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UNIT-1 
Introduction 
An operating system acts as an intermediary between the user of a computer and 
the computer hardware. The purpose of an operating system is to provide an 
environment in which a user can execute programs in a convenient and efficient 
manner. 
An operating system is software that manages the computer hard-ware. The 
hardware must provide appropriate mechanisms to ensure the correct operation of 
the computer system and to prevent user programs from interfering with the 
proper operation of the system. 
Internally, operating systems vary greatly in their makeup, since they are 
organized along many different lines. The design of a new operating system is a 
major task. It is important that the goals of the system be well defined before the 
design begins. These goals form the basis for choices among various algorithms 
and strategies. 
Because an operating system is large and complex, it must be created piece by 
piece. Each of these pieces should be a well-delineated portion of the system, 
with carefully defined inputs, outputs, and functions. 

 
OBJECTIVES 

 
1. To describe the basic organization of computer systems. 
2. To provide a grand tour of the major components of operating systems. 
3. To give an overview of the many types of computing environments. 
4. To explore several open-source operating systems. 
5. To describe the services an operating system provides to users, 

processes, and other systems. 
6. To discuss the various ways of structuring an operating system. 
7. To explain how operating systems are installed and customized and 

how they boot. 
 

1.1 Operating System: 
An operating system is a program that manages a computer’s hardware. It also 
provides a basis for application programs and acts as an intermediary between the 
computer user and the computer hardware. An amazing aspect of operating 
systems is how they vary in accomplishing these tasks. Mainframe operating 
systems are designed primarily to optimize utilization of hardware. Personal 
computer (PC) operating systems support complex games, business applications, 
and everything in between. Operating systems for mobile com-puters provide an 



environment in which a user can easily interface with the computer to execute 
programs. Thus, some operating systems are designed to be convenient, others to 
be efficient, and others to be some combination of the two. 
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Figure 1.1 Abstract view of the components of a computer system. 
 

What Operating Systems Do 
We begin our discussion by looking at the operating system’s role in the 

overall computer system. A computer system can be divided roughly into four 
components: the hardware, the operating system, the application programs, and 
the users (Figure 1.1). 

The hardware — the central processing unit (CPU), the memory, and 
the input/output (I/O) devices — provides the basic computing resources for the 
system. The application programs — such as word processors, spreadsheets, 
compilers, and Web browsers — define the ways in which these resources are 
used to solve users’ computing problems. The operating system controls the 
hardware and coordinates its use among the various application programs for the 
various users. 

We can also view a computer system as consisting of hardware, software, 
and data. The operating system provides the means for proper use of these 
resources in the operation of the computer system. An operating system is similar 
to a government. Like a government, it performs no useful function by itself. It 
simply provides an environment within which other programs can do useful 
work. 

To understand more fully the operating system’s role, we next explore 
operating systems from two viewpoints: that of the user and that of the system. 

 
User View 

The user’s view of the computer varies according to the interface being 
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used. Most computer users sit in front of a PC, consisting of a monitor, keyboard, 
mouse, and system unit. Such a system is designed for one user to monopolize its 
resources. The goal is to maximize the work (or play) that the user is performing. 
In this case, the operating system is designed mostly for ease of use, with some 
attention paid to performance and none paid to resource utilization, how various 
hardware and software resources are shared. Performance is, important to the 
user; but such systems are optimized for the single-user experience rather than the 
requirements of multiple users. 

In other cases, a user sits at a terminal connected to a mainframe or a 
minicomputer. Other users are accessing the same computer through other 
terminals. These users share resources and may exchange information. The 
operating system in such cases is designed to maximize resource utilization — to 
assure that all available CPU time, memory, and I/O are used efficiently and that 
no individual user takes more than her fair share. 

In still other cases, users sit at workstations connected to networks of 
other workstations and servers. These users have dedicated resources at their 
disposal, but they also share resources such as networking and servers, including 
file, compute, and print servers. Therefore, their operating system is designed to 
compromise between individual usability and resource utilization. 

Recently, many varieties of mobile computers, such as smartphones and 
tablets, have come into fashion. Most mobile computers are standalone units for 
individual users. Quite often, they are connected to networks through cellular or 
other wireless technologies. Increasingly, these mobile devices are replacing 
desktop and laptop computers for people who are primarily interested in using 
computers for e-mail and web browsing. The user interface for mobile computers 
generally features a touch screen, where the user interacts with the system by 
pressing and swiping fingers across the screen rather than using a physical 
keyboard and mouse. 

1.1.2. System View 
From the computer’s point of view, the operating system is the program 

most intimately involved with the hardware. In this context, we can view an 
operating system as a resource allocator. A computer system has many resources 
that may be required to solve a problem: CPU time, memory space, file-storage 
space, I/O devices, and so on. The operating system acts as the manager of these 
resources. Facing numerous and possibly conflicting requests for resources, the 
operating system must decide how to allocate them to specific programs and users 
so that it can operate the computer system efficiently and fairly. 

  



A slightly different view of an operating system emphasizes the need to 
control the various I/O devices and user programs. An operating system is a 
control program. A control program manages the execution of user programs to 
prevent errors and improper use of the computer. It is especially concerned with 
the operation and control of I/O devices. 
1.2 Operating System Functions 

 1.2.1 Process Management 
A program does nothing unless its instructions are executed by a CPU. 

A program in execution, as mentioned, is a process. A word-processing 
program being run by an individual user on a PC is a process. A system task, 
such as sending output to a printer, can also be a process (or at least part of 
one). 

A process needs certain resources — including CPU time, memory, 
files, and I/O devices — to accomplish its task. These resources are either 
given to the process when it is created or allocated to it while it is running. In 
addition to the various physical and logical resources that a process obtains 
when it is created, various initialization data (input) may be passed along. For 
example, consider a process whose function is to display the status of a file on 
the screen of a terminal. 

