations of data, and to interface other parts of the
operating system to secondary storage. Performance issues are considered
throughout the chapter.

 File-System Structure
Disks provide most of the secondary storage on which file systems are
maintained. Two characteristics make them convenient for this purpose:

A disk can be rewritten in place; it is possible to read a block from the
disk, modify the block, and write it back into the same place.
A disk can access directly any block of information it contains. Thus, it is
simple to access any file either sequentially or randomly, and switching
from one file to another requires only moving the read – write heads and
waiting for the disk to rotate.

To improve I/O efficiency, I/O transfers between memory and disk are
performed in units of blocks. Each block has one or more sectors. Depending on
the disk drive, sector size varies from 32 bytes to 4,096 bytes; the usual size is
512 bytes.

File systems provide efficient and convenient access to the disk by
allowing data to be stored, located, and retrieved easily. A file system poses two
quite different design problems. The first problem is defining how the file
system should look to the user. This task involves defining a file and its
attributes, the operations allowed on a file, and the directory structure for
organizing files. The second problem is creating algorithms and data structures
to map the logical file system onto the physical secondary-storage devices.

The file system itself is generally composed of many different levels.
The structure shown in Figure 4.17 is an example of a layered design. Each level
in the design uses the features of lower levels to create new features for use by
higher levels.

The I/O control level consists of device drivers and interrupt handlers
to transfer information between the main memory and the disk system. A device
driver can be thought of as a translator. Its input consists of high-level
commands such as ―retrieve block 123.‖ Its output consists of low-level,
hardware-specific instructions that are used by the hardware controller, which
interfaces the I/O device to the rest of the system. The device driver usually
writes specific bit patterns to special locations in the I/O controller’s memory to
tell the controller which device location to act on and what actions to take.

The basic file system needs only to issue generic commands to the
appropriate device driver to read and write physical blocks on the disk. Each
physical block is identified by its numeric disk address (for example, drive 1,
cylinder 73, track 2, sector 10). This layer also manages the memory buffers
and caches that hold various file-system, directory, and data blocks. A block in
the buffer is allocated before the transfer of a disk block can occur. When the
buffer is full, the buffer manager must find more buffer memory or free up
buffer space to allow a requested I/O to complete. Caches are used to hold
frequently used file-system metadata to improve performance, so managing
their contents is critical for optimum system performance.

application programs

logical file system

file-organization module

basic file system

I/O control

devices

Figure 4.17 Layered file system

The file-organization module knows about files and their logical blocks, as
well as physical blocks. By knowing the type of file allocation used and the
location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer. Each
file’s logical blocks are numbered from 0 (or 1) through N. Since the physical
blocks containing the data usually do not match the logical numbers, a
translation is needed to locate each block. The file-organization module also
includes the free-space manager, which tracks unallocated blocks and provides
these blocks to the file-organization module when requested.

Finally, the logical file system manages metadata information.
Metadata includes all of the file-system structure except the actual data (or
contents of the files). The logical file system manages the directory structure to
provide the file-organization module with the information the latter needs,
given a symbolic file name. It maintains file structure via file-control blocks.
A file-control block (FCB) (an inode in UNIX file systems) contains
information about the file, including ownership, permissions, and location of
the file contents.

When a layered structure is used for file-system implementation,
duplication of code is minimized. The I/O control and sometimes the basic file-
system code can be used by multiple file systems. Each file system can then
have its own logical file-system and file-organization modules. Unfortunately,
layering can introduce more operating-system overhead, which may result in
decreased performance. The use of layering, including the decision about how
many layers to use and what each layer should do, is a major challenge in
designing new systems.

Many file systems are in use today, and most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660
format, a standard format agreed on by CD-ROM manufacturers. In addition to
removable-media file systems, each operating system has one or more disk-
based file systems. UNIX uses the UNIX file system (UFS), which is based on
the Berkeley Fast File System (FFS). Windows supports disk file-system formats
of FAT, FAT32, and NTFS (or Windows NT File System), as well as CD-ROM
and DVD file-system formats. Although Linux supports over forty different file
systems, the standard Linux file system is known as the extended file system,
with the most common versions being ext3 and ext4. There are also distributed
file systems in which a file system on a server is mounted by one or more client
computers across a network.

File-system research continues to be an active area of operating-system
design and implementation. Google created its own file system to meet the
company’s specific storage and retrieval needs, which include high-performance
access from many clients across a very large number of disks. Another
interesting project is the FUSE file system, which provides flexibility in file-
system development and use by implementing and executing file systems as
user-level rather than kernel-level code. Using FUSE, a user can add a new file
system to a variety of operating systems and can use that file system to manage
her files.

 File-System Implementation
In this section, we delve into the structures and operations used to implement
file-system operations.

 Overview
Several on-disk and in-memory structures are used to implement a file system.
These structures vary depending on the operating system and the file system, but
some general principles apply.

On disk, the file system may contain information about how to boot an
operating system stored there, the total number of blocks, the number and
location of free blocks, the directory structure, and individual files. Many of
these structures are detailed throughout the remainder of this chapter. Here, we
describe them briefly:

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

A boot control block (per volume) can contain information needed by the
system to boot an operating system from that volume. If the disk does not
contain an operating system, this block can be empty. It is typically the first
block of a volume. In UFS, it is called the boot block. In NTFS, it is the
partition boot sector.
A volume control block (per volume) contains volume (or partition) details,
such as the number of blocks in the partition, the size of the blocks, a free-
block count and free-block pointers, and a free-FCB count and FCB pointers.
In UFS, this is called a superblock. In NTFS, it is stored in the master file
table.
A directory structure (per file system) is used to organize the files. In UFS, this
includes file names and associated inode numbers. In NTFS, it is stored in the
master file table.
A per-file FCB contains many details about the file. It has a unique identifier
number to allow association with a directory entry. In NTFS, this information
is actually stored within the master file table, which uses a relational database
structure, with a row per file.
The in-memory information is used for both file-system management and
performance improvement via caching. The data are loaded at mount time,
updated during file-system operations, and discarded at dismount. Several
types of structures may be included.
An in-memory mount table contains information about each mounted volume.

An in-memory directory-structure cache holds the directory
information of recently accessed directories. (For directories at which volumes
are mounted, it can contain a pointer to the volume table.)

The system-wide open-file table contains a copy of the FCB of each
open file, as well as other information.

Figure 4.18 A typical file-control block

The per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table, as well as other information.
Buffers hold file-system blocks when they are being read from disk or written to
disk.

To create a new file, an application program calls the logical file system.
The logical file system knows the format of the directory structures. To create a
new file, it allocates a new FCB. (Alternatively, if the file-system
implementation creates all FCBs at file-system creation time, an FCB is
allocated from the set of free FCBs.) The system then reads the appropriate
directory into memory, updates it with the new file name and FCB, and writes it
back to the disk. A typical FCB is shown in Figure 4.18.

Some operating systems, including UNIX, treat a directory exactly the
same as a file — one with a ―type‖ field indicating that it is a directory. Other
operating systems, including Windows, implement separate system calls for files
and directories and treat directories as entities separate from files. Whatever the
larger structural issues, the logical file system can call the file-organization
module to map the directory I/O into disk-block numbers, which are passed on to
the basic file system and I/O control system.

Now that a file has been created, it can be used for I/O. First, though, it
must be opened. The open() call passes a file name to the logical file system.
The open() system call first searches the system-wide open-file table to see if the
file is already in use by another process. If it is, a per-process open-file table
entry is created pointing to the existing system-wide open-file table. This
algorithm can save substantial overhead. If the file is not already open, the
directory structure is searched for the given file name. Parts of the directory
structure are usually cached in memory to speed directory operations. Once the
file is found, the FCB is copied into a system-wide open-file table in memory.
This table not only stores the FCB but also tracks the number of processes that
have the file open.

Next, an entry is made in the per-process open-file table, with a pointer to
the entry in the system-wide open-file table and some other fields. These other
fields may include a pointer to the current location in the file (for the next read()
or write() operation) and the access mode in which the file is open. The open()
call returns a pointer to the appropriate entry in the per-process.file-system table.
All file operations are then performed via this pointer. The file name may not be
part of the open-file table, as the system has no use for it once the appropriate
FCB is located on disk. It could be cached, though, to save time on subsequent
opens of the same file. The name given to the entry varies. UNIX systems refer
to it as a file descriptor; Windows refers to it as a file handle.

When a process closes the file, the per-process table entry is removed,
and the system-wide entry’s open count is decremented. When all users that
have opened the file close it, any updated metadata is copied back to the disk-
based directory structure, and the system-wide open-file table entry is removed.

index

directory
structure

open (file
name)

directory structure file-control
block

user space kernel
memory
(a)

secondary storage

data blocks

read (index)

per-process system-wide
file-control
block

open-file
table

open-file table

user space

kernel memory

secondary
storage

 (b)
Figure 4.19 In-memory file-system structures. (a) File open. (b) File read.

Some systems complicate this scheme further by using the file system

as an interface to other system aspects, such as networking. For example, in
UFS, the system-wide open-file table holds the inodes and other information
for files and directories. It also holds similar information for network
connections and devices. In this way, one mechanism can be used for multiple
purposes.

The caching aspects of file-system structures should not be
overlooked. Most systems keep all information about an open file, except for
its actual data blocks, in memory. The BSD UNIX system is typical in its use

of caches wherever disk I/O can be saved. Its average cache hit rate of 85
percent shows that these techniques are well worth implementing.
 Partitions and Mounting
The layout of a disk can have many variations, depending on the operating
system. A disk can be sliced into multiple partitions, or a volume can span
multiple partitions on multiple disks.

Each partition can be either ―raw,‖ containing no file system, or
―cooked,‖ containing a file system. Raw disk is used where no file system is
appropriate. UNIX swap space can use a raw partition, for example, since it
uses its own format on disk and does not use a file system. Likewise, some
databases use raw disk and format the data to suit their needs. Raw disk can

also hold information needed by disk RAID systems, such as bit maps
indicating which blocks are mirrored and which have changed and need to be
mirrored. Similarly, raw disk can contain a miniature database holding RAID
configuration information, such as which disks are members of each RAID set.

Boot information can be stored in a separate partition. Again, it has its
own format, because at boot time the system does not have the file-system
code loaded and therefore cannot interpret the file-system format. Rather, boot
information is usually a sequential series of blocks, loaded as an image into
memory. Execution of the image starts at a predefined location, such as the
first byte. This boot loader in turn knows enough about the file-system
structure to be able to find and load the kernel and start it executing. It can
contain more than the instructions for how to boot specific operating system.
For instance, many systems can be dual-booted, allowing us to install
multiple operating systems on a single system. How does the system know
which one to boot? A boot loader that understands multiple file systems and
multiple operating systems can occupy the boot space. Once loaded, it can
boot one of the operating systems available on the disk. The disk can have
multiple partitions, each containing a different type of file system and different
operating system.

The root partition, which contains the operating-system kernel and
some-times other system files, is mounted at boot time. Other volumes can be
automatically mounted at boot or manually mounted later, depending on the
operating system. As part of a successful mount operation, the operating
system verifies that the device contains a valid file system. It does so by asking
the device driver to read the device directory and verifying that the directory
has the expected format. If the format is invalid, the partition must have its
consistency checked and possibly corrected, either with or without user
intervention. Finally, the operating system notes in its in-memory mount table
that a file system is mounted, along with the type of the file system. The
details of this function depend on the operating system.

Microsoft Windows – based systems mount each volume in a separate
name space, denoted by a letter and a colon. To record that a file system is
mounted at F:, for example, the operating system places a pointer to the file
system in a field of the device structure corresponding to F:. When a process
specifies the driver letter, the operating system finds the appropriate file-
system pointer and traverses the directory structures on that device to find the
specified file or directory. Later versions of Windows can mount a file system
at any point within the existing directory structure.

On UNIX, file systems can be mounted at any directory. Mounting is
implemented by setting a flag in the in-memory copy of the inode for that
directory. The flag indicates that the directory is a mount point. A field then
points to an entry in the mount table, indicating which device is mounted there.
The mount table entry contains a pointer to the superblock of the file system on
that device. This scheme enables the operating system to traverse its directory
structure, switching seamlessly among file systems of varying types.
 Virtual File Systems

The previous section makes it clear that modern operating systems
must concurrently support multiple types of file systems. But how does an
operating system allow multiple types of file systems to be integrated into a
directory structure? And how can users seamlessly move between file-system
types as they navigate the file-system space? We now discuss some of these
implementation details.

An obvious but suboptimal method of implementing multiple types of
file systems is to write directory and file routines for each type. Instead,
however, most operating systems, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the implementation. The use
of these methods allows very dissimilar file-system types to be implemented
within the same structure, including network file systems, such as NFS. Users
can access files contained within multiple file systems on the local disk or even
on file systems available across the network.

Data structures and procedures are used to isolate the basic system-call
functionality from the implementation details. Thus, the file-system
implementation consists of three major layers, as depicted schematically in
Figure 4.20. The first layer is the file-system interface, based on the open(),
read(), write(), and close() calls and on file descriptors.

The second layer is called the virtual file system (VFS) layer. The
VFS layer serves two important functions:

It separates file-system-generic operations from their implementation
by defining a clean VFS interface. Several implementations for the VFS
interface may coexist on the same machine, allowing transparent access to
different types of file systems mounted locally.

It provides a mechanism for uniquely representing a file throughout a
network. The VFS is based on a file-representation structure, called a vnode,
that contains a numerical designator for a network-wide unique file. (UNIX
inodes are unique within only a single file system.) This network-wide

disk

disk

file-system interface

VFS interface

uniqueness is required for support of network file systems. The kernel
maintains one vnode structure for each active node (file or directory).

Thus, the VFS distinguishes local files from remote ones, and local
files are further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local
requests according to their file-system types and calls the NFS protocol
procedures for remote requests. File handles are constructed from the relevant
vnodes and are passed as arguments to these procedures. The layer
implementing the file-system type or the remote-file-system protocol is the
third layer of the architecture.

local file system

local file system

 remote file
system

type 1 type 2 type 1

network

Figure 4.20 Schematic view of a virtual file system.

Let’s briefly examine the VFS architecture in Linux. The four main object
types defined by the Linux VFS are:

The inode object, which represents an individual file
The file object, which represents an open file
The superblock object, which represents an entire file system
The dentry object, which represents an individual directory entry

For each of these four object types, the VFS defines a set of
operations that may be implemented. Every object of one of these types
contains a pointer to a function table. The function table lists the addresses of
the actual functions that implement the defined operations for that particular
object. For example, an abbreviated API for some of the operations for the file
object includes:

int open(. . .)— Open a file.
int close(...)— Close an already-open file.
ssize t read(. . .)— Read from a file.
ssize t write(. . .)— Write to a file.
int mmap(. . .)— Memory-map a file.

An implementation of the file object for a specific file type is required

to implement each function specified in the definition of the file object. (The
complete definition of the file object is specified in the struct file operations,
which is located in the file /usr/include/linux/fs.h.)

Thus, the VFS software layer can perform an operation on one of
these objects by calling the appropriate function from the object’s function
table, without having to know in advance exactly what kind of object it is
dealing with. The VFS does not know, or care, whether an inode represents a
disk file, a directory file, or a remote file. The appropriate function for that
file’s read() operation will always be at the same place in its function table,
and the VFS software layer will call that function without caring how the data
are actually read.
 Directory Implementation
The selection of directory-allocation and directory-management algorithms
significantly affects the efficiency, performance, and reliability of the file
system. In this section, we discuss the trade-offs involved in choosing one of
these algorithms.
 Linear List
The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. This method is simple to program but
time-consuming to execute. To create a new file, we must first search the
directory to be sure that no existing file has the same name. Then, we add a
new entry at the end of the directory. To delete a file, we search the directory
for the named file and then release the space allocated to it. To reuse the
directory entry, we can do one of several things. We can mark the entry as
unused (by assigning it a special name, such as an all-blank name, or by
including a used – unused bit in each entry), or we can attach it to a list of free
directory entries. A third alternative is to copy the last entry in the directory
into the freed location and to decrease the length of the directory. A linked list
can also be used to decrease the time required to delete a file.