We emphasize that a program by itself is not a process. A program is a 
passive entity, like the contents of a file stored on disk, whereas a process is an 
active entity. A single-threaded process has one program counter specifying 
the next instruction to execute. The execution of such a process must be 
sequential. The CPU executes one instruction of the process after another, until 
the process completes. Further, at any time, one instruction at most is executed 
on behalf of the process. 

A process is the unit of work in a system. A system consists of a 
collection of processes, some of which are operating-system processes (those 
that execute system code) and the rest of which are user processes (those that 
execute user code). All these processes can potentially execute concurrently — 
by multiplexing on a single CPU, for example. 

The operating system is responsible for the following activities in 
connection with process management: 

1) Scheduling processes and threads on the CPUs 
2) Creating and deleting both user and system processes 
3) Suspending and resuming processes 
4) Providing mechanisms for process synchronization 
5) Providing mechanisms for process communication 

 1.2.2 Memory Management 
Main memory is a large array of bytes, ranging in size from hundreds 

of thousands to billions. Each byte has its own address. Main memory is a 
repository of quickly accessible data shared by the CPU and I/O devices. The 
central processor reads instructions from main memory during the instruction-
fetch cycle and both reads and writes data from main memory during the data-
fetch cycle (on a von Neumann architecture). The main memory is generally 
the only large storage device that the CPU is able to address and access 



directly. For example, for the CPU to process data from disk, those data must 
first be transferred to main memory by CPU-generated I/O calls. In the same 
way, instructions must be in memory for the CPU to execute them. 

For a program to be executed, it must be mapped to absolute addresses 
and loaded into memory. As the program executes, it accesses program 
instructions and data from memory by generating these absolute addresses. 
Eventually, the program terminates, its memory space is declared available, 
and the next program can be loaded and executed. 

To improve both the utilization of the CPU and the speed of the 
computer’s response to its users, general-purpose computers must keep several 
programs in memory, creating a need for memory management. Many different 
memory-management schemes are used. 
The operating system is responsible for the following activities in connection 
with memory management: 

1) Keeping track of which parts of memory are currently being used and 
who is using them 

2) Deciding which processes (or parts of processes) and data to move 
into and out of memory 

3) Allocating and deallocating memory space as needed 
 
 1.2.3 Storage Management 

To make the computer system convenient for users, the operating 
system provides a uniform, logical view of information storage. The operating 
system abstracts from the physical properties of its storage devices to define a 
logical storage unit, the file. The operating system maps files onto physical 
media and accesses these files via the storage devices. 

  
 1.2.3.1  File-System Management 

File management is one of the most visible components of an operating 
system. Computers can store information on several different types of physical 
media. Magnetic disk, optical disk, and magnetic tape are the most 
common. Each of these media has its own characteristics and physical 
organization. Each medium is controlled by a device, such as a disk drive or 
tape drive, that also has its own unique characteristics. These properties include 
access speed, capacity, data-transfer rate, and access method (sequential or 
random). 

A file is a collection of related information defined by its creator. 
Commonly, files represent programs (both source and object forms) and data. 
Data files may be numeric, alphabetic, alphanumeric, or binary. Files may be 
free-form (for example, text files), or they may be formatted rigidly (for 
example, fixed fields). Clearly, the concept of a file is an extremely general 
one. 

 
The operating system implements the abstract concept of a file by 

managing mass-storage media, such as tapes and disks, and the devices that 
control them. In addition, files are normally organized into directories to make 
them easier to use. Finally, when multiple users have access to files, it may be 
desirable to control which user may access a file and how that user may access 



it (for example, read, write, append). 
The operating system is responsible for the following activities in connection 
with file management: 
1) Creating and deleting files 
2) Creating and deleting directories to organize files 
3) Supporting primitives for manipulating files and directories 
4) Mapping files onto secondary storage 
5) Backing up files on stable (nonvolatile) storage media 

 
1.2.3.2 Mass-Storage Management 

As we have already seen, because main memory is too small to 
accommodate all data and programs, and because the data that it holds are 
lost when power is lost, the computer system must provide secondary storage 
to back up main memory. Most modern computer systems use disks as the 
principal on- line storage medium for both programs and data. Most programs 
— including compilers, assemblers, word processors, editors, and formatters 
— are stored on a disk until loaded into memory. They then use the disk as both 
the source and destination of their processing. Hence, the proper management 
of disk storage is of central importance to a computer system. The operating 
system is responsible for the following activities in connection with disk 
management: 

Free-space management 
Storage allocation 
Disk scheduling 

There are, however, many uses for storage that is slower and lower in cost 
(and sometimes of higher capacity) than secondary storage. Backups of disk 
data, storage of seldom-used data, and long-term archival storage are some 
examples. Magnetic tape drives and their tapes and CD and DVD drives and 
platters are typical tertiary storage devices. The media (tapes and optical 
platters) vary between WORM (write-once, read-many-times) and RW (read – 
write) formats. 

Tertiary storage is not crucial to system performance, but it still must be 
managed. Some operating systems take on this task, while others leave tertiary- 
storage management to application programs 
 
1.2.3.3Caching 

Caching is an important principle of computer systems. Here’s how it 
works. Information is normally kept in some storage system (such as main 
memory). As it is used, it is copied into a faster storage system — the cache — 
on a temporary basis. When we need a particular piece of information, we first 
check whether it is in the cache. If it is, we use the information directly from 
the cache. If it is not, we use the information from the source, putting a copy in 
the cache under the assumption that we will need it again soon. 

In addition, internal programmable registers, such as index registers, 
provide a high-speed cache for main memory. The programmer (or compiler) 
implements the register-allocation and register-replacement algorithms to 
decide which information to keep in registers and which to keep in main 



memory. 
Other caches are implemented totally in hardware. For instance, most 

systems have an instruction cache to hold the instructions expected to be 
executed next. Without this cache, the CPU would have to wait several cycles 
while an instruction was fetched from main memory. 

Because caches have limited size, cache management is an important 
design problem. Careful selection of the cache size and of a replacement policy 
can result in greatly increased performance. Figure 1.11 compares storage 
performance in large workstations and small servers. 

Main memory can be viewed as a fast cache for secondary storage, 
since data in secondary storage must be copied into main memory for use 
and data must be in main memory before being moved to secondary storage for 
safekeeping. The file-system data, which resides permanently on secondary 
storage, may appear on several levels in the storage hierarchy. At the highest 
level, the operating system may maintain a cache of file-system data in main 
memory. In addition, solid-state disks may be used for high-speed storage that 
is accessed through the file-system interface. The bulk of secondary storage is 
on magnetic disks. 

 
Level 1 2 3 4 5 

 
Name 

 
registers 

 
cache 

main 
memory 

solid state 
disk 

magnetic 
disk 

Typical size < 1 KB < 16MB < 64GB < 1 TB < 10 TB 
Implementat 
ion 

custom 
memory 

on-chip 
or 

CMOS 
SRAM 

flash 
memory 

magnetic 
disk 

 
technology 

with 
multiple 

 
off-chip 

 ports 
CMOS 

CMOS 
SRAM 

Access time 
(ns) 

 
0.25 - 0.5 

 
0.5 - 25 

 
80 - 250 

25,000 - 
50,000 

 
5,000,000 

Bandwidth 
(MB/sec) 

20,000 - 
100,000 

5,000 - 
10,000 

1,000 - 
5,000 

 
500 

 
20 – 150 

 
Managed by 

 
compiler 

hardwar 
e 

operating 
system 

operating 
system 

operating 
system 

 
Backed by 

 
cache 

main 
memory 

 
disk 

 
disk 

disk or 
tape 

 
Performance of various levels of storage. 

 
 

magnetic main 
cache hardware 

A A A 
disk memory  register 

 

Migration of integer A from disk to register. 



 
In a hierarchical storage structure, the same data may appear in 

different levels of the storage system. For example, suppose that an integer A 
that is to be incremented by 1 is located in file B, and file B resides on 
magnetic disk. The increment operation proceeds by first issuing an I/O 
operation to copy the disk block on which A resides to main memory. This 
operation is followed by copying A to the cache and to an internal register. 
Thus, the copy of A appears in several places: on the magnetic disk, in main 
memory, in the cache, and in an internal register (see Figure 1.12). Once the 
increment takes place in the internal register, the value of A differs in the 
various storage systems. The value of A becomes the same only after the new 
value of A is written from the internal register back to the magnetic disk. 

 1.2.4 I/O Systems 
One of the purposes of an operating system is to hide the peculiarities 

of specific hardware devices from the user. For example, in UNIX, the 
peculiarities of I/O devices are hidden from the bulk of the operating system 
itself by the I/O subsystem. The I/O subsystem consists of several 
components: 
1) A memory-management component that includes buffering, caching, 

and spooling 
2) A general device-driver interface 
3) Drivers for specific hardware devices 

Only the device driver knows the peculiarities of the specific device to 
which it is assigned. 
 
1.2.5 Protection and Security 

If a computer system has multiple users and allows the concurrent 
execution of multiple processes, then access to data must be regulated. For that 
purpose, mechanisms ensure that files, memory segments, CPU, and other 
resources can be operated on by only those processes that have gained proper 
authorization from the operating system. For example, memory-addressing 
hardware ensures that a process can execute only within its own address space. 
The timer ensures that no process can gain control of the CPU without 
eventually relinquishing control. Device-control registers are not accessible to 
users, so the integrity of the various peripheral devices is protected. 

Protection, then, is any mechanism for controlling the access of 
processes or users to the resources defined by a computer system. This 
mechanism must provide means to specify the controls to be imposed and to 
enforce the controls. 

Protection can improve reliability by detecting latent errors at the 
interfaces between component subsystems. Early detection of interface errors 
can often prevent contamination of a healthy subsystem by another subsystem 
that is malfunctioning. Furthermore, an unprotected resource cannot defend 
against use (or misuse) by an unauthorized or incompetent user. 

A system can have adequate protection but still be prone to failure and 
allow inappropriate access. Consider a user whose authentication 
information (her means of identifying herself to the system) is stolen. Her data 



could be copied or deleted, even though file and memory protection are 
working. It is the job of security to defend a system from external and 
internal attacks. Such attacks spread across a huge range and include viruses 
and worms, denial-of- service attacks (which use all of a system’s resources 
and so keep legitimate users out of the system), identity theft, and theft of 
service (unauthorized use of a system). Prevention of some of these attacks is 
considered an operating-system function on some systems, while other systems 
leave it to policy or additional software. 

Protection and security require the system to be able to distinguish 
among all its users. Most operating systems maintain a list of user names and 
associated user identifiers (user IDs). In Windows parlance, this is a security 
ID (SID). These numerical IDs are unique, one per user. When a user logs in to 
the system, the authentication stage determines the appropriate user ID for the 
user. That user ID is associated with all of the user’s processes and threads. 
When an ID needs to be readable by a user, it is translated back to the user 
name via the user name list. 

In some circumstances, we wish to distinguish among sets of users 
rather than individual users. For example, the owner of a file on a UNIX 
system may be allowed to issue all operations on that file, whereas a selected 
set of users may be allowed only to read the file. To accomplish this, we need 
to define a group name and the set of users belonging to that group. Group 
functionality can be implemented as a system-wide list of group names and 
group identifiers. A user can be in one or more groups, depending on 
operating-system design decisions. The user’s group IDs are also included in 
every associated process and thread. 

 1.3. Operating-System Operations 
Modern operating systems are interrupt driven. If there are no 

processes to execute, no I/O devices to service, and no users to whom to 
respond, an operating system will sit quietly, waiting for something to happen. 
Events are almost always signaled by the occurrence of an interrupt or a trap. 
A trap (or an exception) is a software-generated interrupt caused either by an 
error (for example, division by zero or invalid memory access) or by a specific 
request from a user program that an operating-system service be performed. 