The real disadvantage of a linear list of directory entries is that finding
a file requires a linear search. Directory information is used frequently, and
users will notice if access to it is slow. In fact, many operating systems

implement a software cache to store the most recently used directory
information. A cache hit avoids the need to constantly reread the information
from disk. A sorted list allows a binary search and decreases the average
search time. However, the requirement that the list be kept sorted may
complicate creating and deleting files, since we may have to move substantial
amounts of directory information to maintain a sorted directory. A more
sophisticated tree data structure, such as a balanced tree, might help here. An
advantage of the sorted list is that a sorted directory listing can be produced
without a separate sort step.
 Hash Table
Another data structure used for a file directory is a hash table. Here, a linear
list stores the directory entries, but a hash data structure is also used. The hash
table takes a value computed from the file name and returns a pointer to the
file name in the linear list. Therefore, it can greatly decrease the directory
search time. Insertion and deletion are also fairly straightforward, although
some provision must be made for collisions — situations in which two file
names hash to the same location.

The major difficulties with a hash table are its generally fixed size and
the dependence of the hash function on that size. For example, assume that we
make a linear-probing hash table that holds 64 entries. The hash function
converts file names into integers from 0 to 63 (for instance, by using the
remainder of a division by 64). If we later try to create a 65th file, we must
enlarge the directory hash table — say, to 128 entries. As a result, we need a
new hash function that must map file names to the range 0 to 127, and we must
reorganize the existing directory entries to reflect their new hash-function
values.

Alternatively, we can use a chained-overflow hash table. Each hash
entry can be a linked list instead of an individual value, and we can resolve
collisions by adding the new entry to the linked list. Lookups may be
somewhat slowed, because searching for a name might require stepping
through a linked list of colliding table entries. Still, this method is likely to be
much faster than a linear search through the entire directory.
 Allocation Methods
The direct-access nature of disks gives us flexibility in the implementation of
files. In almost every case, many files are stored on the same disk. The main
problem is how to allocate space to these files so that disk space is utilized
effectively and files can be accessed quickly. Three major methods of
allocating disk space are in wide use: contiguous, linked, and indexed. Each
method has advantages and disadvantages. Although some systems support all
three, it is more common for a system to use one method for all files within a
file-system type.
 Contiguous Allocation
Contiguous allocation requires that each file occupy a set of contiguous
blocks on the disk. Disk addresses define a linear ordering on the disk. With
this ordering, assuming that only one job is accessing the disk, accessing block
b + 1 after block b normally requires no head movement. When head

movement is needed (from the last sector of one cylinder to the first sector of
the next cylinder), the head need only move from one track to the next. Thus,
the number of disk seeks required for accessing contiguously allocated files is
minimal, as is seek time when a seek is finally needed.

Contiguous allocation of a file is defined by the disk address and length
(in block units) of the first block. If the file is n blocks long and starts at
location b, then it occupies blocks b, b + 1, b + 2, ..., b + n − 1. The directory
entry for each file indicates the address of the starting block and the length of
the area allocated for this file (Figure 4.21).

Accessing a file that has been allocated contiguously is easy. For
sequential access, the file system remembers the disk address of the last block
referenced and, when necessary, reads the next block. For direct access to
block i of a file that starts at block b, we can immediately access block b + i.
Thus, both sequential and direct access can be supported by contiguous
allocation.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The system chosen to manage free space
determines how this task is accomplished. Any management system can be
used, but some are slower than others.

The contiguous-allocation problem can be seen as a particular
application of the general dynamic storage-allocation problem discussed in
Section 8.3, which involves how to satisfy a request of size n from a list of free
holes. First fit and best fit are the most common strategies used to select a free
hole from the set of available holes. Simulations have shown that both first fit
and best fit are more efficient than worst fit in terms of both time and storage
utilization. Neither first fit nor best fit is clearly best in terms of storage
utilization, but first fit is generally faster.

All these algorithms suffer from the problem of external
fragmentation. As files are allocated and deleted, the free disk space is broken
into little pieces. External fragmentation exists whenever free space is broken
into chunks. It becomes a problem when the largest contiguous chunk is
insufficient for a request; storage is fragmented into a number of holes, none of
which is large enough to store the data. Depending on the total amount of disk
storage and the average file size, external fragmentation may be a minor or a
major problem.

One strategy for preventing loss of significant amounts of disk space to
external fragmentation is to copy an entire file system onto another disk. The
original disk is then freed completely, creating one large contiguous free space.
We then copy the files back onto the original disk by allocating contiguous
space from this one large hole. This scheme effectively compacts all free
space into one contiguous space, solving the fragmentation problem. The cost
of this compaction is time, however, and the cost can be particularly high for
large hard disks. Compacting these disks may take hours and may be necessary
on a weekly basis. Some systems require that this function be done off-line,
with the file system unmounted. During this down time, normal system
operation generally cannot be permitted, so such compaction is avoided at all
costs on production machines. Most modern systems that need

defragmentation can perform it on-line during normal system operations, but
the performance penalty can be substantial.

directo
ry

file

start

Lengt
h

 count

0 1 2 3 cou
nt 0 2

 f tr 14 3
4 5 6 7

 mail 19 6
 list 28 4

8 9 1
0

11

 t
r

 f 6 2

1
2

13 14 15

16 17 18 19
mail

20 21 22 23

24 25 26 27
list

28 29 30 31

Figure 4.21 Contiguous allocation of disk space.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space it
will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this
determination may be fairly simple (copying an existing file, for example). In
general, however, the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
Two possibilities then exist. First, the user program can be terminated, with an
appropriate error message. The user must then allocate more space and run the
program again. These repeated runs may be costly. To prevent them, the user
will normally overestimate the amount of space needed, resulting in
considerable wasted space. The other possibility is to find a larger hole, copy
the contents of the file to the new space, and release the previous space. This

series of actions can be repeated as long as space exists, although it can be time
consuming. The user need never be informed explicitly about what is
happening, however; the system continues despite the problem, although more
and more slowly.

Even if the total amount of space needed for a file is known in advance,
preallocation may be inefficient. A file that will grow slowly over a long
period (months or years) must be allocated enough space for its final size, even
though much of that space will be unused for a long time. The file therefore
has a large amount of internal fragmentation.

To minimize these drawbacks, some operating systems use a modified
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated
initially. Then, if that amount proves not to be large enough, another chunk of
contiguous space, known as an extent, is added. The location of a file’s blocks
is then recorded as a location and a block count, plus a link to the first block of
the next extent. On some systems, the owner of the file can set the extent size,
but this setting results in inefficiencies if the owner is incorrect. Internal
fragmentation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Veritas file system uses extents to optimize
performance. Veritas is a high-performance replacement for the standard
UNIX UFS.
 Linked Allocation
Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first and
last blocks of the file. For example, a file of five blocks might start at block 9
and continue at block 16, then block 1, then block 10, and finally block 25
(Figure 4.22). Each block contains a pointer to the next block. These pointers
are not made available to the user. Thus, if each block is 512 bytes in size, and
a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508
bytes.

To create a new file, we simply create a new entry in the directory.
With linked allocation, each directory entry has a pointer to the first disk block
of the file. This pointer is initialized to null (the end-of-list pointer value) to
signify an empty file. The size field is also set to 0. A write to the file causes
the free-space management system to find a free block, and this new block is
written to and is linked to the end of the file. To read a file, we simply read
blocks by following the pointers from block to block. There is no external
fragmentation with linked allocation, and any free block on the free-space list
can be used to satisfy a request. The size of a file need not be declared when
the file is created. A file can continue to grow as long as free blocks are
available. Consequently, it is never necessary to compact disk space.

directory
file start end
jeep 9 25

0 1 1 2 3

6

4 5 7
 1 1
8 9 1 0 2

1
 13 14 15
 17 18 19
 21 22 23
 25 -1 26 27
 29 30 31

Figure 4.22 Linked allocation of disk space.

Linked allocation does have disadvantages, however. The major
problem is that it can be used effectively only for sequential-access files. To
find the ith block of a file, we must start at the beginning of that file and
follow the pointers until we get to the ith block. Each access to a pointer
requires a disk read, and some require a disk seek. Consequently, it is
inefficient to support a direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples,
called clusters, and to allocate clusters rather than blocks. For instance, the file
system may define a cluster as four blocks and operate on the disk only in
cluster units. Pointers then use a much smaller percentage of the file’s disk
space. This method allows the logical-to-physical block mapping to remain
simple but improves disk throughput (because fewer disk-head seeks are
required) and decreases the space needed for block allocation and free-list
management. The cost of this approach is an increase in internal
fragmentation, because more space is wasted when a cluster is partially full
than when a block is partially full. Clusters can be used to improve the disk-
access time for many other algorithms as well, so they are used in most file
systems.

Yet another problem of linked allocation is reliability. Recall that the
files are linked together by pointers scattered all over the disk, and consider what
would happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong pointer.
This error could in turn result in linking into the free-space list or into another
file. One partial solution is to use doubly linked lists, and another is to store the
file name and relative block number in each block. However, these schemes
require even more overhead for each file.

An important variation on linked allocation is the use of a file-allocation
table (FAT). This simple but efficient method of disk-space allocation was used
by the MS-DOS operating system. A section of disk at the beginning of each
volume is set aside to contain the table. The table has one entry for each disk
block and is indexed by block number. The FAT is used in much the same way
as a linked list. The directory entry contains the block number of the first block
of the file. The table entry indexed by that block number contains the block
number of the next block in the file. This chain continues until it reaches the last
block, which has a special end-of-file value as the table entry. An unused block
is indicated by a table value of 0. Allocating a new block to a file is a simple
matter of finding the first 0-valued table entry and replacing the previous end-of-
file value with the address of the new block. The 0 is then replaced with the end-
of-file value. An illustrative example is the FAT structure shown in Figure 4.22
for a file consisting of disk blocks 217, 618, and 339.

The FAT allocation scheme can result in a significant number of disk
head seeks, unless the FAT is cached. The disk head must move to the start of
the volume to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random-access time is improved, because
the disk head can find the location of any block by reading the information in the
FAT.

 Indexed Allocation
Linked allocation solves the external-fragmentation and size-declaration
problems of contiguous allocation. However, in the absence of a FAT, linked
allocation cannot support efficient direct access, since the pointers to the blocks
are scattered with the blocks themselves all over the disk and must be retrieved
in order. Indexed allocation solves this problem by bringing all the pointers
together into one location: the index block.

Each file has its own index block, which is an array of disk-block
addresses. The i th entry in the index block points to the i th block of the file. The
directory contains the address of the index block (Figure 12.8). To find and read
the i th block, we use the pointer in the i th index-block entry. This scheme is
similar to the paging scheme.

618 339

directory entry

test • • • 217

name
 start

block

 0

 217 618

 339

number of disk blocks–1

FAT

Figure 4.23 File-allocation table.

When the file is created, all pointers in the index block are set to null.
When the i th block is first written, a block is obtained from the free-space
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from
external fragmentation, because any free block on the disk can satisfy a request
for more space. Indexed allocation does suffer from wasted space, however.
The pointer overhead of the index block is generally greater than the pointer
overhead of linked allocation. Consider a common case in which we have a
file of only one or two blocks. With linked allocation, we lose the space of
only one pointer per block. With indexed allocation, an entire index block
must be allocated, even if only one or two pointers will be non-null.

This point raises the question of how large the index block should be.
Every file must have an index block, so we want the index block to be as small
as possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

Figure 4.24 Indexed allocation of disk space.

Linked scheme. An index block is normally one disk block. Thus, it can be
read and written directly by itself. To allow for large files, we can link together
several index blocks. For example, an index block might contain a small
header giving the name of the file and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is null (for a
small file) or is a pointer to another index block (for a large file).
Multilevel index. A variant of linked representation uses a first-level index
block to point to a set of second-level index blocks, which in turn point to the
file blocks. To access a block, the operating system uses the first-level index to
find a second-level index block and then uses that block to find the desired
data block. This approach could be continued to a third or fourth level,
depending on the desired maximum file size. With 4,096-byte blocks, we
could store 1,024 four-byte pointers in an index block. Two levels of indexes
allow 1,048,576 data blocks and a file size of up to 4 GB.

 directory

 file index block

0

1

2

3

 jee
p

19

4 5 6 7

8

9

 1
0

 1
1

 9

1
2

 1
3

 1
4

 16

 1

1
6

 1
7

 1
8

 10
 1 19

 25

 –1
2
0

 2
1

 2
2

2

–1

2
4

 2
5

 2
6

 –1
 2

2
8

 2
9

 3
0

3

Combined scheme. Another alternative, used in UNIX-based file systems, is to
keep the first, say, 15 pointers of the index block in the file’s inode. The first 12
of these pointers point to direct blocks; that is, they contain addresses of blocks
that contain data of the file. Thus, the data for small files (of no more than 12
blocks) do not need a separate index block. If the block size is 4 KB, then up to
48 KB of data can be accessed directly. The next three pointers point to indirect
blocks. The first points to a single indirect block, which is an index block
containing not data but the addresses of blocks that do contain data. The second
points to a double indirect block, which contains the address of a block that
contains the addresses of blocks that contain pointers to the actual data blocks.
The last pointer contains the address of a triple indirect block. (A UNIX inode
is shown in Figure 4.25).

Under this method, the number of blocks that can be allocated to a file
exceeds the amount of space addressable by the 4-byte file pointers used by
many operating systems. A 32-bit file pointer reaches only 232 bytes, or 4 GB.
Many UNIX and Linux implementations now support 64-bit file pointers, which
allows files and file systems to be several exbibytes in size. The ZFS file system
supports 128-bit file pointers.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use the
same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to
get a disk block. Since we can easily keep the initial address of the file in
memory, we can calculate immediately the disk address of the i th block (or the
next block) and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for direct
access, however, an access to the i th block might require i disk reads. This
problem indicates why linked allocation should not be used for an application
requiring direct access.

Mode
owners (2)

timestamps (3)
data

size block count

data

•

•

•

data

 data
 •

direct
blocks

 •
• •

isnindgirlect

•

data

• • data
• •

idnoduibrelect data • data
 •
 •
triple indirect data
 •

Figu
inode

re
.

4.2

T

e UNIX

Dat
a

As a result, some systems support direct-access files by using
contiguous allocation and sequential-access files by using linked allocation.
For these systems, the type of access to be made must be declared when the
file is created. A file created for sequential access will be linked and cannot be
used for direct access. A file created for direct access will be contiguous and
can support both direct access and sequential access, but its maximum length

must be declared when it is created. In this case, the operating system must
have appropriate data structures and algorithms to support both allocation
methods. Files can be converted from one type to another by the creation of a
new file of the desired type, into which the contents of the old file are copied.
The old file may then be deleted and the new file renamed.

Indexed allocation is more complex. If the index block is already in
memory, then the access can be made directly. However, keeping the index

block in memory requires considerable space. If this memory space is not
available, then we may have to read first the index block and then the desired
data block. For a two-level index, two index-block reads might be necessary.
For an extremely large file, accessing a block near the end of the file would
require reading in all the index blocks before the needed data block finally
could be read. Thus, the performance of indexed allocation depends on the
index structure, on the size of the file, and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation
by using contiguous allocation for small files (up to three or four blocks) and
automatically switching to an indexed allocation if the file grows large. Since
most files are small, and contiguous allocation is efficient for small files,
average performance can be quite good.

Many other optimizations are in use. Given the disparity between CPU
speed and disk speed, it is not unreasonable to add thousands of extra
instructions to the operating system to save just a few disk-head movements.
Furthermore, this disparity is increasing over time, to the point where hundreds
of thousands of instructions could reasonably be used to optimize head
movements.
 Free-Space Management
Since disk space is limited, we need to reuse the space from deleted files for
new files, if possible. (Write-once optical disks allow only one write to any
given sector, and thus reuse is not physically possible.) To keep track of free
disk space, the system maintains a free-space list. The free-space list records
all free disk blocks — those not allocated to some file or directory. To create a
file, we search the free-space list for the required amount of space and allocate
that space to the new file. This space is then removed from the free-space list.
When file is deleted, its disk space is added to the free-space list. The free-
space list, despite its name, may not be implemented as a list, as we discuss
next.

 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12,
13, 17, 18, 25, 26, and 27 are free and the rest of the blocks are allocated. The
free-space bit map would be

001111001111110001100000011100000

The main advantage of this approach is its relative simplicity and its efficiency
in finding the first free block or n consecutive free blocks on the disk. Indeed,
many computers supply bit-manipulation instructions that can be used
effectively for that purpose. One technique for finding the first free block on a
system that uses a bit-vector to allocate disk space is to sequentially check each
word in the bit map to see whether that value is not 0, since a 0-valued word
contains only 0 bits and represents a set of allocated blocks. The first non-0
word is scanned for the first 1 bit, which is the location of the first free block.
The calculation of the block number is

(number of bits per word) × (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality.

Unfortunately, bit vectors are inefficient unless the entire vector is kept in main
memory (and is written to disk occasionally for recovery needs). Keeping it in
main memory is possible for smaller disks but not necessarily for larger ones. A
1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to track
its free blocks, although clustering the blocks in groups of four reduces this
number to around 83 KB per disk. A 1-TB disk with 4-KB blocks requires 256
MB to store its bit map. Given that disk size constantly increases, the problem
with bit vectors will continue to escalate as well.
 Linked List
Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the first free block in a special location on the disk
and caching it in memory. This first block contains a pointer to the next free
disk block, and so on. Recall our earlier example, in which blocks 2, 3, 4, 5, 8,
9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free and the rest of the blocks were
allocated. In this situation, we would keep a pointer to block 2 as the first free
block. Block 2 would contain a pointer to block 3, which would point to block
4, which would point to block 5, which would point to block 8, and so on
(Figure 4.26). This scheme is not efficient; to traverse the list, we must read
each block, which requires substantial I/O time. Fortunately, however,
traversing the free list is not a frequent action. Usually, the operating system
simply needs a free block so that it can allocate that block to a file, so the first
block in the free list is used. The FAT method incorporates free-block
accounting into the allocation data structure. No separate method is needed.

free-space list head
 0 1 2

3

 4 5 6
 7

 8 9 10
 1

1
 12 13 14 15

 16 17 18 19

 20 21 22 23

 24 25 26 27

 28 29 30 31

Figure 4.26 Linked free-space list on disk.

 Grouping
A modification of the free-list approach stores the addresses of n free blocks in
the first free block. The first n−1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The addresses
of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.
 Counting
Another approach takes advantage of the fact that, generally, several
contiguous blocks may be allocated or freed simultaneously, particularly when
space is allocated with the contiguous-allocation algorithm or through
clustering. Thus, rather than keeping a list of n free disk addresses, we can
keep the address of the first free block and the number (n) of free contiguous
blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than
would a simple disk address, the overall list is shorter, as long as the count is
generally greater than 1. Note that this method of tracking free space is similar
to the extent method of allocating blocks. These entries can be stored in a
balanced tree, rather than a linked list, for efficient lookup, insertion, and
deletion.

 Space Maps
Oracle’s ZFS file system (found in Solaris and other operating systems) was
designed to encompass huge numbers of files, directories, and even file systems
(in ZFS, we can create file-system hierarchies). On these scales, metadata I/O
can have a large performance impact. Consider, for example, that if the free-
space list is implemented as a bit map, bit maps must be modified both when
blocks are allocated and when they are freed. Freeing 1 GB of data on a 1-TB
disk could cause thousands of blocks of bit maps to be updated, because those
data blocks could be scattered over the entire disk. Clearly, the data structures
for such a system could be large and inefficient.

In its management of free space, ZFS uses a combination of techniques to
control the size of data structures and minimize the I/O needed to manage those
structures. First, ZFS creates metaslabs to divide the space on the device into
chunks of manageable size. A given volume may contain hundreds of metaslabs.
Each metaslab has an associated space map. ZFS uses the counting algorithm to
store information about free blocks. Rather than write counting structures to
disk, it uses log-structured file-system techniques to record them. The space map
is a log of all block activity (allocating and freeing), in time order, in counting
format. When ZFS decides to allocate or free space from a metaslab, it loads the
associated space map into memory in a balanced-tree structure (for very efficient
operation), indexed by offset, and replays the log into that structure. The in-
memory space map is then an accurate representation of the allocated and free
space in the metaslab. ZFS also condenses the map as much as possible by
combining contiguous free blocks into a single entry. Finally, the free-space list
is updated on disk as part of the transaction-oriented operations of ZFS. During
the collection and sorting phase, block requests can still occur, and ZFS satisfies
these requests from the log. In essence, the log plus the balanced tree is the free
list.
 Efficiency and Performance
Now that we have discussed various block-allocation and directory-management
options, we can further consider their effect on performance and efficient disk
use. Disks tend to represent a major bottleneck in system performance, since
they are the slowest main computer component. In this section, we discuss a
variety of techniques used to improve the efficiency and performance of
secondary storage.

 Efficiency
The efficient use of disk space depends heavily on the disk-allocation and
directory algorithms in use. For instance, UNIX inodes are preallocated on a
volume. Even an empty disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and spreading them across the volume, we
improve the file system’s performance. This improved performance results from
the UNIX allocation and free-space algorithms, which try to keep a file’s data
blocks near that file’s inode block to reduce seek time.

As another example, let’s reconsider the clustering scheme, which
improves file-seek and file-transfer performance at the cost of internal
fragmentation. To reduce this fragmentation, BSD UNIX varies the cluster
size as a file grows. Large clusters are used where they can be filled, and
small clusters are used for small files and the last cluster of a file. The types
of data normally kept in a file’s directory (or inode) entry also require
consideration. Commonly, a ―last write date‖ is recorded to supply
information to the user and to determine whether the file needs to be backed
up. Some systems also keep a ―last access date,‖ so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written to.
That means the block must be read into memory, a section changed, and the
block written back out to disk, because operations on disks occur only in
block (or cluster) chunks. So any time a file is opened for reading, its
directory entry must be read and written as well. This requirement can be
inefficient for frequently accessed files, so we must weigh its benefit against
its performance cost when designing a file system. Generally, every data item
associated with a file needs to be considered for its effect on efficiency and
performance.

Consider, for instance, how efficiency is affected by the size of the
pointers used to access data. Most systems use either 32-bit or 64-bit pointers
throughout the operating system. Using 32-bit pointers limits the size of a file
to 232, or 4 GB. Using 64-bit pointers allows very large file sizes, but 64-bit
pointers require more space to store. As a result, the allocation and free-
space-management methods (linked lists, indexes, and so on) use more disk
space.

One of the difficulties in choosing a pointer size — or, indeed, any
fixed allocation size within an operating system — is planning for the effects
of changing technology. Consider that the IBM PC XT had a 10-MB hard
drive and an MS-DOS file system that could support only 32 MB. (Each
FAT entry was 12 bits, pointing to an 8-KB cluster.) As disk capacities
increased, larger disks had to be split into 32-MB partitions, because the file
system could not track blocks beyond 32 MB. As hard disks with capacities
of over 100 MB became common, the disk data structures and algorithms in
MS-DOS had to be modified to allow larger file systems. (Each FAT entry
was expanded to 16 bits and later to 32 bits.) The initial file-system decisions
were made for efficiency reasons; however, with the advent of MS-DOS
Version 4, millions of computer users were inconvenienced when they had to
switch to the new, larger file system. Solaris’ ZFS file system uses 128-bit
pointers, which theoretically should never need to be extended.

As another example, consider the evolution of the Solaris operating
system. Originally, many data structures were of fixed length, allocated at
system startup. These structures included the process table and the open-file
table. When the process table became full, no more processes could be
created. When the file table became full, no more files could be opened. The
system would fail to provide services to users. Table sizes could be increased
only by recompiling the kernel and rebooting the system. With later releases

of Solaris, almost all kernel structures were allocated dynamically,
eliminating these artificial limits on system performance. Of course, the
algorithms that manipulate these tables are more complicated, and the
operating system is a little slower because it must dynamically allocate and
deallocate table entries; but that price is the usual one for more general
functionality.
 Performance
Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways. As will be discussed, most disk
controllers include local memory to form an on-board cache that is large
enough to store entire tracks at a time. Once a seek is performed, the track is
read into the disk cache starting at the sector under the disk head (reducing
latency time). The disk controller then transfers any sector requests to the
operating system. Once blocks make it from the disk controller into main
memory, the operating system may cache the blocks there.

Some systems maintain a separate section of main memory for a
buffer cache, where blocks are kept under the assumption that they will be
used again shortly. Other systems cache file data using a page cache. The
page cache uses virtual memory techniques to cache file data as pages rather
than as file-system-oriented blocks. Caching file data using virtual addresses
is far more efficient than caching through physical disk blocks, as accesses
interface with virtual memory rather than the file system. Several systems —
including Solaris, Linux, and Windows — use page caching to cache both
process pages and file data. This is known as unified virtual memory.

Some versions of UNIX and Linux provide a unified buffer cache.
To illustrate the benefits of the unified buffer cache, consider the two
alternatives for opening and accessing a file. One approach is to use memory
mapping; the second is to use the standard system calls read() and write().
Without a unified buffer cache, we have a situation similar to Figure 4.27.
Here, the read() and write() system calls go through the buffer cache. The
memory-mapping call, however, requires using two caches — the page cache
and the buffer cache. A memory mapping proceeds by reading in disk blocks
from the file system and storing them in the buffer cache. Because the virtual
memory system does not interface with the buffer cache, the contents of the
file in the buffer cache must be copied into the page cache. This situation,
known as double caching, requires caching file-system data twice. Not only
does it waste memory but it also wastes significant CPU and I/O cycles due
to the extra data movement within system memory. In addition,
inconsistencies between the two caches can result in corrupt files. In contrast,
when a unified buffer cache is provided, both memory mapping and the
read() and write() system calls use the same page cache. This has the benefit
of avoiding double caching, and it allows the virtual memory system to
manage file-system data. The unified buffer cache is shown in Figure 4.28.

buffer cache

file system

memory-mapped
I/O

 I/O using
 read() and write(

)

page cache

Figure 4.27 I/O without a unified buffer cache.

Regardless of whether we are caching disk blocks or pages (or both),
LRU seems a reasonable general-purpose algorithm for block or page
replacement. However, the evolution of the Solaris page-caching algorithms
reveals the difficulty in choosing an algorithm. Solaris allows processes and
the page cache to share unused memory. Versions earlier than Solaris 2.5.1
made no distinction between allocating pages to a process and allocating them
to the page cache. As a result, a system performing many I/O operations used
most of the available memory for caching pages. Because of the high rates of
I/O, the page scanner (Section 9.10.2) reclaimed pages from processes —
rather than from the page cache — when free memory ran low. Solaris 2.6 and
Solaris 7 optionally implemented priority paging, in which the page scanner
gives priority to process pages over the page cache. Solaris 8 applied a fixed
limit to process pages and the file-system page cache, preventing either from
forcing the other out of memory. Solaris 9 and 10 again changed the
algorithms to maximize memory use and minimize thrashing.

Another issue that can affect the performance of I/O is whether writes
to the file system occur synchronously or asynchronously. Synchronous
writes occur in the order in which the disk subsystem receives them, and the
writes are not buffered. Thus, the calling routine must wait for the data to
reach the disk drive before it can proceed. In an asynchronous write, the data
are stored in the cache, and control returns to the caller. Most writes are
asynchronous. However, metadata writes, among others, can be synchronous.
Operating systems frequently include a flag in the open system call to allow a
process to request that writes be performed synchronously. For example,
databases use this feature for atomic transactions, to assure that data reach
stable storage in the required order.

Figure 4.28 I/O using a unified buffer cache.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or written
sequentially should not have its pages replaced in LRU order, because the most
recently used page will be used last, or perhaps never again. Instead, sequential
access can be optimized by techniques known as free-behind and read-ahead.
Free-behind removes a page from the buffer as soon as the next page is
requested. The previous pages are not likely to be used again and waste buffer
space. With read-ahead, a requested page and several subsequent pages are read
and cached. These pages are likely to be requested after the current page is
processed. Retrieving these data from the disk in one transfer and caching them
saves a considerable amount of time. One might think that a track cache on the
controller would eliminate the need for read-ahead on a multiprogrammed
system. However, because of the high latency and overhead involved in making
many small transfers from the track cache to main memory, performing a read-
ahead remains beneficial.

The page cache, the file system, and the disk drivers have some
interesting interactions. When data are written to a disk file, the pages are
buffered in the cache, and the disk driver sorts its output queue according to disk
address. These two actions allow the disk driver to minimize disk-head seeks
and to write data at times optimized for disk rotation. Unless synchronous writes
are required, a process writing to disk simply writes into the cache, and the
system asynchronously writes the data to disk when convenient. The user
process sees very fast writes. When data are read from a disk file, the block I/O
system does some read-ahead; however, writes are much more nearly
asynchronous than are reads. Thus, output to the disk through the file system is
often faster than is input for large transfers, counter to intuition.

I/O using
memory-mapped I/O

read() and write()

buffer cache

file system

Mass -Storage Structure
 Overview of Mass-Storage Structure

In this section, we present a general overview of the physical structure of
secondary and tertiary storage devices.

 Magnetic Disks
Magnetic disks provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 4.29). Each disk
platter has a flat circular shape, like a CD. Common platter diameters range
from 1.8 to 3.5 inches. The two surfaces of a platter are covered with a magnetic
material. We store information by recording it magnetically on the platters.

track t spindle

arm assembly
sector s

cylinder c

read-
write

 head

platter

rotation

arm

Figure 4.29 Moving-head disk mechanism.

A read – write head ―flies‖ just above each surface of every platter. The heads are
attached to a disk arm that moves all the heads as a unit. The surface of a platter
is logically divided into circular tracks, which are subdivided into sectors. The
set of tracks that are at one arm position makes up a cylinder. There may be
thousands of concentric cylinders in a disk drive, and each track may contain
hundreds of sectors. The storage capacity of common disk drives is measured in
gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 250 times per second, specified in terms of rotations per minute
(RPM). Common drives spin at 5,400, 7,200, 10,000, and 15,000 RPM. Disk
speed has two parts. The transfer rate is the rate at which data flow between the

drive and the computer. The positioning time, or random-access time, consists
of two

parts: the time necessary to move the disk arm to the desired cylinder,
called the seek time, and the time necessary for the desired sector to rotate to the
disk head, called the rotational latency. Typical disks can transfer several
megabytes of data per second, and they have seek times and rotational latencies of
several milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surface. Although the disk platters are coated with a thin protective layer, the head
will sometimes damage the magnetic surface. This accident is called a head
crash. A head crash normally cannot be repaired; the entire disk must be replaced.

A disk can be removable, allowing different disks to be mounted as
needed. Removable magnetic disks generally consist of one platter, held in a

plastic case to prevent damage while not in the disk drive. Other forms of
removable disks include CDs, DVDs, and Blu-ray discs as well as removable
flash-memory devices known as flash drives (which are a type of solid-state
drive).

A disk drive is attached to a computer by a set of wires called an I/O bus.
Several kinds of buses are available, including advanced technology attachment
(ATA), serial ATA (SATA), eSATA, universal serial bus (USB), and fibre
channel (FC). The data transfers on a bus are carried out by special electronic
processors called controllers. The host controller is the controller at the
computer end of the bus. A disk controller is built into each disk drive. To
perform a disk I/O operation, the computer places a command into the host
controller, typically using memory-mapped I/O ports, as described in Section
9.7.3. The host controller then sends the command via messages to the disk
controller, and the disk controller operates the disk-drive hardware to carry out the
command. Disk controllers usually have a built-in cache. Data transfer at the disk
drive happens between the cache and the disk surface, and data transfer to the
host, at fast electronic speeds, occurs between the cache and the host controller.

 Solid-State Disks

Sometimes old technologies are used in new ways as economics change or
the technologies evolve. An example is the growing importance of solid-state
disks, or SSDs. Simply described, an SSD is nonvolatile memory that is used like
a hard drive. There are many variations of this technology, from DRAM with a
battery to allow it to maintain its state in a power failure through flash-memory
technologies like single-level cell (SLC) and multilevel cell (MLC) chips.