Since the operating system and the users share the hardware and 
software resources of the computer system, we need to make sure that an error 
in a user program could cause problems only for the one program running. 
With sharing, many processes could be adversely affected by a bug in one 
program. For example, if a process gets stuck in an infinite loop, this loop 
could prevent the correct operation of many other processes. More subtle errors 
can occur in a multiprogramming system, where one erroneous program might 
modify another program, the data of another program, or even the operating 
system itself. 

 
 1.3.1 Dual-Mode and Multimode Operation 

In order to ensure the proper execution of the operating system, we must be 
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide 



hardware support that allows us to differentiate among various modes of 
execution. 
 
 
 
 
 

 
 

Figure 1.10 Transition from user to kernel mode. 

At the very least, we need two separate modes of operation: user mode 
and kernel mode (also called supervisor mode, system mode, or privileged 
mode). A bit, called the mode bit, is added to the hardware of the computer to 
indicate the current mode: kernel (0) or user (1). With the mode bit, we can 
distinguish between a task that is executed on behalf of the operating system 
and one that is executed on behalf of the user. When the computer system is 
executing on behalf of a user application, the system is in user mode. However, 
when a user application requests a service from the operating system (via a 
system call), the system must transition from user to kernel mode to fulfill the 
request. This is shown in Figure 1.10. As we shall see, this architectural 
enhancement is useful for many other aspects of system operation as well. 

At system boot time, the hardware starts in kernel mode. The operating 
system is then loaded and starts user applications in user mode. Whenever a 
trap or interrupt occurs, the hardware switches from user mode to kernel mode 
(that is, changes the state of the mode bit to 0). Thus, whenever the operating 
system gains control of the computer, it is in kernel mode. The system always 
switches to user mode (by setting the mode bit to 1) before passing control to a 
user program. 

 
The dual mode of operation provides us with the means for protecting 

the operating system from errant users — and errant users from one another. 
We accomplish this protection by designating some of the machine instructions 
that may cause harm as privileged instructions. The hardware allows 
privileged instructions to be executed only in kernel mode. If an attempt is 
made to execute a privileged instruction in user mode, the hardware does not 



execute the instruction but rather treats it as illegal and traps it to the operating 
system. 

System calls provide the means for a user program to ask the operating 
system to perform tasks reserved for the operating system on the user 
program’s behalf. A system call is invoked in a variety of ways, depending on 
the functionality provided by the underlying processor. In all forms, it is the 
method used by a process to request action by the operating system. A system 
call usually takes the form of a trap to a specific location in the interrupt vector. 
This trap can be executed by a generic trap instruction, although some systems 
(such as MIPS) have a specific syscall instruction to invoke a system call. 

 
 1.3.2 Timer 

We must ensure that the operating system maintains control over the 
CPU. We cannot allow a user program to get stuck in an infinite loop or to fail 
to call system services and never return control to the operating system. To 
accomplish this goal, we can use a timer. A timer can be set to interrupt the 
computer after a specified period. The period may be fixed (for example, 1/60 
second) or variable (for example, from 1 millisecond to 1 second). A variable 
timer is generally implemented by a fixed-rate clock and a counter. The 
operating system sets the counter. Every time the clock ticks, the counter is 
decremented. When the counter reaches 0, an interrupt occurs. For instance, a 
10-bit counter with a 1-millisecond clock allows interrupts at intervals from 1 
millisecond to 1,024 milliseconds, in steps of 1 millisecond. 

Before turning over control to the user, the operating system ensures 
that the timer is set to interrupt. If the timer interrupts, control transfers 
automatically to the operating system, which may treat the interrupt as a fatal 
error or may give the program more time. Clearly, instructions that modify the 
content of the timer are privileged. 

 

 1.4 Computing Environments 
We turn now to a discussion of how operating systems are used in a variety 
of  computing environments. 

 
1.4.1 Traditional Computing 

As computing has matured, the lines separating many of the traditional 
computing environments have blurred. Consider the ―typical office 
environment.‖ Just a few years ago, this environment consisted of PCs 
connected to a network, with servers providing file and print services. Remote 
access was awkward, and portability was achieved by use of laptop computers. 
Terminals attached to mainframes were prevalent at many companies as well, 
with even fewer remote access and portability options. 

The current trend is toward providing more ways to access these 
computing environments. Web technologies and increasing WAN bandwidth 
are stretching the boundaries of traditional computing. Companies establish 
portals, which provide Web accessibility to their internal servers. Network 
computers (or thin clients) — which are essentially terminals that 



understand web-based computing — are used in place of traditional 
workstations where more security or easier maintenance is desired. Mobile 
computers can synchronize with PCs to allow very portable use of company 
information. Mobile computers can also connect to wireless networks and 
cellular data networks to use the company’s Web portal (as well as the myriad 
other Web resources). 

At home, most users once had a single computer with a slow modem 
connection to the office, the Internet, or both. Today, network-connection 
speeds once available only at great cost are relatively inexpensive in many 
places, giving home users more access to more data. These fast data 
connections are allowing home computers to serve up Web pages and to run 
networks that include printers, client PCs, and servers. Many homes use 
firewalls to protect their networks from security breaches. 

In the latter half of the 20th century, computing resources were 
relatively scarce. For a period of time, systems were either batch or interactive. 
Batch systems processed jobs in bulk, with predetermined input from files or 
other data sources. Interactive systems waited for input from users. To 
optimize the use of the computing resources, multiple users shared time on 
these systems. Time- sharing systems used a timer and scheduling algorithms 
to cycle processes rapidly through the CPU, giving each user a share of the 
resources. 

Today, traditional time-sharing systems are uncommon. The same 
scheduling technique is still in use on desktop computers, laptops, servers, and 
even mobile computers, but frequently all the processes are owned by the same 
user (or a single user and the operating system). User processes, and system 
processes that provide services to the user, are managed so that each frequently 
gets a slice of computer time. Consider the windows created while a user is 
working on a PC, the fact that they may be performing different tasks at the 
same time. Even a web browser can be composed of multiple processes, one 
for each website currently being visited, with time sharing applied to each web 
browser process. 