SSDs have the same characteristics as traditional hard disks but can be
more reliable because they have no moving parts and faster because they have no
seek time or latency. In addition, they consume less power. However, they are
more expensive per megabyte than traditional hard disks, have less capacity than
the larger hard disks, and may have shorter life spans than hard disks, so their uses
are somewhat limited. One use for SSDs is in storage arrays, where they hold file-
system metadata that require high performance. SSDs are also used in some laptop
computers to make them smaller, faster, and more energy-efficient.

Because SSDs can be much faster than magnetic disk drives, standard bus
interfaces can cause a major limit on throughput. Some SSDs are designed to
connect directly to the system bus (PCI, for example). SSDs are changing other
traditional aspects of computer design as well. Some systems use them as a direct
replacement for disk drives, while others use them as a new cache tier, moving
data between magnetic disks, SSDs, and memory to optimize performance.
 Magnetic Tapes
Magnetic tape was used as an early secondary-storage medium. Although it is
relatively permanent and can hold large quantities of data, its access time is slow
compared with that of main memory and magnetic disk. In addition, random
access to magnetic tape is about a thousand times slower than random access to
magnetic disk, so tapes are not very useful for secondary storage.

Tapes are used mainly for backup, for storage of infrequently used
information, and as a medium for transferring information from one system to
another.

A tape is kept in a spool and is wound or rewound past a read – write
head. Moving to the correct spot on a tape can take minutes, but once positioned,
tape drives can write data at speeds comparable to disk drives. Tape capacities
vary greatly, depending on the particular kind of tape drive, with current
capacities exceeding several terabytes. Some tapes have built-in compression that
can more than double the effective storage. Tapes and their drivers are usually
categorized by width, including 4, 8, and 19 millimeters and 1/4 and 1/2 inch.
Some are named according to technology, such as LTO-5 and SDLT.

 Disk Structure

Modern magnetic disk drives are addressed as large one-dimensional
arrays of logical blocks, where the logical block is the smallest unit of transfer.
The size of a logical block is usually 512 bytes, although some disks can be low-
level formatted to have a different logical block size, such as 1,024 bytes. The
one-dimensional array of logical blocks is mapped onto the sectors of the disk
sequentially. Sector 0 is the first sector of the first track on the outermost cylinder.
The mapping proceeds in order through that track, then through the rest of the
tracks in that cylinder, and then through the rest of the cylinders from outermost to
innermost.

By using this mapping, we can — at least in theory — convert a logical
block number into an old-style disk address that consists of a cylinder number, a
track number within that cylinder, and a sector number within that track. In
practice, it is difficult to perform this translation, for two reasons. First, most disks
have some defective sectors, but the mapping hides this by substituting spare
sectors from elsewhere on the disk. Second, the number of sectors per track is not
a constant on some drives.

Let’s look more closely at the second reason. On media that use
constant linear velocity (CLV), the density of bits per track is uniform. The
farther a track is from the center of the disk, the greater its length, so the more
sectors it can hold. As we move from outer zones to inner zones, the number of

sectors per track decreases. Tracks in the outermost zone typically hold 40 percent
more sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the head moves from the outer to the inner tracks to keep the same rate of
data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant; in this case, the
density of bits decreases from inner tracks to outer tracks to keep the data rate
constant. This method is used in hard disks and is known as constant angular
velocity (CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large disks
have tens of thousands of cylinders.

 Disk Attachment

Computers access disk storage in two ways. One way is via I/O ports (or host-
attached storage); this is common on small systems. The other way is via a
remote host in a distributed file system; this is referred to as network-attached
storage.

 Host-Attached Storage

Host-attached storage is storage accessed through local I/O ports. These
ports use several technologies. The typical desktop PC uses an I/O bus

architecture called IDE or ATA. This architecture supports a maximum of two
drives per I/O bus. A newer, similar protocol that has simplified cabling is SATA.

High-end workstations and servers generally use more sophisticated I/O
architectures such as fibre channel (FC), a high-speed serial architecture that can

operate over optical fiber or over a four-conductor copper cable. It has two
variants. One is a large switched fabric having a 24-bit address space. This variant
is expected to dominate in the future and is the basis of storage-area networks

(SANs). Because of the large address space and the switched nature of the
communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in I/O communication. The other FC variant is an

arbitrated loop (FC-AL) that can address 126 devices (drives and controllers).
A wide variety of storage devices are suitable for use as host-attached

storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and tape
drives. The I/O commands that initiate data transfers to a host-attached storage
device are reads and writes of logical data blocks directed to specifically identified
storage units (such as bus ID or target logical unit).

 Network-Attached Storage
Network-attached storage (NAS) device is a special-purpose storage

system that is accessed remotely over a data network (Figure 4.30). Clients access
network-attached storage via a remote-procedure-call interface such as NFS for
UNIX systems or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network — usually the same local-
area network (LAN) that carries all data traffic to the clients. Thus, it may be

easiest to think of NAS as simply another storage-access protocol. The network-
attached storage unit is usually implemented as a RAID array with software that
implements the RPC interface.

NAS

NAS

client

LAN/ WAN

clie
nt

client

Figure 4.30 Network-attached storage.

Network-attached storage provides a convenient way for all the computers on a
LAN to share a pool of storage with the same ease of naming and access enjoyed
with local host-attached storage. However, it tends to be less efficient and have
lower performance than some direct-attached storage options.

iSCSI is the latest network-attached storage protocol. In essence, it uses the IP
network protocol to carry the SCSI protocol. Thus, networks — rather than SCSI
cables — can be used as the interconnects between hosts and their storage. As a
result, hosts can treat their storage as if it were directly attached, even if the
storage is distant from the host.

 Storage-Area Network

One drawback of network-attached storage systems is that the storage
I/O operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute in
large client – server installations — the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage
protocols rather than networking protocols) connecting servers and storage units,
as shown in Figure 4.31. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can be
dynamically allocated to hosts. A SAN switch allows or prohibits access between
the hosts and the storage. As one example, if a host is running low on disk space,
the SAN can be configured to allocate more storage to that host. SANs make it
possible for clusters of servers to share the same storage and for storage arrays to
include multiple direct host connections. SANs typically have more ports — as
well as more expensive ports — than storage arrays.

FC is the most common SAN interconnect, although the simplicity of
iSCSI is increasing its use. Another SAN interconnect is InfiniBand — a special-

purpose bus architecture that provides hardware and software support for high-
speed interconnection networks for servers and storage units.

 clien

t
 Server
 clien

t
storage LAN/ WAN
array Server

 clien
t

storage SAN
array data-processing

 Center

Tape web content
library Provider

Figure 4.31 Storage-area network.

 Disk Scheduling

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having fast
access time and large disk bandwidth. For magnetic disks, the access time has
two major components. The seek time is the time for the disk arm to move the
heads to the cylinder containing the desired sector. The rotational latency is the
additional time for the disk to rotate the desired sector to the disk head. The disk
bandwidth is the total number of bytes transferred, divided by the total time
between the first request for service and the completion of the last transfer. We
can improve both the access time and the bandwidth by managing the order in
which disk I/O requests are serviced.

Whenever a process needs I/O to or from the disk, it issues a system call
to the operating system. The request specifies several pieces of information:

Whether this operation is input or output
What the disk address for the transfer is
What the memory address for the transfer is
What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be serviced
immediately. If the drive or controller is busy, any new requests for service will
be placed in the queue of pending requests for that drive. For a
multiprogramming system with many processes, the disk queue may often have
several pending requests. Thus, when one request is completed, the operating
system chooses which pending request to service next. How does the operating

system make this choice? Any one of several disk-scheduling algorithms can be
used, and we discuss them next.
 FCFS Scheduling
The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for I/O to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,
Queue :98, 183, 37, 122, 14, 124, 65, 67

head starts at 53 in that order. If the disk head is initially at cylinder 53, it will
first move from 53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for
a total head movement of 640 cylinders. This schedule is diagrammed in Figure
10.4.

0 14 37 5365 67 98 122124 183 199

Figure 4.32 FCFS disk scheduling.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests for 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

 SSTF Scheduling

It seems reasonable to service all the requests close to the current head
position before moving the head far away to service other requests. This
assumption is the basis for the shortest-seek-time-first (SSTF) algorithm. The
SSTF algorithm selects the request with the least seek time from the current
head position. In other words, SSTF chooses the pending request closest to the
current head position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
one at 98, so 37 is served next. Continuing, we service the request at cylinder
14, then 98, 122, 124, and finally 183 (Figure 4.33). This scheduling method
results in a total head movement of only 236 cylinders — little more than one-
third of the distance needed for FCFS scheduling of this request queue. Clearly,
this algorithm gives a substantial improvement in performance.

*

1
SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;

and like SJF scheduling, it may cause starvation of some requests. Remember that
requests may arrive at any time. Suppose that we have two requests in the queue,
for cylinders 14 and 186, and while the request from 14 is being serviced, a new
request near 14 arrives. This new request will be serviced next, making the
request at 186 wait. While this request is being serviced, another request close to
14 could arrive. In theory, a continual stream of requests near one another could
cause the request for cylinder 186 to wait indefinitely.

queue98, 183, 37, 122, 14, 124, 65, 67
head starts at
53

53 12212
0 14 37 6567 98 4 183 199

Figure 4.33 SSTF disk scheduling.

This scenario becomes increasingly likely as the pending-request queue grows
longer.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the head
from 53 to 37, even though the latter is not closest, and then to 14, before turning
around to service 65, 67, 98, 122, 124, and 183. This strategy reduces the total
head movement to 208 cylinders.

 SCAN Scheduling
In the SCAN algorithm, the disk arm starts at one end of the disk and

moves toward the other end, servicing requests as it reaches each cylinder, until it
gets to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and forth
across the disk. The SCAN algorithm is sometimes called the elevator algorithm,
since the disk arm behaves just like an elevator in a building, first servicing all the
requests going up and then reversing to service requests the other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know
the direction of head movement in addition to the head’s current position.
Assuming that the disk arm is moving toward 0 and that the initial head position is

again 53, the head will next service 37 and then 14. At cylinder 0, the arm will
reverse and will move toward the other end of the disk, servicing the requests at
65, 67, 98, 122, 124, and 183 (Figure 4.34). If a request arrives in the queue just in
front of the head, it will be serviced almost immediately; a request arriving just
behind the head will have to wait until the arm moves to the end of the disk,
reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At this
point, relatively few requests are immediately in front of the head, since these
cylinders have recently been serviced. The heaviest density of requests is at the
other end of the disk. These requests have also waited the longest, so why not go
there first? That is the idea of the next algorithm.

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 53 65 67 98 122124 183 199

Figure 4.34 SCAN disk scheduling.

 C-SCAN Scheduling
Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of
the disk to the other, servicing requests along the way. When the head reaches the
other end, however, it immediately returns to the beginning of the disk without
servicing any requests on the return trip (Figure 4.35). The C-SCAN scheduling
algorithm essentially treats the cylinders as a circular list that wraps around from
the final cylinder to the first one.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 53 65 67 98 122124 183199

Figure 4.35 C-SCAN disk scheduling.
 LOOK Scheduling
As we described them, both SCAN and C-SCAN move the disk arm across the
full width of the disk. In practice, neither algorithm is often implemented this
way. More commonly, the arm goes only as far as the final request in each
direction. Then, it reverses direction immediately, without going all the way to
the end of the disk. Versions of SCAN and C-SCAN that follow this pattern are
called LOOK and C-LOOK scheduling, because they look for a request before
continuing to move in a given direction (Figure 4.36).
 Selection of a Disk-Scheduling Algorithm
Given so many disk-scheduling algorithms, how do we choose the best one?
SSTF is common and has a natural appeal because it increases performance over
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load
on the disk, because they are less likely to cause a starvation problem. For any
particular list of requests, we can define an optimal order of retrieval, but the
computation needed to find an optimal schedule may not justify the savings over
SSTF or SCAN. With any scheduling algorithm, however, performance depends
heavily on the number and types of requests. For instance, suppose that the
queue usually has just one outstanding request. Then, all scheduling algorithms
behave the same, because they have only one choice of where to move the disk
head: they all behave like FCFS scheduling.

Requests for disk service can be greatly influenced by the file-allocation
method. A program reading a contiguously allocated file will generate several
requests that are close together on the disk, resulting in limited head movement.
A linked or indexed file, in contrast, may include blocks that are widely
scattered on the disk, resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be used, and opening a file requires searching the
directory structure, the directories will be accessed frequently. Suppose that a
directory entry is on the first cylinder and a file’s data are on the final cylinder.
In this case, the disk head has to move the entire width of the disk. If the
directory entry were on the middle cylinder, the head would have to move only
one-half the width. Caching the directories and index blocks in main memory
can also help to reduce disk-arm movement, particularly for read requests.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 53 65 67 98 122124 183 199

Figure 4.36 C-LOOK disk scheduling.
Because of these complexities, the disk-scheduling algorithm should be written as
a separate module of the operating system, so that it can be replaced with a
different algorithm if necessary. Either SSTF or LOOK is a reasonable choice for
the default algorithm.

The scheduling algorithms described here consider only the seek distances.
For modern disks, the rotational latency can be nearly as large as the average seek
time. It is difficult for the operating system to schedule for improved rotational
latency, though, because modern disks do not disclose the physical location of
logical blocks. Disk manufacturers have been alleviating this problem by
implementing disk-scheduling algorithms in the controller hardware built into the
disk drive. If the operating system sends a batch of requests to the controller, the
controller can queue them and then schedule them to improve both the seek time
and the rotational latency.

If I/O performance were the only consideration, the operating system would
gladly turn over the responsibility of disk scheduling to the disk hard-ware. In
practice, however, the operating system may have other constraints on the service
order for requests. For instance, demand paging may take priority over application
I/O, and writes are more urgent than reads if the cache is running out of free
pages. Also, it may be desirable to guarantee the order of a set of disk writes to
make the file system robust in the face of system crashes. Consider what could
happen if the operating system allocated a disk page to a file and the application
wrote data into that page before the operating system had a chance to flush the file
system metadata back to disk. To accommodate such requirements, an operating
system may choose to do its own disk scheduling and to spoon-feed the requests
to the disk controller, one by one, for some types of I/O.

 Disk Management
The operating system is responsible for several other aspects of disk
management, too. Here we discuss disk initialization, booting from disk, and
bad-block recovery.

 Disk Formatting

A new magnetic disk is a blank slate: it is just a platter of a magnetic
recording material. Before a disk can store data, it must be divided into sectors
that the disk controller can read and write. This process is called low-level
formatting, or physical formatting. Low-level formatting fills the disk with a
special data structure for each sector. The data structure for a sector typically
consists of a header, a data area (usually 512 bytes in size), and a trailer. The
header and trailer contain information used by the disk controller, such as a
sector number and an error-correcting code (ECC). When the controller writes
a sector of data during normal I/O, the ECC is updated with a value calculated
from all the bytes in the data area. When the sector is read, the ECC is
recalculated and compared with the stored value. If the stored and calculated
numbers are different, this mismatch indicates that the data area of the sector
has become corrupted and that the disk sector may be bad (Section 10.5.3). The
ECC is an error-correcting code because it contains enough information, if only
a few bits of data have been corrupted, to enable the controller to identify which
bits have changed and calculate what their correct values should be. It then
reports a recoverable soft error. The controller automatically does the ECC
processing whenever a sector is read or written.

Most hard disks are low-level-formatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the disk
and to initialize the mapping from logical block numbers to defect-free sectors
on the disk. For many hard disks, when the disk controller is instructed to low-
level-format the disk, it can also be told how many bytes of data space to leave
between the header and trailer of all sectors. It is usually possible to choose
among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk with a
larger sector size means that fewer sectors can fit on each track; but it also
means that fewer headers and trailers are written on each track and more space
is available for user data. Some operating systems can handle only a sector size
of 512 bytes.

Before it can use a disk to hold files, the operating system still needs to
record its own data structures on the disk. It does so in two steps. The first step
is to partition the disk into one or more groups of cylinders. The operating
system can treat each partition as though it were a separate disk. For instance,
one partition can hold a copy of the operating system’s executable code, while
another holds user files. The second step is logical formatting, or creation of a
file system. In this step, the operating system stores the initial file-system data
structures onto the disk. These data structures may include maps of free and
allocated space and an initial empty directory.