 
1.4.2 Mobile Computing 

Mobile computing refers to computing on handheld smartphones and 
tablet computers. These devices share the distinguishing physical features of 
being portable and lightweight. Historically, compared with desktop and laptop 
computers, mobile systems gave up screen size, memory capacity, and overall 
functionality in return for handheld mobile access to services such as e-mail 
and web browsing. 

Today, mobile systems are used not only for e-mail and web browsing 
but also for playing music and video, reading digital books, taking photos, and 
recording high-definition video. Accordingly, tremendous growth continues 
in the wide range of applications that run on such devices. Many developers are 
now designing applications that take advantage of the unique features of mobile 
devices, such as global positioning system (GPS) chips, accelerometers, and 
gyroscopes. An embedded GPS chip allows a mobile device to use satellites 
to determine its precise location on earth. That functionality is especially useful 
in designing applications that provide navigation — for example, telling users 



which way to walk or drive or perhaps directing them to nearby services, such 
as restaurants. An accelerometer allows a mobile device to detect its 
orientation with respect to the ground and to detect certain other forces, such as 
tilting and shaking. 

Two operating systems currently dominate mobile computing: Apple 
iOS and Google Android. iOS was designed to run on Apple iPhone and iPad 
mobile devices. Android powers smartphones and tablet computers available 
from many manufacturers. 

 
 1.4.3 Distributed Systems 

A distributed system is a collection of physically separate, possibly 
heterogeneous, computer systems that are networked to provide users with 
access to the various resources that the system maintains. Access to a shared 
resource increases computation speed, functionality, data availability, and 
reliability. 

A network, in the simplest terms, is a communication path between 
two or more systems. Distributed systems depend on networking for their 
functionality. Networks vary by the protocols used, the distances between 
nodes, and the transport media. TCP/IP is the most common network protocol, 
and it provides the fundamental architecture of the Internet. Most operating 
systems support TCP/IP, including all general-purpose ones. 

Networks are characterized based on the distances between their nodes. 
A local-area network (LAN) connects computers within a room, a building, 
or a campus. A wide-area network (WAN) usually links buildings, cities, or 
countries. A global company may have a WAN to connect its offices 
worldwide, for example. These networks may run one protocol or several 
protocols. The continuing advent of new technologies brings about new forms 
of networks. For example, a metropolitan-area network (MAN) could link 
buildings within a city. BlueTooth and 802.11 devices use wireless technology 
to communicate over a distance of several feet, in essence creating a personal-
area network (PAN) between a phone and a headset or a smartphone and a 
desktop computer. These networks also vary in their performance and 
reliability. 

Some operating systems have taken the concept of networks and 
distributed systems further than the notion of providing network connectivity. 
A network operating system is an operating system that provides features 
such as file sharing across the network, along with a communication scheme 
that allows different processes on different computers to exchange messages. A 
computer running a network operating system acts autonomously from all 
other computers on the network, although it is aware of the network and is able 
to communicate with other networked computers. 

 
1.4.4 Client – Server Computing 

As PCs have become faster, more powerful, and cheaper, designers 
have shifted away from centralized system architecture. Terminals connected 
to centralized systems are now being supplanted by PCs and mobile devices. 
Correspondingly, user-interface functionality once handled directly by 



centralized systems is increasingly being handled by PCs, quite often through a 
web interface. As a result, many of today’s systems act as server systems to 
satisfy requests generated by client systems. This form of specialized 
distributed system, called a client – server system, has the general structure 
depicted in Figure 1.18. 
Server systems can be broadly categorized as compute servers and file servers: 
The compute-server system provides an interface to which a client can send a 
request to perform an action (for example, read data). In response, the server 
executes the action and sends the results to the client. A server running a 
database that responds to client requests for data is an example of such a 
system. 
The file-server system provides a file-system interface where clients can 
create, update, read, and delete files. An example of such a system is a web 
server that delivers files to clients running web browsers. 
 
 
 
 
 
 
 
 

 
 

 
 

 
General structure of a client – server system. 

 1.4.5 Peer-to-Peer Computing 
Another structure for a distributed system is the peer-to-peer (P2P) 

system model. In this model, clients and servers are not distinguished from one 
another. Instead, all nodes within the system are considered peers, and each 
may act as either a client or a server, depending on whether it is requesting or 
providing a service. Peer-to-peer systems offer an advantage over traditional 
client-server systems. In a client-server system, the server is a bottleneck; but 
in a peer-to-peer system, services can be provided by several nodes distributed 
throughout the network. 

To participate in a peer-to-peer system, a node must first join the 
network of peers. Once a node has joined the network, it can begin providing 
services to — and requesting services from — other nodes in the network. 
Determining what services are available is accomplished in one of two general 
ways: 

When a node joins a network, it registers its service with a centralized 
lookup service on the network. Any node desiring a specific service first contacts 
this centralized lookup service to determine which node provides the service. The 
remainder of the communication takes place between the client and the service 
provider. 

An alternative scheme uses no centralized lookup service. Instead, a 
peer acting as a client must discover what node provides a desired service by 



client 

client client 

client client 

broadcasting a request for the service to all other nodes in the network. The 
node (or nodes) providing that service responds to the peer making the request. 
To support this approach, a discovery protocol must be provided that allows 
peers to discover services provided by other peers in the network. Figure 1.19 
illustrates such a scenario. 

Peer-to-peer networks gained widespread popularity in the late 1990s 
with several file-sharing services, such as Napster and Gnutella, that enabled 
peers to exchange files with one another. The Napster system used an approach 
similar to the first type described above: a centralized server maintained an index 
of all files stored on peer nodes in the Napster network, and the actual exchange 
of files took place between the peer nodes. The Gnutella system used a technique 
similar to the second type: a client broadcasted file requests to other nodes in the 
system, and nodes that could service the request responded directly to the client. 