To increase efficiency, most file systems group blocks together into
larger chunks, frequently called clusters. Disk I/O is done via blocks, but file
system I/O is done via clusters, effectively assuring that I/O has more
sequential-access and fewer random-access characteristics.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and I/O to this
array is termed raw I/O. For example, some database systems prefer raw I/O
because it enables them to control the exact disk location where each database
record is stored. Raw I/O bypasses all the file-system services, such as the
buffer cache, file locking, prefetching, space allocation, file names, and
directories. We can make certain applications more efficient by allowing them
to implement their own special-purpose storage services on a raw partition, but
most applications perform better when they use the regular file-system services.
 Boot Block

For a computer to start running — for instance, when it is powered up or
rebooted — it must have an initial program to run. This initial bootstrap
program tends to be simple. It initializes all aspects of the system, from CPU
registers to device controllers and the contents of main memory, and then starts
the operating system. To do its job, the bootstrap program finds the operating-
system kernel on disk, loads that kernel into memory, and jumps to an initial
address to begin the operating-system execution.

For most computers, the bootstrap is stored in read-only memory
(ROM). This location is convenient, because ROM needs no initialization and
is at a fixed location that the processor can start executing when powered up or
reset. And, since ROM is read only, it cannot be infected by a computer virus.
The problem is that changing this bootstrap code requires changing the ROM
hardware chips. For this reason, most systems store a tiny bootstrap loader
program in the boot ROM whose only job is to bring in a full bootstrap program
from disk. The full bootstrap program can be changed easily: a new version is
simply written onto the disk. The full bootstrap program is stored in the ―boot
blocks‖ at a fixed location on the disk. A disk that has a boot partition is called a
boot disk or system disk.

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point) and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM. It is able to load the entire operating system
from a non-fixed location on disk and to start the operating system running.
Even so, the full bootstrap code may be small.

Let’s consider as an example the boot process in Windows. First, note
that Windows allows a hard disk to be divided into partitions, and one partition
identified as the boot partition — contains the operating system and device
drivers. The Windows system places its boot code in the first sector on the hard
disk, which it terms the master boot record, or MBR. Booting begins by
running code that is resident in the system’s ROM memory. This code directs
the system to read the boot code from the MBR. In addition to containing boot

code, the MBR contains a table listing the partitions for the hard disk and a flag
indicating which partition the system is to be booted from, as illustrated in
Figure 10.9. Once the system identifies the boot partition, it reads the first sector
from that partition (which is called the boot sector) and continues with the
remainder of the boot process, which includes loading the various subsystems
and system services.
 Bad Blocks

Because disks have moving parts and small tolerances (recall that the
disk head flies just above the disk surface), they are prone to failure. Sometimes
the failure is complete; in this case, the disk needs to be replaced and its
contents restored from backup media to the new disk. More frequently, one or
more sectors become defective. Most disks even come from the factory with
bad blocks. Depending on the disk and controller in use, these blocks are
handled in a variety of ways.

On simple disks, such as some disks with IDE controllers, bad blocks are
handled manually. One strategy is to scan the disk to find bad blocks while the
disk is being formatted. Any bad blocks that are discovered are flagged as
unusable so that the file system does not allocate them. If blocks go bad during
normal operation, a special program (such as the Linux badblocks command)
must be run manually to search for the bad blocks and to lock them away. Data
that resided on the bad blocks usually are lost.

More sophisticated disks are smarter about bad-block recovery. The
controller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as sector sparing or forwarding.

 boot
 MBR code
partition
1

partition

 table
partition
2

boot
partition

partition
3

 partition

4

Figure 4.37 Booting from disk in Windows

A typical bad-sector transaction might be as follows:

The operating system tries to read logical block 87.
The controller calculates the ECC and finds that the sector is bad. It reports this
finding to the operating system.
The next time the system is rebooted, a special command is run to tell the
controller to replace the bad sector with a spare.
After that, whenever the system requests logical block 87, the request is translated
into the replacement sector’s address by the controller.

Note that such a redirection by the controller could invalidate any
optimization by the operating system’s disk-scheduling algorithm! For this reason,
most disks are formatted to provide a few spare sectors in each cylinder and a
spare cylinder as well. When a bad block is remapped, the controller uses a spare
sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that logical
block 17 becomes defective and the first available spare follows sector 202. Sector
slipping then remaps all the sectors from 17 to 202, moving them all down one
spot. That is, sector 202 is copied into the spare, then sector 201 into 202, then
200 into 201, and so on, until sector 18 is copied into sector 19. Slipping the
sectors in this way frees up the space of sector 18 so that sector 17 can be mapped
to it.

The replacement of a bad block generally is not totally automatic, because
the data in the bad block are usually lost. Soft errors may trigger a process in
which a copy of the block data is made and the block is spared or slipped. An
unrecoverable hard error, however, results in lost data. Whatever file was using
that block must be repaired (for instance, by restoration from a backup tape), and
that requires manual intervention.
 Swap-Space Management

Swapping is moving entire processes between disk and main memory.
Swapping in that setting occurs when the amount of physical memory reaches a
critically low point and processes are moved from memory to swap space to free
available memory. In practice, very few modern operating systems implement
swapping in this fashion. Rather, systems now combine swapping with virtual
memory techniques and swap pages, not necessarily entire processes. In fact,
some systems now use the terms ―swapping‖ and ―paging‖ interchangeably,
reflecting the merging of these two concepts.

Swap-space management is another low-level task of the operating
system. Virtual memory uses disk space as an extension of main memory. Since
disk access is much slower than memory access, using swap space significantly
decreases system performance. The main goal for the design and implementation
of swap space is to provide the best throughput for the virtual memory system. In
this section, we discuss how swap space is used, where swap space is located on
disk, and how swap space is managed.

 Swap-Space Use
Swap space is used in various ways by different operating systems,

depending on the memory-management algorithms in use. For instance, systems
that implement swapping may use swap space to hold an entire process image,
including the code and data segments. Paging systems may simply store pages
that have been pushed out of main memory. The amount of swap space needed
on a system can therefore vary from a few megabytes of disk space to gigabytes,
depending on the amount of physical memory, the amount of virtual memory it
is backing, and the way in which the virtual memory is used.

Note that it may be safer to overestimate than to underestimate the amount
of swap space required, because if a system runs out of swap space it may be
forced to abort processes or may crash entirely. Overestimation wastes disk
space that could otherwise be used for files, but it does no other harm. Some
systems recommend the amount to be set aside for swap space. Solaris, for
example, suggests setting swap space equal to the amount by which virtual
memory exceeds pageable physical memory. In the past, Linux has suggested
setting swap space to double the amount of physical memory. Today, that
limitation is gone, and most Linux systems use considerably less swap space.

Some operating systems — including Linux — allow the use of multiple
swap spaces, including both files and dedicated swap partitions. These swap
spaces are usually placed on separate disks so that the load placed on the I/O
system by paging and swapping can be spread over the system’s I/O bandwidth.
 Swap-Space Location
A swap space can reside in one of two places: it can be carved out of the normal
file system, or it can be in a separate disk partition. If the swap space is simply a
large file within the file system, normal file-system routines can be used to
create it, name it, and allocate its space. This approach, though easy to
implement, is inefficient. Navigating the directory structure and the disk-
allocation data structures takes time and (possibly) extra disk accesses. External
fragmentation can greatly increase swapping times by forcing multiple seeks
during reading or writing of a process image. We can improve performance by
caching the block location information in physical memory and by using special
tools to allocate physically contiguous blocks for the swap file, but the cost of
traversing the file-system data structures remains.

Alternatively, swap space can be created in a separate raw partition. No
file system or directory structure is placed in this space. Rather, a separate swap-
space storage manager is used to allocate and deallocate the blocks from the raw
partition. This manager uses algorithms optimized for speed rather than for
storage efficiency, because swap space is accessed much more frequently than
file systems (when it is used). Internal fragmentation may increase, but this
trade-off is acceptable because the life of data in the swap space generally is
much shorter than that of files in the file system. Since swap space is
reinitialized at boot time, any fragmentation is short-lived. The raw-partition
approach creates a fixed amount of swap space during disk partitioning. Adding
more swap space requires either repartitioning the disk (which involves moving

the other file-system partitions or destroying them and restoring them from
backup) or adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Linux is an example: the policy and implementation
are separate, allowing the machine’s administrator to decide which type of
swapping to use. The trade-off is between the convenience of allocation and
management in the file system and the performance of swapping in raw
partitions.
 Swap-Space Management: An Example
We can illustrate how swap space is used by following the evolution of
swapping and paging in various UNIX systems. The traditional UNIX kernel
started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX later evolved to a
combination of swapping and paging as paging hardware became available.

In Solaris 1 (SunOS), the designers changed standard UNIX methods to
improve efficiency and reflect technological developments. When a process
executes, text-segment pages containing code are brought in from the file
system, accessed in main memory, and thrown away if selected for pageout. It is
more efficient to reread a page from the file system than to write it to swap
space and then reread it from there. Swap space is only used as a backing store
for pages of anonymous memory, which includes memory allocated for the
stack, heap, and uninitialized data of a process.

page
slot

swap partition
or swap file

swap area

swap
map

1

0

3

0

1

Figure 4.38 The data structures for swapping on Linux systems.

More changes were made in later versions of Solaris. The biggest change is that
Solaris now allocates swap space only when a page is forced out of physical
memory, rather than when the virtual memory page is first created. This scheme
gives better performance on modern computers, which have more physical
memory than older systems and tend to page less.

Linux is similar to Solaris in that swap space is used only for anonymous
memory — that is, memory not backed by any file. Linux allows one or more
swap areas to be established. A swap area may be in either a swap file on a regular
file system or a dedicated swap partition. Each swap area consists of a series of 4-
KB page slots, which are used to hold swapped pages. Associated with each swap
area is a swap map — an array of integer counters, each corresponding to a page
slot in the swap area. If the value of a counter is 0, the corresponding page slot is
available. Values greater than 0 indicate that the page slot is occupied by a
swapped page. The value of the counter indicates the number of mappings to the
swapped page. For example, a value of 3 indicates that the swapped page is
mapped to three different processes (which can occur if the swapped page is
storing a region of memory shared by three processes). The data structures for
swapping on Linux systems are shown in Figure 4.38.

UNIT 5
Protection and Security

Protection mechanisms control access to a system by limiting the types of file
access permitted to users. In addition, protection must ensure that only processes
that have gained proper authorization from the operating system can operate on
memory segments, the CPU, and other resources.

Protection is provided by a mechanism that controls the access of
programs, processes, or users to the resources defined by a computer system.
This mechanism must provide a means for specifying the controls to be
imposed, together with a means of enforcing them.

Security ensures the authentication of system users to protect the
integrity of the information stored in the system (both data and code), as well as
the physical resources of the computer system. The security system prevents
unauthorized access, malicious destruction or alteration of data, and accidental
introduction of inconsistency.

Protection

The processes in an operating system must be protected from one another‘s
activities. To provide such protection, we can use various mechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, and other resources of
a system.

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specifying the controls to be imposed,
together with a means of enforcement. We distinguish between protection and
security, which is a measure of confidence that the integrity of a system and its
data will be preserved. In this chapter, we focus on protection.
 Goals of Protection

As computer systems have become more sophisticated and
pervasive in their applications, the need to protect their integrity has also grown.
Protection was originally conceived as an adjunct to multiprogramming
operating systems, so that untrustworthy users might safely share a common
logical name space, such as a directory of files, or share a common physical
name space, such as memory. Modern protection concepts have evolved to
increase the reliability of any complex system that makes use of shared
resources.

We need to provide protection for several reasons. The most obvious is
the need to prevent the mischievous, intentional violation of an access restriction
by a user. Of more general importance, however, is the need to ensure that each
program component active in a system uses system resources only in ways
consistent with stated policies. This requirement is an absolute one for a reliable
system.

Protection can improve reliability by detecting latent errors at the
interfaces between component subsystems. Early detection of interface errors
can often prevent contamination of a healthy subsystem by a malfunctioning
subsystem. Also, an unprotected resource cannot defend against use (or misuse)
by an unauthorized or incompetent user. A protection-oriented system provides
means to distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism
for the enforcement of the policies governing resource use. These policies can
be established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by the individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of policies.

Policies for resource use may vary by application, and they may change
over time. For these reasons, protection is no longer the concern solely of the
designer of an operating system. The application programmer needs to use
protection mechanisms as well, to guard resources created and supported by an
application subsystem against misuse. In this chapter, we describe the protection

mechanisms the operating system should provide, but application designers can
use them as well in designing their own protection software.

Note that mechanisms are distinct from policies. Mechanisms determine
how something will be done; policies decide what will be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from place to place or time to time. In the worst case, every change in
policy would require a change in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

 Principles of Protection

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Following this principle simplifies design
decisions and keeps the system consistent and easy to understand. A key, time-
tested guiding principle for protection is the principle of least privilege. It
dictates that programs, users, and even systems be given just enough privileges
to perform their tasks.

Consider the analogy of a security guard with a passkey. If this key
allows the guard into just the public areas that she guards, then misuse of the
key will result in minimal damage. If, however, the passkey allows access to all
areas, then damage from its being lost, stolen, misused, copied, or otherwise
compromised will be much greater.

An operating system following the principle of least privilege
implements its features, programs, system calls, and data structures so that
failure or compromise of a component does the minimum damage and allows
the minimum damage to be done. The overflow of a buffer in a system daemon
might cause the daemon process to fail, for example, but should not allow the
execution of code from the daemon process‘s stack that would enable a remote
user to gain maximum privileges and access to the entire system (as happens too
often today).

Such an operating system also provides system calls and services that
allow applications to be written with fine-grained access controls. It provides
mechanisms to enable privileges when they are needed and to disable them
when they are not needed. Also beneficial is the creation of audit trails for all
privileged function access. The audit trail allows the programmer, system
administrator, or law-enforcement officer to trace all protection and security
activities on the system.

Managing users with the principle of least privilege entails creating a
separate account for each user, with just the privileges that the user needs. An
operator who needs to mount tapes and back up files on the system has access to
just those commands and files needed to accomplish the job. Some systems
implement role-based access control (RBAC) to provide this functionality.

Computers implemented in a computing facility under the principle of
least privilege can be limited to running specific services, accessing specific
remote hosts via specific services, and doing so during specific times. Typically,

these restrictions are implemented through enabling or disabling each service
and through using access control lists.

The principle of least privilege can help produce a more secure
computing environment. Unfortunately, it frequently does not. For example,
Windows 2000 has a complex protection scheme at its core and yet has many
security holes. By comparison, Solaris is considered relatively secure, even
though it is a variant of UNIX, which historically was designed with little
protection in mind. One reason for the difference may be that Windows 2000
has more lines of code and more services than Solaris and thus has more to
secure and protect. Another reason could be that the protection scheme in
Windows 2000 is incomplete or protects the wrong aspects of the operating
system, leaving other areas vulnerable.
 Domain of Protection

A computer system is a collection of processes and objects. By objects,
we mean both hardware objects (such as the CPU, memory segments, printers,
disks, and tape drives) and software objects (such as files, programs, and
semaphores). Each object has a unique name that differentiates it from all other
objects in the system, and each can be accessed only through well-defined and
meaningful operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,
on a CPU, we can only execute. Memory segments can be read and written,
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read,
written, and rewound. Data files can be created, opened, read, written, closed,
and deleted; program files can be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it
has authorization. Furthermore, at any time, a process should be able to access
only those resources that it currently requires to complete its task. This second
requirement, commonly referred to as the need-to-know principle, is useful in
limiting the amount of damage a faulty process can cause in the system.

For example, when process p invokes procedure A(), the procedure
should be allowed to access only its own variables and the formal parameters
passed to it; it should not be able to access all the variables of process p.
Similarly, consider the case in which process p invokes a compiler to compile a
particular file. The compiler should not be able to access files arbitrarily but
should have access only to a well-defined subset of files (such as the source file,
listing file, and so on) related to the file to be compiled. Conversely, the
compiler may have private files used for accounting or optimization purposes
that process p should not be able to access. The need-to-know principle is
similar to the principle of least privilege discussed in Section 14.2 in that the
goals of protection are to minimize the risks of possible security violations.