 

 
Peer-to-peer system with no centralized service. 

 
Skype is another example of peer-to-peer computing. It allows clients 

to make voice calls and video calls and to send text messages over the Internet 
using a technology known as voice over IP (VoIP). Skype uses a hybrid peer-
to-peer approach. It includes a centralized login server, but it also incorporates 
decentralized peers and allows two peers to communicate. 

 
 1.4.6 Virtualization 

Virtualization is a technology that allows operating systems to run as 
applications within other operating systems. At first blush, there seems to be 
little reason for such functionality. 

Broadly speaking, virtualization is one member of a class of software 
that also includes emulation. Emulation is used when the source CPU type is 
different from the target CPU type. For example, when Apple switched from 
the IBM Power CPU to the Intel x86 CPU for its desktop and laptop 
computers, it included  an  emulation  facility  called  ―Rosetta,‖  which  
allowed  applications compiled for the IBM CPU to run on the Intel CPU. 

A common example of emulation occurs when a computer language is 
not compiled to native code but instead is either executed in its high-level form 
or translated to an intermediate form. This is known as interpretation. Some 



languages, such as BASIC, can be either compiled or interpreted. Java, in 
contrast, is always interpreted. Interpretation is a form of emulation in that the 
high-level language code is translated to native CPU instructions, emulating 
not another CPU but a theoretical virtual machine on which that language 
could run natively.  Thus,  we  can  run  Java  programs  on  ―Java  virtual  
machines,‖  but technically those virtual machines are Java emulators. 

With virtualization, in contrast, an operating system that is natively 
compiled for a particular CPU architecture runs within another operating 
system also native to that CPU. Virtualization first came about on IBM 
mainframes as a method for multiple users to run tasks concurrently. Running 
multiple virtual machines allowed (and still allows) many users to run tasks on 
a system designed for a single user. Later, in response to problems with 
running multiple Microsoft Windows XP applications on the Intel x86 CPU, 
VMware created a new virtualization technology in the form of an application 
that ran on XP. That application ran one or more guest copies of Windows or 
other native x86 operating systems, each running its own applications. (See 
Figure 1.20.) Windows was the host operating system, and the VMware 
application was the virtual machine manager VMM. The VMM runs the guest 
operating systems, manages their resource use, and protects each guest from 
the others. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VMware. 



Even though modern operating systems are fully capable of running 
multiple applications reliably, the use of virtualization continues to grow. On 
laptops and desktops, a VMM allows the user to install multiple operating 
systems for exploration or to run applications written for operating systems 
other than the native host. For example, an Apple laptop running Mac OS X on 
the x86 CPU can run a Windows guest to allow execution of Windows 
applications. Companies writing software for multiple operating systems can 
use virtualization to run all of those operating systems on a single physical 
server for development, testing, and debugging. Within data centers, 
virtualization has become a common method of executing and managing 
computing environments. VMMs like VMware, ESX, and Citrix XenServer no 
longer run on host operating systems but rather are the hosts. 

 
1.4.7. Cloud Computing 

Cloud computing is a type of computing that delivers computing, 
storage, and even applications as a service across a network. In some ways, it’s 
a logical extension of virtualization, because it uses virtualization as a base for 
its functionality. For example, the Amazon Elastic Compute Cloud (EC2) 
facility has thousands of servers, millions of virtual machines, and petabytes of 
storage available for use by anyone on the Internet. Users pay per month based 
on how much of those resources they use. 

There are actually many types of cloud computing, including the following: 
Public cloud — a cloud available via the Internet to anyone willing to 
pay for the services 
Private cloud — a cloud run by a company for that company’s own use 
Hybrid cloud — a cloud that includes both public and private cloud 
components 
Software as a service (SaaS) — one or more applications (such as 
word processors or spreadsheets) available via the Internet 
Platform as a service (PaaS) — a software stack ready for application use via 
the Internet (for example, a database server) 
Infrastructure as a service (IaaS) — servers or storage available over the 
Internet (for example, storage available for making backup copies of production 
data) 
 
These cloud-computing types are not discrete, as a cloud computing environ-
ment may provide a combination of several types. For example, an organization 
may provide both SaaS and IaaS as a publicly available service. 

 
Certainly, there are traditional operating systems within many of the types of 
cloud infrastructure. Beyond those are the VMMs that manage the virtual 
machines in which the user processes run. At a higher level, the VMMs 
themselves are managed by cloud management tools, such as Vware vCloud 
Director and the open-source Eucalyptus toolset. These tools manage the 
resources within a given cloud and provide interfaces to the cloud components, 
making a good argument for considering them a new type of operating system. 



Figure 1.21 illustrates a public cloud providing IaaS. Notice that both the cloud 
services and the cloud user interface are protected by a firewall. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cloud computing. 

 
1.4.8Real-Time Embedded Systems 

Embedded computers are the most prevalent form of computers in 
existence. These devices are found everywhere, from car engines and 
manufacturing robots to DVDs and microwave ovens. They tend to have very 
specific tasks. The systems they run on are usually primitive, and so the 
operating systems provide limited features. Usually, they have little or no user 
interface, preferring to spend their time monitoring and managing hardware 
devices, such as automobile engines and robotic arms. 

These embedded systems vary considerably. Some are general-purpose 
computers, running standard operating systems — such as Linux — with 
special- purpose applications to implement the functionality. Others are hard-
ware devices with a special-purpose embedded operating system providing just 
the functionality desired. Yet others are hardware devices with application-
specific integrated circuits (ASICs) that perform their tasks without an 
operating system. 

The use of embedded systems continues to expand. The power of these 
devices, both as standalone units and as elements of networks and the web, is 
sure to increase as well. Even now, entire houses can be computerized, so that 
a central computer — either a general-purpose computer or an embedded 
system — can control heating and lighting, alarm systems, and even coffee 



makers. Web access can enable a home owner to tell the house to heat up 
before she arrives home. Someday, the refrigerator can notify the grocery store 
when it notices the milk is gone. 

Embedded systems almost always run real-time operating systems. A 
real-time system is used when rigid time requirements have been placed on the 
operation of a processor or the flow of data; thus, it is often used as a control 
device in a dedicated application. Sensors bring data to the computer. The 
computer must analyze the data and possibly adjust controls to modify the 
sensor inputs. Systems that control scientific experiments, medical imaging 
systems, industrial control systems, and certain display systems are real-time 
systems. Some automobile-engine fuel-injection systems, home-appliance 
controllers, and weapon systems are also real-time systems. 
 1.5 Open-Source Operating Systems 
 
 
 
 
  
  
  
  
  
  
  
 1.6 Operating-System Services 
An operating system provides an environment for the execution of programs. It 
provides certain services to programs and to the users of those programs. The 
specific services provided, of course, differ from one operating system to 
another, but we can identify common classes. These operating system services 
are provided for the convenience of the programmer, to make the programming 
task easier. Figure 2.1 shows one view of the various operating-system services 
and how they interrelate. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A view of 
operating system 

services. 
One set of operating system services provides functions that are helpful to the 
user. 
User interface. Almost all operating systems have a user interface (UI). This 
interface can take several forms. One is a command-line interface (CLI), which 
uses text commands and a method for entering them (say, a keyboard for typing 
in commands in a specific format with specific options). Another is a batch 
interface, in which commands and directives to control those commands are 
entered into files, and those files are executed. Most commonly, a graphical 
user interface (GUI) is used. Here, the interface is a window system with a 
pointing device to direct I/O, choose from menus, and make selections and a 
keyboard to enter text. Some systems provide two or all three of these variations. 
Program execution. The system must be able to load a program into memory 
and to run that program. The program must be able to end its execution, either 
normally or abnormally (indicating error). 
I/O operations. A running program may require I/O, which may involve a file or 
an I/O device. For specific devices, special functions may be desired (such as 
recording to a CD or DVD drive or blanking a display screen). For efficiency 
and protection, users usually cannot control I/O devices directly. Therefore, the 



operating system must provide a means to do I/O. 
File-system manipulation. The file system is of particular interest. Obvi- ously, 
programs need to read and write files and directories. They also need to create 
and delete them by name, search for a given file, and list file information. 
Finally, some operating systems include permissions management to allow or 
deny access to files or directories based on file ownership. Many operating 
systems provide a variety of file systems, sometimes to allow personal choice 
and sometimes to provide specific features or performance characteristics. 
Communications. There are many circumstances in which one process needs to 
exchange information with another process. Such communication may occur 
between processes that are executing on the same computer or between processes 
that are executing on different computer systems tied together by a computer 
network. Communications may be implemented via shared memory, in which 
two or more processes read and write to a shared section of memory, or message 
passing, in which packets of information in predefined formats are moved 
between processes by the operating system. 
Error detection. The operating system needs to be detecting and correcting 
errors constantly. Errors may occur in the CPU and memory hardware (such as a 
memory error or a power failure), in I/O devices (such as a parity error on disk, a 
connection failure on a network, or lack of paper in the printer), and in the user 
program (such as an arithmetic overflow, an attempt to access an illegal 
memory location, or a too-great use of CPU time). For each type of error, the 
operating system should take the appropriate action to ensure correct and 
consistent computing. Sometimes, it has no choice but to halt the system. At 
other times, it might terminate an error-causing process or return an error code to 
a process for the process to detect and possibly correct. 

Another set of operating system functions exists not for helping the user 
but rather for ensuring the efficient operation of the system itself. Systems with 
multiple users can gain efficiency by sharing the computer resources among the 
users. 



Resource allocation. When there are multiple users or multiple jobs running at 
the same time, resources must be allocated to each of them. The operating system 
manages many different types of resources. Some (such as CPU cycles, main 
memory, and file storage) may have special allocation code, whereas others (such 
as I/O devices) may have much more general request and release code. For 
instance, in determining how best to use the CPU, operating systems have CPU-
scheduling routines that take into account the speed of the CPU, the jobs that 
must be executed, the number of registers available, and other factors. There may 
also be routines to allocate printers, USB storage drives, and other peripheral 
devices. 
Accounting. We want to keep track of which users use how much and what 
kinds of computer resources. This record keeping may be used for accounting (so 
that users can be billed) or simply for accumulating usage statistics. Usage 
statistics may be a valuable tool for researchers who wish to reconfigure the 
system to improve computing services. 
Protection and security. The owners of information stored in a multiuser or 
networked computer system may want to control use of that information. When 
several separate processes execute concurrently, it should not be possible for one 
process to interfere with the others or with the operating system itself. Protection 
involves ensuring that all access to system resources is controlled. Security of the 
system from outsiders is also important. Such security starts with requiring each 
user to authenticate himself or herself to the system, usually by means of a 
password, to gain access to system resources. It extends to defending external I/O 
devices, including network adapters, from invalid access attempts and to 
recording all such connections for detection of break- ins. If a system is to be 
protected and secure, precautions must be instituted throughout it. A chain is only 
as strong as its weakest link. 

 
1.7 User and Operating-System Interface 

Here, we discuss two fundamental approaches. One provides a command-
line interface, or command interpreter, that allows users to directly enter 
commands to be performed by the operating system. The other allows users to 
interface with the operating system via a graphical user interface, or GUI. 

 
1.7.1Command Interpreters 

Some operating systems include the command interpreter in the kernel. 
Others, such as Windows and UNIX, treat the command interpreter as a special 
program that is running when a job is initiated or when a user first logs on (on 
interactive systems). On systems with multiple command interpreters to choose 
from, the interpreters are known as shells. For example, on UNIX and Linux 
systems, a user may choose among several different shells, including the Bourne 
shell, C shell, Bourne-Again shell, Korn shell, and others. 