 Domain Structure

To facilitate the scheme just described, a process operates within a
protection domain, which specifies the resources that the process may access.
Each domain defines a set of objects and the types of operations that may be
invoked on each object. The ability to execute an operation on an object is an
access right. A domain is a collection of access rights, each of which is an
ordered pair <object-name, rights-set>. For example, if domain D has the
access right <file F, {read,write}>, then a process executing in domain D can
both read and write file F. It cannot, however, perform any other operation on
that object.

Domains may share access rights. For example, in Figure 5.10, we
have three domains: D1, D2, and D3. The access right <O4, {print}> is shared
by D2 and D3, implying that a process executing in either of these two domains
can print object O4. Note that a process must be executing in domain D1 to
read and write object O1, while only processes in domain D3 may execute
object O1.

The association between a process and a domain may be either static,
if the set of resources available to the process is fixed throughout the process‘s
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want
to adhere to the need-to-know principle, then a mechanism must be available
to change the content of a domain. The reason stems from the fact that a
process may execute in two different phases and may, for example, need read
access in one phase and write access in another. If a domain is static, we must
define the domain to include both read and write access. However, this
arrangement provides more rights than are needed in each of the two phases,
since we have read access in the phase where we need only write access, and
vice versa.

D1 D2 D3

O3, {read, write}
 O1,

{execute} O4,
{print} O1, {read, write} O2, {write}

 O3, {read}
O2, {execute}

Figure 5.10 System with three protection domains.

Thus, the need-to-know principle is violated. We must allow the contents of a
domain to be modified so that the domain always reflects the minimum
necessary access rights.

If the association is dynamic, a mechanism is available to allow
domain switching, enabling the process to switch from one domain to another.
We may also want to allow the content of a domain to be changed. If we cannot
change the content of a domain, we can provide the same effect by creating a
new domain with the changed content and switching to that new domain when
we want to change the domain content.

A domain can be realized in a variety of ways:
Each user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed — generally when one user logs out and
another user logs in.
Each process may be a domain. In this case, the set of objects that can
be accessed depends on the identity of the process. Domain switching
occurs when one process sends a message to another process and then
waits for a response.
Each procedure may be a domain. In this case, the set of objects that
can be accessed corresponds to the local variables defined within the
procedure. Domain switching occurs when a procedure call is made.

Consider the standard dual-mode (monitor – user mode) model of
operating-system execution. When a process executes in monitor mode, it can
execute privileged instructions and thus gain complete control of the computer
system. In contrast, when a process executes in user mode, it can invoke only
nonprivileged instructions. Consequently, it can execute only within its
predefined memory space. These two modes protect the operating system
(executing in monitor domain) from the user processes (executing in user
domain). In a multiprogrammed operating system, two protection domains are
insufficient, since users also want to be protected from one another. Therefore, a
more elaborate scheme is needed. We illustrate such a scheme by examining two
influential operating systems — UNIX and MULTICS — to see how they
implement these concepts.
 An Example: UNIX

In the UNIX operating system, a domain is associated with the user.
Switching the domain corresponds to changing the user identification
temporarily. This change is accomplished through the file system as follows. An
owner identification and a domain bit (known as the setuid bit) are associated
with each file. When the setuid bit is on, and a user executes that file, the userID
is set to that of the owner of the file. When the bit is off, however, the userID
does not change. For example, when a user A (that is, a user with userID = A)
starts executing a file owned by B, whose associated domain bit is off, the
userID of the process is set to A. When the setuid bit is on, the userID is set to
that of the owner of the file: B. When the process exits, this temporary userID
change ends. that of the owner of the file: B. When the process exits, this
temporary userID change ends.

Other methods are used to change domains in operating systems in
which userIDs are used for domain definition, because almost all systems need
to provide such a mechanism. This mechanism is used when an otherwise
privileged facility needs to be made available to the general user population.
For instance, it might be desirable to allow users to access a network without
letting them write their own networking programs. In such a case, on a UNIX
system, the setuid bit on a networking program would be set, causing the
userID to change when the program was run. The userID would change to that
of a user with network access privilege (such as root, the most powerful
userID). One problem with this method is that if a user manages to create a file
with userID root and with its setuid bit on, that user can become root and do
anything and everything on the system.

An alternative to this method used in some other operating systems is
to place privileged programs in a special directory. The operating system is
designed to change the userID of any program run from this directory, either to
the equivalent of root or to the userID of the owner of the directory. This
eliminates one security problem, which occurs when intruders create programs
to manipulate the setuid feature and hide the programs in the system for later
use (using obscure file or directory names). This method is less flexible than
that used in UNIX, however.

Even more restrictive, and thus more protective, are systems that
simply do not allow a change of userID. In these instances, special techniques
must be used to allow users access to privileged facilities. For instance, a
daemon process may be started at boot time and run as a special userID.
Users then run a separate program, which sends requests to this process
whenever they need to use the facility. This method is used by the TOPS-20
operating system.

In any of these systems, great care must be taken in writing privileged
programs. Any oversight can result in a total lack of protection on the system.
Generally, these programs are the first to be attacked by people trying to break
into a system. Unfortunately, the attackers are frequently successful. For
example, security has been breached on many UNIX systems because of the
setuid feature.
 An Example: MULTICS
In the MULTICS system, the protection domains are organized hierarchically
into a ring structure. Each ring corresponds to a single domain (Figure 5.11).
The rings are numbered from 0 to 7. Let Di and Dj be any two domain rings. If
j < i, then Di is a subset of Dj . That is, a process executing in domain Dj has
more privileges than does a process executing in domain Di . A process
executing in domain D0 has the most privileges. If only two rings exist, this
scheme is equivalent to the monitor – user mode of execution, where monitor
mode corresponds to D0 and user mode corresponds to D1.

MULTICS has a segmented address space; each segment is a file, and
each segment is associated with one of the rings. A segment description
includes an entry that identifies the ring number. In addition, it includes three

access bits to control reading, writing, and execution. The association between
segments and rings is a policy decision with which we are not concerned here.
current-ring-number counter is associated with each process, iden-tifying the
ring in which the process is executing currently. When a process is executing
in ring i, it cannot access a segment associated with ring j (j < i). It can access
a segment associated with ring k (k ≥ i). The type of access, however, is
restricted according to the access bits associated with that segment.

Domain switching in MULTICS occurs when a process crosses from
one ring to another by calling a procedure in a different ring. Obviously, this
switch must be done in a controlled manner; otherwise, a process could start
executing in ring 0, and no protection would be provided. To allow controlled
domain switching, we modify the ring field of the segment descriptor to
include the following:

Access bracket. A pair of integers, b1 and b2, such that b1 ≤ b2.
Limit. An integer b3 such that b3 > b2.
List of gates. Identifies the entry points (or gates) at which the segments
may be called.

If a process executing in ring i calls a procedure (or segment) with
access bracket (b1,b2), then the call is allowed if b1 ≤ i ≤ b2, and the current
ring number of the process remains i. Otherwise, a trap to the operating system
occurs, and the situation is handled as follows:

i < b1, then the call is allowed to occur, because we have a transfer to a ring
(or domain) with fewer privileges. However, if parameters are passed that
refer to segments in a lower ring (that is, segments not accessible to the
called procedure), then these segments must be copied into an area that can
be accessed by the called procedure.
If i > b2, then the call is allowed to occur only if b3 is greater than or equal
to i and the call has been directed to one of the designated entry points in
the list of gates. This scheme allows processes with limited access rights to
call procedures in lower rings that have more access rights, but only in a
carefully controlled manner.

The main disadvantage of the ring (or hierarchical) structure is that

it does not allow us to enforce the need-to-know principle. In particular, if an
object must be accessible in domain Dj but not accessible in domain Di , then
we must have j < i. But this requirement means that every segment accessible
in Di is also accessible in Dj .

Figure 5.11 MULTICS ring structure.

The MULTICS protection system is generally more complex and less
efficient than are those used in current operating systems. If protection
interferes with the ease of use of the system or significantly decreases system
performance, then its use must be weighed carefully against the purpose of the
system. For instance, we would want to have a complex protection system on a
computer used by a university to process students‘ grades and also used by
students for classwork. A similar protection system would not be suited to a
computer being used for number crunching, in which performance is of utmost
importance. We would prefer to separate the mechanism from the protection
policy, allowing the same system to have complex or simple protection
depending on the needs of its users. To separate mechanism from policy, we
require a more general model of protection.

 Access Matrix

Our general model of protection can be viewed abstractly as a matrix, called
an access matrix. The rows of the access matrix represent domains, and the
columns represent objects. Each entry in the matrix consists of a set of access
rights. Because the column defines objects explicitly, we can omit the object
name from the access right. The entry access(i,j) defines the set of operations
that a process executing in domain Di can invoke on object Oj .

To illustrate these concepts, we consider the access matrix shown in
Figure 5.12. There are four domains and four objects — three files (F1, F2, F3)
and one laser printer. A process executing in domain D1 can read files F1 and
F 3. A process executing in domain D4 has the same privileges as one
executing in domain D1; but in addition, it can also write onto files F1 and F3.
The laser printer can be accessed only by a process executing in domain D2.

The access-matrix scheme provides us with the mechanism for
specifying a variety of policies. The mechanism consists of implementing the
access matrix and ensuring that the semantic properties we have outlined hold.
More specifically, we must ensure that a process executing in domain Di can
access only those objects specified in row i, and then only as allowed by the
access-matrix entries.

ring 0

ring 1

• • • ring N – 1

The access matrix can implement policy decisions concerning
protection. The policy decisions involve which rights should be included in the
(i, j)th entry. We must also decide the domain in which each process executes.
This last policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries.
When a user creates a new object Oj , the column Oj is added to the access
matrix with the appropriate initialization entries, as dictated by the creator. The
user may decide to enter some rights in some entries in column j and other
rights in other entries, as needed.

object

domain

F1

F2

F3

Printer

D1 read read

D2 Print

D3 Read execute

 read read
D4 write write

Figure 5.12 Access matrix.

The access matrix provides an appropriate mechanism for defining
and implementing strict control for both static and dynamic association
between processes and domains. When we switch a process from one domain
to another, we are executing an operation (switch) on an object (the domain).
We can control domain switching by including domains among the objects of
the access matrix. Similarly, when we change the content of the access matrix,
we are performing an operation on an object: the access matrix. Again, we can
control these changes by including the access matrix itself as an object.
Actually, since each entry in the access matrix can be modified individually,
we must consider each entry in the access matrix as an object to be protected.
Now, we need to consider only the operations possible on these new objects
(domains and the access matrix) and decide how we want processes to be able
to execute these operations.

Processes should be able to switch from one domain to another.
Switching from domain Di to domain Dj is allowed if and only if the access
right switch ∈ access(i, j). Thus, in Figure 5.13, a process executing in domain
D2 can switch to domain D3 or to domain D4. A process in domain D4 can
switch to D1, and one in domain D1 can switch to D2.

Allowing controlled change in the contents of the access-matrix
entries requires three additional operations: copy, owner, and control. We
examine these operations next.

The ability to copy an access right from one domain (or row) of the
access matrix to another is denoted by an asterisk (*) appended to the access
right. The copy right allows the access right to be copied only within the
column (that is, for the object) for which the right is defined. For example, in
Figure 5.14(a), a process executing in domain D2 can copy the read operation
into any entry associated with file F2. Hence, the access matrix of Figure
5.14(a) can be modified to the access matrix shown in Figure 5.14(b).

This scheme has two additional variants:
A right is copied from access(i, j) to access(k, j); it is then removed from
access(i, j). This action is a of a right, rather than a copy.

Propagation of the copy right may be limited. That is, when the right R∗ is
copied from access(i, j) to access(k, j), only the right R (not R∗) is created. A
process executing in domain Dk cannot further copy the right R.

A system may select only one of these three copy rights, or it may
provide all three by identifying them as separate rights: copy, transfer, and
limited copy.

We also need a mechanism to allow addition of new rights and
removal of some rights. The owner right controls these operations. If access(i,
j) includes the owner right, then a process executing in domain Di can add and
remove any right in any entry in column j. For example, in Figure 5.16(a),
domain D1 is the owner of F1 and thus can add and delete any valid right in
column F1. Similarly, domain D2 is the owner of F2 and F3 and thus can add
and remove any valid right within these two columns. Thus, the access matrix
of Figure 5.16(a) can be modified to the access matrix shown in Figure
5.16(b).

The copy and owner rights allow a process to change the entries in a
column. A mechanism is also needed to change the entries in a row. The
control right is applicable only to domain objects. If access(i, j) includes the
control right, then a process executing in domain Di can remove any access
right from row j. For example, suppose that, in Figure 5.14, we include the
control right in access(D2, D4). Then, a process executing in domain D2 could
modify domain D4, as shown in Figure 5.17

object

F1

domain

F2 F3

Laser
Printe
r

D1

D2 D3 D4

D1 read read switch

D2 Print switchswitch

D3 read execute

 read read
D4 switch

 write write

Figure 5.14 Access matrix of Figure 5.13 with domains as objects.

object
domai F1 F2 F3
n

D
1

execute

write*

D2 execute read* Execute
D
3

execute

(a)

object
domai
n

F1 F2 F3

D
1

execute

write*

D
2

execute

read*

Execute

D
3

execute

read

(b)

Figure 5.16 Access matrix with copy rights.

Object
domai
n

F1 F2 F3

D
1

owner
 write

 execute
 read*

D
2

 read* Owne
r

 owner
 write

D
3

execute

 (a)

Object
domai
n

F1 F2 F3

D
1

owner
 write

 execute
 owner read*

D2
read*

Owne
r

 write* write
D
3

write

write

 (b)

Figure 5.17 Access matrix with owner rights.
The copy and owner rights provide us with a mechanism to limit the propagation
of access rights. However, they do not give us the appropriate tools for
preventing the propagation (or disclosure) of information. The problem of
guaranteeing that no information initially held in an object can migrate outside
of its execution environment is called the confinement problem. This problem
is in general unsolvable.

These operations on the domains and the access matrix are not in them-
selves important, but they illustrate the ability of the access-matrix model to
allow us to implement and control dynamic protection requirements. New
objects and new domains can be created dynamically and included in the access-
matrix model. However, we have shown only that the basic mechanism exists.
System designers and users must make the policy decisions concerning which
domains are to have access to which objects in which ways.

Obje
ct

domain

F1

F2 F3

laser
printe
r

D1

D2

D3 D4

D1

D2

D3

D4

read

write

read

Execut
reade

write

print

switc
h

switc
h

switc
switc h
h contr

ol

Figure 5.17Modified access matrix of Figure 514.

 Implementation of the Access Matrix

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparse matrices, they are not
particularly useful for this application, because of the way in which the
protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.
 Global Table

The simplest implementation of the access matrix is a global table
consisting of a set of ordered triples <domain, object, rights-set>. Whenever
an operation M is executed on an object Oj within domain Di , the global table
is searched for a triple < Di , Oj , Rk >, with M ∈ Rk . If this triple is found, the
operation is allowed to continue; otherwise, an exception (or error) condition
is raised.

This implementation suffers from several drawbacks. The table is
usually large and thus cannot be kept in main memory, so additional I/O is
needed. Virtual memory techniques are often used for managing this table. In
addition, it is difficult to take advantage of special groupings of objects or
domains. For example, if everyone can read a particular object, this object
must have a separate entry in every domain.

 Access Lists for Objects
Each column in the access matrix can be implemented as an access

list for one object, as described in Section 11.6.2. Obviously, the empty entries
can be discarded. The resulting list for each object consists of ordered pairs
<domain, rights-set>, which define all domains with a nonempty set of access
rights for that object.

This approach can be extended easily to define a list plus a default set
of access rights. When an operation M on an object Oj is attempted in domain
Di , we search the access list for object Oj , looking for an entry < Di , Rk >
with M ∈ Rk . If the entry is found, we allow the operation; if it is not, we
check the default set. If M is in the default set, we allow the access. Otherwise,
access is denied, and an exception condition occurs. For efficiency, we may
check the default set first and then search the access list.
 Capability Lists for Domains

Rather than associating the columns of the access matrix with the
objects as access lists, we can associate each row with its domain. A
capability list for a domain is a list of objects together with the operations
allowed on those objects. An object is often represented by its physical name
or address, called a capability. To execute operation M on object Oj , the
process executes the operation M, specifying the capability (or pointer) for
object Oj as a parameter. Simple possession of the capability means that
access is allowed. The capability list is associated with a domain, but it is
never directly accessible to a process executing in that domain. Rather, the
capability list is itself a protected object, maintained by the operating system
and accessed by the user only indirectly. Capability-based protection relies on
the fact that the capabilities are never allowed to migrate into any address
space directly accessible by a user process (where they could be modified). If
all capabilities are secure, the object they protect is also secure against
unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to
meet the need for resource protection that was foreseen as multiprogrammed
computer systems came of age. The idea of an inherently protected pointer
provides a foundation for protection that can be extended up to the application
level.

To provide inherent protection, we must distinguish capabilities from
other kinds of objects, and they must be interpreted by an abstract machine on
which higher-level programs run. Capabilities are usually distinguished from
other data in one of two ways:

Each object has a tag to denote whether it is a capability or accessible
data. The tags themselves must not be directly accessible by an application
program. Hardware or firmware support may be used to enforce this
restriction. Although only one bit is necessary to distinguish between
capabilities and other objects, more bits are often used. This extension allows
all objects to be tagged with their types by the hardware. Thus, the hardware
can distinguish integers, floating-point numbers, pointers, Booleans,
characters, instructions, capabilities, and uninitialized values by their tags.

Alternatively, the address space associated with a program can be split into two
parts. One part is accessible to the program and contains the program‘s normal
data and instructions. The other part, containing the capability list, is accessible
only by the operating system. A segmented memory space (Section 8.4) is useful
to support this approach.
 A Lock – Key Mechanism

The lock – key scheme is a compromise between access lists and
capability lists. Each object has a list of unique bit patterns, called locks.
Similarly, each domain has a list of unique bit patterns, called keys. A process
executing in a domain can access an object only if that domain has a key that
matches one of the locks of the object.

As with capability lists, the list of keys for a domain must be managed
by the operating system on behalf of the domain. Users are not allowed to
examine or modify the list of keys (or locks) directly.
 Comparison

As you might expect, choosing a technique for implementing an access
matrix involves various trade-offs. Using a global table is simple; however, the
table can be quite large and often cannot take advantage of special groupings of
objects or domains. Access lists correspond directly to the needs of users. When
a user creates an object, he can specify which domains can access the object, as
well as what operations are allowed. However, because access-right information
for a particular domain is not localized, determining the set of access rights for
each domain is difficult. In addition, every access to the object must be checked,
requiring a search of the access list. In a large system with long access lists, this
search can be time consuming.

Capability lists do not correspond directly to the needs of users, but
they are useful for localizing information for a given process. The process
attempting access must present a capability for that access. Then, the protection
system needs only to verify that the capability is valid. Revocation of
capabilities, however, may be inefficient.

The lock – key mechanism, as mentioned, is a compromise between
access lists and capability lists. The mechanism can be both effective and
flexible, depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object.

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy is used in the MULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in a new entry in a file
table associated with the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification of

the index into the file table. The entry in the file table then points to the file and
its buffers. When the file is closed, the file-table entry is deleted. Since the file
table is maintained by the operating system, the user cannot accidentally corrupt
it. Thus, the user can access only those files that have been opened.

Since access is checked when the file is opened, protection is ensured.
This strategy is used in the UNIX system.

The right to access must still be checked on each access, and the file-
table entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If an
attempt is made to write onto the file, the system identifies this protection
violation by comparing the requested operation with the capability in the file-
table entry.
 Access Control

In Section 11.6.2, we described how access controls can be used on
files within a file system. Each file and directory is assigned an owner, a group,
or possibly a list of users, and for each of those entities, access-control
information is assigned. A similar function can be added to other aspects of a
computer system. A good example of this is found in Solaris 10.

Solaris 10 advances the protection available in the operating system by
explicitly adding the principle of least privilege via role-based access control
(RBAC). This facility revolves around privileges. A privilege is the right to
execute a system call or to use an option within that system call (such as opening
a file with write access). Privileges can be assigned to processes, limiting them
to exactly the access they need to perform their work. Privileges and programs
can also be assigned to roles. Users are assigned roles or can take roles based on
passwords to the roles. In this way, a user can take a role that enables a privilege,
allowing the user to run a program to accomplish a specific task, as depicted in
Figure 5.18. This implementation of privileges decreases the security risk
associated with superusers and setuid programs.

process

executes with role 1 privileges

Figure 5.18 Role-based access control in Solaris 10.
 Revocation of Access Rights
In a dynamic protection system, we may sometimes need to revoke access rights
to objects shared by different users. Various questions about revocation may
arise:

Immediate versus delayed. Does revocation occur immediately, or is
it delayed? If revocation is delayed, can we find out when it will take
place?
Selective versus general. When an access right to an object is
revoked, does it affect all the users who have an access right to that
object, or can we specify a select group of users whose access rights
should be revoked?
Partial versus total. Can a subset of the rights associated with an
object be revoked, or must we revoke all access rights for this object?
Temporary versus permanent. Can access be revoked permanently
(that is, the revoked access right will never again be available), or can
access be revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is
searched for any access rights to be revoked, and they are deleted from the list.
Revocation is immediate and can be general or selective, total or partial, and
permanent or temporary.

Capabilities, however, present a much more difficult revocation
problem, as mentioned earlier. Since the capabilities are distributed throughout
the system, we must find them before we can revoke them. Schemes that
implement revocation for capabilities include the following:

user 1

role 1
privileges 1

privileges 2

Reacquisition. Periodically, capabilities are deleted from each
domain. If a process wants to use a capability, it may find that that
capability has been deleted. The process may then try to reacquire the
capability. If access has been revoked, the process will not be able to
reacquire the capability.
Back-pointers. A list of pointers is maintained with each object,
pointing to all capabilities associated with that object. When
revocation is required, we can follow these pointers, changing the
capabilities as necessary. This scheme was adopted in the MULTICS
system. It is quite general, but its implementation is costly.
Indirection. The capabilities point indirectly, not directly, to the
objects. Each capability points to a unique entry in a global table,
which in turn points to the object. We implement revocation by
searching the global table for the desired entry and deleting it. Then,
when an access is attempted, the capability is found to point to an
illegal table entry. Table entries can be reused for other capabilities
without difficulty, since both the capability and the table entry contain
the unique name of the object. The object for a capability and its table
entry must match. This scheme was adopted in the CAL system. It
does not allow selective revocation.

Keys. A key is a unique bit pattern that can be associated with a
capability. This key is defined when the capability is created, and it
can be neither modified nor inspected by the process that owns the
capability. A master key is associated with each object; it can be
defined or replaced with the set-key operation. When a capability is
created, the current value of the master key is associated with the
capability. When the capability is exercised, its key is compared with
the master key. If the keys match, the operation is allowed to continue;
otherwise, an exception condition is raised. Revocation replaces the
master key with a new value via the set-key operation, invalidating all
previous capabilities for this object.

This scheme does not allow selective revocation, since only one master key is
associated with each object. If we associate a list of keys with each object, then
selective revocation can be implemented. Finally, we can group all keys into
one global table of keys. A capability is valid only if its key matches some key
in the global table. We implement revocation by removing the matching key
from the table. With this scheme, a key can be associated with several objects,
and several keys can be associated with each object, providing maximum
flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users. In
particular, it would be reasonable to allow only the owner of an object to set
the keys for that object. This choice, however, is a policy decision that the
protection system can implement but should not define.

 Capability-Based Systems
In this section, we survey two capability-based protection systems. These
systems differ in their complexity and in the types of policies that can be
implemented on them. Neither system is widely used, but both provide
interesting proving grounds for protection theories.

 An Example: Hydra
Hydra is a capability-based protection system that provides considerable
flexibility. The system implements a fixed set of possible access rights,
including such basic forms of access as the right to read, write, or execute a
memory segment. In addition, a user (of the protection system) can declare other
rights. The interpretation of user-defined rights is performed solely by the user‘s
program, but the system provides access protection for the use of these rights, as
well as for the use of system-defined rights. These facilities constitute a
significant development in protection technology.

Operations on objects are defined procedurally. The procedures that
implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must
be identified to the protection system if it is to deal with objects of the user-
defined type. When the definition of an object is made known to Hydra, the
names of operations on the type become auxiliary rights. Auxiliary rights can
be described in a capability for an instance of the type. For a process to perform
an operation on a typed object, the capability it holds for that object must
contain the name of the operation being invoked among its auxiliary rights. This
restriction enables discrimination of access rights to be made on an instance-by-
instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a
procedure to be certified as trustworthy to act on a formal parameter of a
specified type on behalf of any process that holds a right to execute the
procedure. The rights held by a trustworthy procedure are independent of, and
may exceed, the rights held by the calling process. However, such a procedure
must not be regarded as universally trustworthy (the procedure is not allowed to
act on other types, for instance), and the trustworthiness must not be extended to
any other procedures or program segments that might be executed by a process.

Amplification allows implementation procedures access to the
representation variables of an abstract data type. If a process holds a capability
to a typed object A, for instance, this capability may include an auxiliary right to
invoke some operation P but does not include any of the so-called kernel rights,
such as read, write, or execute, on the segment that represents A. Such a
capability gives a process a means of indirect access (through the operation P)
to the representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to A may be amplified as control passes to the code body of
P. This amplification may be necessary to allow P the right to access the storage
segment representing A so as to implement the operation that P defines on the

abstract data type. The code body of P may be allowed to read or to write to the
segment of A directly, even though the calling process cannot. On return from P,
the capability for A is restored to its original, unamplified state. This case is a
typical one in which the rights held by a process for access to a protected
segment must change dynamically, depending on the task to be performed. The
dynamic adjustment of rights is performed to guarantee consistency of a
programmer-defined abstraction. Amplification of rights can be stated explicitly
in the declaration of an abstract type to the Hydra operating system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the object. We can implement this
restriction readily by passing an access right that does not have the modification
(write) right. However, if amplification may occur, the right to modify may be
reinstated. Thus, the user-protection requirement can be circumvented. In
general, of course, a user may trust that a procedure performs its task correctly.
This assumption is not always correct, however, because of hardware or
software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct
solution to the problem of mutually suspicious subsystems. This problem is
defined as follows. Suppose that a program can be invoked as a service by a
number of different users (for example, a sort routine, a compiler, a game).
When users invoke this service program, they take the risk that the program will
malfunction and will either damage the given data or retain some access right to
the data to be used (without authority) later. Similarly, the service program may
have some private files (for accounting purposes, for example) that should not
be accessed directly by the calling user program. Hydra provides mechanisms
for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may
require protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define policies
for use of these resources by user processes, but the policies are enforced by use
of the standard access protection provided by the capability system.

Programmers can make direct use of the protection system after
acquainting themselves with its features in the appropriate reference manual.
Hydra provides a large library of system-defined procedures that can be called
by user programs. Programmers can explicitly incorporate calls on these system
procedures into their program code or can use a program translator that has been
interfaced to Hydra.
 An Example: Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP‘s capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a data
capability. It can be used to provide access to objects, but the only rights
provided are the standard read, write, and execute of the individual storage

segments associated with the object. Data capabilities are interpreted by
microcode in the CAP machine.

The second kind of capability is the so-called software capability,
which is protected, but not interpreted, by the CAP microcode. It is interpreted
by a protected (that is, privileged) procedure, which may be written by an
application programmer as part of a subsystem. A particular kind of rights
amplification is associated with a protected procedure. When executing the code
body of such a procedure, a process temporarily acquires the right to read or
write the contents of a software capability itself. This specific kind of rights
amplification corresponds to an implementation of the seal and unseal primitives
on capabilities. Of course, this privilege is still subject to type verification to
ensure that only software capabilities for a specified abstract type are passed to
any such procedure. Universal trust is not placed in any code other than the CAP
machine‘s microcode.

The interpretation of a software capability is left completely to the sub-
system, through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although programmers can
define their own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access to
any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

The designers of the CAP system have noted that the use of software
capabilities allowed them to realize considerable economies in formulating and
implementing protection policies commensurate with the requirements of
abstract resources. However, subsystem designers who want to make use of this
facility cannot simply study a reference manual, as is the case with Hydra.
Instead, they must learn the principles and techniques of protection, since the
system provides them with no library of procedures.

 Language-Based Protection

To the degree that protection is provided in existing computer systems, it
is usually achieved through an operating-system kernel, which acts as a security
agent to inspect and validate each attempt to access a protected resource. Since
comprehensive access validation may be a source of considerable overhead,
either we must give it hardware support to reduce the cost of each validation, or
we must allow the system designer to compromise the goals of protection.
Satisfying all these goals is difficult if the flexibility to implement protection
policies is restricted by the support mechanisms provided or if protection
environments are made larger than necessary to secure greater operational
efficiency.

As operating systems have become more complex, and particularly as
they have attempted to provide higher-level user interfaces, the goals of
protection have become much more refined. The designers of protection systems

have drawn heavily on ideas that originated in programming languages and
especially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access. In the newest
protection systems, concern for the function to be invoked extends beyond a set
of system-defined functions, such as standard file-access methods, to include
functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection can
no longer be considered a matter of concern only to the designer of an operating
system. It should also be available as a tool for use by the application designer,
so that resources of an application subsystem can be guarded against tampering
or the influence of an error.

 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into a
language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a
system. Such a specification should be given directly as a program is composed,
and in the language in which the program itself is stated. This approach has
several significant advantages:

Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an operating system.
Protection requirements can be stated independently of the facilities
provided by a particular operating system.
The means for enforcement need not be provided by the designer of a
subsystem.
A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.

A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system. On this system, every storage reference made on the underlying
hardware occurs indirectly through a capability. This restriction prevents any
process from accessing a resource outside of its protection environment at any
time. However, a program may impose arbitrary restrictions on how a resource
can be used during execution of a particular code segment. We can implement
such restrictions most readily by using the software capabilities provided by

CAP. A language implementation might provide standard protected procedures
to interpret software capabilities that would realize the protection policies that
could be specified in the language. This scheme puts policy specification at the
disposal of the programmers, while freeing them from implementing its
enforcement.

Even if a system does not provide a protection kernel as powerful as those
of Hydra or CAP, mechanisms are still available for implementing protection
specifications given in a programming language. The principal distinction is that
the security of this protection will not be as great as that supported by a
protection kernel, because the mechanism must rely on more assumptions about
the operational state of the system. A compiler can separate references for which
it can certify that no protection violation could occur from those for which a
violation might be possible, and it can treat them differently. The security
provided by this form of protection rests on the assumption that the code
generated by the compiler will not be modified prior to or during its execution.

What, then, are the relative merits of enforcement based solely on a
kernel, as opposed to enforcement provided largely by a compiler?
Security. Enforcement by a kernel provides a greater degree of security of the
protection system itself than does the generation of protection-checking code by
a compiler. In a compiler-supported scheme, security rests on correctness of the
translator, on some underlying mechanism of storage management that protects
the segments from which compiled code is executed, and, ultimately, on the
security of files from which a program is loaded. Some of these considerations
also apply to a software-supported protection kernel, but to a lesser degree, since
the kernel may reside in fixed physical storage segments and may be loaded
only from a designated file. With a tagged-capability system, in which all
address computation is performed either by hardware or by a fixed
microprogram, even greater security is possible. Hardware-supported protection
is also relatively immune to protection violations that might occur as a result of
either hardware or system software malfunction.
Flexibility. There are limits to the flexibility of a protection kernel in
implementing a user-defined policy, although it may supply adequate facilities
for the system to provide enforcement of its own policies. With a programming
language, protection policy can be declared and enforcement provided as needed
by an implementation. If a language does not provide sufficient flexibility, it can
be extended or replaced with less disturbance than would be caused by the
modification of an operating-system kernel.
Efficiency. The greatest efficiency is obtained when enforcement of protec-tion
is supported directly by hardware (or microcode). Insofar as software support is
required, language-based enforcement has the advantage that static access
enforcement can be verified off-line at compile time. Also, since an intelligent
compiler can tailor the enforcement mechanism to meet the specified need, the
fixed overhead of kernel calls can often be avoided.

In summary, the specification of protection in a programming language allows
the high-level description of policies for the allocation and use of resources. A
language implementation can provide software for protection enforcement
when automatic hardware-supported checking is unavailable. In addition, it can
interpret protection specifications to generate calls on whatever protection
system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object of
computation. Inherent in this concept is the idea that certain program
components might have the privilege of creating or examining these software
capabilities. A capability-creating program would be able to execute a
primitive operation that would seal a data structure, rendering the latter‘s
contents inaccessible to any program components that did not hold either the
seal or the unseal privilege. Such components might copy the data structure or
pass its address to other program components, but they could not gain access to
its contents. The reason for introducing such software capabilities is to bring a
protection mechanism into the programming language. The only problem with
the concept as proposed is that the use of the seal and unseal operations takes a
procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferable way to make protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for
distributing capabilities to system resources among user processes. To
contribute to the overall reliability of a system, the access-control mechanism
should be safe to use. To be useful in practice, it should also be reasonably
efficient. This requirement has led to the development of a number of language
constructs that allow the programmer to declare various restrictions on the use
of a specific managed resource. (See the bibliographical notes for appropriate
references.) These constructs provide mechanisms for three functions:

Distributing capabilities safely and efficiently among customer
processes. In particular, mechanisms ensure that a user process will
use the managed resource only if it was granted a capability to that
resource.
Specifying the type of operations that a particular process may
invoke on an allocated resource (for example, a reader of a file
should be allowed only to read the file, whereas a writer should be
able both to read and to write). It should not be necessary to grant the
same set of rights to every user process, and it should be impossible
for a process to enlarge its set of access rights, except with the
authorization of the access-control mechanism.
Specifying the order in which a particular process may invoke the
various operations of a resource (for example, a file must be opened
before it can be read). It should be possible to give two processes
different restrictions on the order in which they can invoke the
operations of the allocated resource.

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protection will likely
become a matter of greater concern to the designers of new systems with
distributed architectures and increasingly stringent requirements on data
security. Then the importance of suitable language notations in which to
express protection requirements will be recognized more widely.

 Protection in Java
Because Java was designed to run in a distributed environment, the Java virtual
machine — or JVM — has many built-in protection mechanisms. Java
programs are composed of classes, each of which is a collection of data fields
and functions (called methods) that operate on those fields. The JVM loads a
class in response to a request to create instances (or objects) of that class. One
of the most novel and useful features of Java is its support for dynamically
loading untrusted classes over a network and for executing mutually distrusting
classes within the same JVM.

Because of these capabilities, protection is a paramount concern. Classes
running in the same JVM may be from different sources and may not be
equally trusted. As a result, enforcing protection at the granularity of the JVM
process is insufficient. Intuitively, whether a request to open a file should be
allowed will generally depend on which class has requested the open. The
operating system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the
JVM loads a class, it assigns the class to a protection domain that gives the
permissions of that class. The protection domain to which the class is assigned
depends on the URL from which the class was loaded and any digital
signatures on the class file. (Digital signatures are covered in Section 15.4.1.3.)
A configurable policy file determines the permissions granted to the domain
(and its classes). For example, classes loaded from a trusted server might be
placed in a protection domain that allows them to access files in the user‘s
home directory, whereas classes loaded from an untrusted server might have no
file access permissions at all.

It can be complicated for the JVM to determine what class is responsible
for a request to access a protected resource. Accesses are often performed
indirectly, through system libraries or other classes. For example, consider a
class that is not allowed to open network connections. It could call a system
library to request the load of the contents of a URL. The JVM must decide
whether or not to open a network connection for this request. But which class
should be used to determine if the connection should be allowed, the
application or the system library?

The philosophy adopted in Java is to require the library class to explicitly
permit a network connection. More generally, in order to access a protected
resource, some method in the calling sequence that resulted in the request must
explicitly assert the privilege to access the resource. By doing so, this method

takes responsibility for the request. Presumably, it will also perform whatever
checks are necessary to ensure the safety of the request. Of course, not every
method is allowed to assert a privilege; a method can assert a privilege only if
its class is in a protection domain that is itself allowed to exercise the privilege.

This implementation approach is called stack inspection. Every thread in
the JVM has an associated stack of its ongoing method invocations. When a
caller may not be trusted, a method executes an access request within a
doPrivileged block to perform the access to a protected resource directly or
indirectly. doPrivileged() is a static method in the AccessController class that is
passed a class with a run() method to invoke. When the doPrivileged block is
entered, the stack frame for this method is annotated to indicate this fact. Then,
the contents of the block are executed. When an access to a protected resource
is subsequently requested, either by this method or a method it calls, a call to
checkPermissions() is used to invoke stack inspection to determine if the
request should be allowed. The inspection examines stack frames on the calling
thread‘s stack, starting from the most recently added frame and working toward
the oldest. If a stack frame is first found that has the doPrivileged() annotation,
then checkPermissions() returns immediately and silently, allowing the access.
If a stack frame is first found for which access is disallowed based on the
protection domain of the method‘s class, then checkPermissions() throws an
AccessControlException. If the stack inspection exhausts the stack without
finding either type of frame, then whether access is allowed depends on the
implementation (for example, some implementations of the JVM may allow
access, while other implementations may not).

Stack inspection is illustrated in Figure 5.19. Here, the gui() method of a
class in the untrusted applet protection domain performs two operations, first a
get() and then an open(). The former is an invocation of the get() method of a
class in the URL loader protection domain, which is permitted to open()
sessions to sites in the lucent.com domain, in particular a proxy server
proxy.lucent.com for retrieving URLs. For this reason, the untrusted applet‘s
get() invocation will succeed: the checkPermissions() call in the networking
library encounters the stack frame of the get() method, which performed its
open() in a doPrivileged block. However, the untrusted applet‘s open()
invocation will result in an exception, because the checkPermissions() call
finds no doPrivileged annotation before encountering the stack frame of the
gui() method.

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to otherwise manipulate stack
inspection. This is one of the most important differences between Java and
many other languages (including C++). A Java program cannot directly access
memory; it can manipulate only an object for which it has a reference.
References cannot be forged, and manipulations are made only through well-
defined interfaces. Compliance is enforced through a sophisticated collection
of load-time and run-time checks. As a result, an object cannot manipulate its
run-time stack, because it cannot get a reference to the stack or other
components of the protection system.

protection untrusted
URL loader

networking

domain: applet

socket
None

*.lucent.com:80, connect

any

permissio
n:

class:

gui:

get(URL u):

open(Addr
a):

 … … …
 get(url); doPrivileged {

checkPermissi
on

 open(addr
);

open(‗proxy.lucent.com:
80‘);

(a,
connect);

 … }
connect
(a);

 request u from proxy …
 …

Figure 5.19 Stack
inspection.

More generally, Java‘s load-time and run-time checks enforce type
safety of Java classes. Type safety ensures that classes cannot treat integers as
pointers, write past the end of an array, or otherwise access memory in
arbitrary ways. Rather, a program can access an object only via the methods
defined on that object by its class. This is the foundation of Java protection,
since it enables a class to effectively encapsulate and protect its data and
methods from other classes loaded in the same JVM. For example, a variable
can be defined as private so that only the class that contains it can access it or
protected so that it can be accessed only by the class that contains it,
subclasses of that class, or classes in the same package. Type safety ensures
that these restrictions can be enforced.

	UNIT-1
	OBJECTIVES

	1.1 Operating System:
	What Operating Systems Do
	User View
	1.1.2. System View

	1.2 Operating System Functions
	1.2.1 Process Management
	1.2.2 Memory Management
	1.2.3 Storage Management
	1.2.3.1 File-System Management
	1.2.3.2 Mass-Storage Management
	1.2.3.3Caching
	1.2.4 I/O Systems

	1.2.5 Protection and Security
	1.3. Operating-System Operations
	1.3.1 Dual-Mode and Multimode Operation
	1.3.2 Timer

	1.4 Computing Environments
	1.4.1 Traditional Computing
	1.4.2 Mobile Computing
	1.4.3 Distributed Systems
	1.4.4 Client – Server Computing
	1.4.5 Peer-to-Peer Computing
	1.4.6 Virtualization
	1.4.7. Cloud Computing
	1.4.8Real-Time Embedded Systems

	1.5 Open-Source Operating Systems
	1.6 Operating-System Services
	1.7 User and Operating-System Interface
	1.7.1Command Interpreters
	1.7.2 Graphical User Interfaces
	1.7.3 Choice of Interface

	1.8 System Calls
	1.9 Types of System Calls
	Process Control
	EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

	File Management
	Device Management
	Information Maintenance
	Communication
	Protection

	System Programs
	Operating-System Design and Implementation
	Design Goals
	Mechanisms and Policies
	Implementation

	1.11Operating-System Structure
	1.11.1 Simple Structure
	Layered Approach
	1.11.3 Microkernels
	1.11.4 Modules
	1.11.5 Hybrid Systems
	1.11.6 Mac OS X
	1.11.7 iOS
	1.11.8 Android

	OBJECTIVES
	Process Concept
	The Process
	Process State
	3.1.3 Process Control Block
	2.1.4 Threads

	Process Scheduling
	•
	•
	Scheduling Queues
	Schedulers
	Context Switch

	Operations on Processes
	Process Creation
	Process Termination

	Interprocess Communication
	Shared-Memory Systems
	Message-Passing Systems
	Naming
	Synchronization
	Buffering

	Pipes
	Ordinary Pipes
	Named Pipes

	Thread Scheduling
	Contention Scope
	Pthread Scheduling

	Multiple-Processor Scheduling
	Approaches to Multiple-Processor Scheduling
	Processor Affinity
	Load Balancing
	Multicore Processors

	Main Memory
	Basic Hardware
	Address Binding
	Logical Versus Physical Address Space
	Dynamic Loading
	Dynamic Linking and Shared Libraries

	Swapping
	Standard Swapping
	Swapping on Mobile Systems

	Contiguous Memory Allocation
	Memory Protection
	Memory Allocation
	Fragmentation

	Segmentation
	Basic Method
	Segmentation Hardware

	Paging
	Basic Method
	Hardware Support
	Protection
	Shared Pages

	Structure of the Page Table
	Hierarchical Paging
	Hashed Page Tables
	Inverted Page Tables
	Oracle SPARC Solaris

	Example: Intel 32 and 64-bit Architectures
	IA-32 Architecture
	IA-32 Segmentation
	IA-32 Paging
	8.7.2 x86-64

	Virtual Memory
	Background
	Demand Paging
	Basic Concepts
	Performance of Demand Paging

	Copy-on-Write
	Page Replacement
	Basic Page Replacement
	FIFO Page Replacement
	Optimal Page Replacement
	LRU Page Replacement
	LRU-Approximation Page Replacement
	Additional-Reference-Bits Algorithm
	Second-Chance Algorithm
	Enhanced Second-Chance Algorithm
	Counting-Based Page Replacement
	Page-Buffering Algorithms

	Allocation of Frames
	Minimum Number of Frames
	Allocation Algorithms
	Global versus Local Allocation
	Non-Uniform Memory Access

	Thrashing
	Cause of Thrashing
	Working-Set Model
	Page-Fault Frequency
	Concluding Remarks

	Memory-Mapped Files
	Basic Mechanism
	Shared Memory in the Windows API
	8.14.3 Memory-Mapped I/O

	Allocating Kernel Memory
	Buddy System
	Slab Allocation

	UNIT 5
	System Model
	Deadlock Characterization
	Necessary Conditions
	Resource-Allocation Graph
	Figure 5.1 Resource-allocation graph.
	Figure 5.2 Resource-allocation graph with a deadlock.
	Figure 5.3 Resource-allocation graph with a cycle but no deadlock.

	Methods for Handling Deadlocks
	Deadlock Prevention
	Mutual Exclusion
	Hold and Wait
	No Preemption
	Circular Wait

	Deadlock Avoidance
	Safe State
	Resource-Allocation-Graph Algorithm
	Figure 5.7 Resource-allocation graph for deadlock avoidance.
	Banker’s Algorithm
	Safety Algorithm
	Resource-Request Algorithm
	An Illustrative Example

	Deadlock Detection
	7.6.1 Single Instance of Each Resource Type
	Several Instances of a Resource Type
	Detection-Algorithm Usage

	Recovery from Deadlock
	Process Termination
	Resource Preemption

	File -System Interface
	File Concept
	File Attributes
	File Operations
	File Types
	File Structure
	Internal File Structure

	Access Methods
	Sequential Access
	Direct Access
	Other Access Methods

	Directory and Disk Structure
	Figure 4.7 A typical file-system organization.
	Storage Structure
	Directory Overview
	Single-Level Directory
	Two-Level Directory
	/Figure 11.10 Two-level directory structure
	Tree-Structured Directories
	Acyclic-Graph Directories
	General Graph Directory

	File-System Mounting
	File Sharing
	Multiple Users
	Remote File Systems
	The Client – Server Model
	Distributed Information Systems
	Failure Modes
	Consistency Semantics
	UNIX Semantics
	Session Semantics
	Immutable-Shared-Files Semantics
	Types of Access
	Access Control
	Figure 4.16 Windows 7 access-control list management
	Other Protection Approaches

	File -System Implementation
	File-System Structure
	Figure 4.17 Layered file system

	File-System Implementation
	Overview
	Figure 4.18 A typical file-control block
	Partitions and Mounting
	Virtual File Systems
	Figure 4.20 Schematic view of a virtual file system.
	Linear List
	Hash Table

	Allocation Methods
	Contiguous Allocation
	Figure 4.21 Contiguous allocation of disk space.
	Linked Allocation
	///////////////Figure 4.22 Linked allocation of disk space.
	Indexed Allocation
	Figure 4.23 File-allocation table.
	Figure 4.24 Indexed allocation of disk space.
	Performance

	Free-Space Management
	Bit Vector
	Linked List
	/Figure 4.26 Linked free-space list on disk.
	Counting
	Space Maps

	Efficiency and Performance
	Efficiency
	Performance
	Figure 4.27 I/O without a unified buffer cache.
	Figure 4.28 I/O using a unified buffer cache.

	Mass -Storage Structure
	Overview of Mass-Storage Structure
	Magnetic Disks
	Figure 4.29 Moving-head disk mechanism.
	Solid-State Disks
	Magnetic Tapes

	Disk Structure
	Disk Attachment
	Host-Attached Storage
	Network-Attached Storage
	Figure 4.30 Network-attached storage.
	Storage-Area Network

	Disk Scheduling
	FCFS Scheduling
	Figure 4.32 FCFS disk scheduling.
	SSTF Scheduling
	SCAN Scheduling
	Figure 4.34 SCAN disk scheduling.
	Figure 4.35 C-SCAN disk scheduling.
	Selection of a Disk-Scheduling Algorithm
	Figure 4.36 C-LOOK disk scheduling.

	Disk Management
	Disk Formatting
	Boot Block
	Bad Blocks
	/Figure 4.37 Booting from disk in Windows

	Swap-Space Management
	Swap-Space Use
	Swap-Space Location
	Swap-Space Management: An Example
	Figure 4.38 The data structures for swapping on Linux systems.

	UNIT 5
	Protection and Security
	Protection
	Goals of Protection
	Principles of Protection
	Domain of Protection
	Domain Structure
	An Example: UNIX
	An Example: MULTICS
	Figure 5.11 MULTICS ring structure.

	Access Matrix
	/Figure 5.12 Access matrix.

	Implementation of the Access Matrix
	Global Table
	Access Lists for Objects
	Capability Lists for Domains
	A Lock – Key Mechanism
	Comparison

	Access Control
	Revocation of Access Rights
	Capability-Based Systems
	An Example: Hydra
	An Example: Cambridge CAP System

	Language-Based Protection
	Compiler-Based Enforcement
	Protection in Java