The main function of the command interpreter is to get and execute the 
next user-specified command. Many of the commands given at this level 
manipulate files: create, delete, list, print, copy, execute, and so on. The MS- 
DOS and UNIX shells operate in this way. These commands can be implemented 
in two general ways. 

In one approach, the command interpreter itself contains the code to 
execute the command. For example, a command to delete a file may cause the 
command interpreter to jump to a section of its code that sets up the parameters 
and makes the appropriate system call. In this case, the number of commands that 
can be given determines the size of the command interpreter, since each 
command requires its own implementing code. 

An alternative approach — used by UNIX, among other operating 
systems— implements most commands through system programs. In this case, 
the command interpreter does not understand the command in any way; it merely 
uses the command to identify a file to be loaded into memory and executed. 
Thus, the UNIX command to delete a file 

rm file.txt 
would search for a file called rm, load the file into memory, and execute it 

with the parameter file.txt. The function associated with the rm command 
would be defined completely by the code in the file rm. In this way, 
programmers can add new commands to the system easily by creating new files 
with the proper names. The command-interpreter program, which can be small, 
does not have to be changed for new commands to be added. 

 
1.7.2 Graphical User Interfaces 

A second strategy for interfacing with the operating system is through a 
user-friendly graphical user interface, or GUI. Here, rather than entering 
commands directly via a command-line interface, users employ a mouse-based 
window-and-menu system characterized by a desktop metaphor. The user moves 
the mouse to position its pointer on images, or icons, on the screen (the desktop) 
that represent programs, files, directories, and system functions. Depending on 
the mouse pointer’s location, clicking a button on the mouse can invoke a 
program, select a file or directory — known as a folder — or pull down a menu 
that contains commands. 

 
Because a mouse is impractical for most mobile systems, smartphones 

and handheld tablet computers typically use a touchscreen interface. Here, users 
interact by making gestures on the touchscreen — for example, pressing and 
swiping fingers across the screen. Figure 2.3 illustrates the touchscreen of the 
Apple iPad. Whereas earlier smartphones included a physical keyboard, most 
smartphones now simulate a keyboard on the touchscreen. 

Traditionally, UNIX systems have been dominated by command-line 
interfaces. Various GUI interfaces are available, however. These include the 
Common Desktop Environment (CDE) and X-Windows systems, which are 
common on commercial versions of UNIX, such as Solaris and IBM’s AIX 



system. In addition, there has been significant development in GUI designs from 
various open-source projects, such as K Desktop Environment (or KDE) and the 
GNOME desktop by the GNU project. Both the KDE and GNOME desktops run 
on Linux and various UNIX systems and are available under open-source 
licenses, which means their source code is readily available for reading and for 
modification under specific license terms. 

 
The iPad touchscreen. 

1.7.3 Choice of Interface 

The choice of whether to use a command-line or GUI interface is mostly 
one of personal preference. System administrators who manage computers and 
power users who have deep knowledge of a system frequently use the command-
line interface. For them, it is more efficient, giving them faster access to the 
activities they need to perform. Indeed, on some systems, only a subset of system 
functions is available via the GUI, leaving the less common tasks to those who 
are command-line knowledgeable. Further, command-line interfaces usually 
make repetitive tasks easier, in part because they have their own 
programmability. For example, if a frequent task requires a set of command-line 
steps, those steps can be recorded into a file, and that file can be run just like a 
program. The program is not compiled into executable code but rather is 
interpreted by the command-line interface. These shell scripts are very common 
on systems that are command-line oriented, such as UNIX and Linux. 

 

 



1.8 System Calls 
 

System calls provide an interface to the services made available by an 
operating system. These calls are generally available as routines written in C and 
C++, although certain low-level tasks (for example, tasks where hardware must 
be accessed directly) may have to be written using assembly-language 
instructions. 

Before we discuss how an operating system makes system calls available, 
let’s first use an example to illustrate how system calls are used: writing a simple 
program to read data from one file and copy them to another file. The first input 
that the program will need is the names of the two files: the input file and the 
output file. These names can be specified in many ways, depending on the 
operating-system design. One approach is for the program to ask the user for the 
names. In an interactive system, this approach will require a sequence of system 
calls, first to write a prompting message on the screen and then to read from the 
keyboard the characters that define the two files. On mouse-based and icon-based 
systems, a menu of file names is usually displayed in a window. The user can 
then use the mouse to select the source name, and a window can be opened for 
the destination name to be specified. This sequence requires many I/O system 
calls. 

Once the two file names have been obtained, the program must open the 
input file and create the output file. Each of these operations requires another 
system call. Possible error conditions for each operation can require additional 
system calls. When the program tries to open the input file, for example, it may 
find that there is no file of that name or that the file is protected against access. In 
these cases, the program should print a message on the console (another sequence 
of system calls) and then terminate abnormally (another system call). If the input 
file exists, then we must create a new output file. We may find that there is 
already an output file with the same name. This situation may cause the program 
to abort (a system call), or we may delete the existing file (another system call) 
and create a new one (yet another system call). Another option, in an interactive 
system, is to ask the user (via a sequence of system calls to output the 
prompting message and to read the response from the terminal) whether to 
replace the existing file or to abort the program. 

When both files are set up, we enter a loop that reads from the input file (a 
system call) and writes to the output file (another system call). Each read and 
write must return status information regarding various possible error conditions. 
On input, the program may find that the end of the file has been reached or that 
there was a hardware failure in the read (such as a parity error). The write 
operation may encounter various errors, depending on the output device (for 
example, no more disk space). 



Finally, after the entire file is copied, the program may close both files 
(another system call), write a message to the console or window (more system 
calls), and finally terminate normally (the final system call). This system-call 
sequence is shown in Figure 2.5. 

Typically, application developers design programs according to an 
application programming interface (API). The API specifies a set of functions 
that are available to an application programmer, including the parameters that are 
passed to each function and the return values the programmer can expect. Three 
of the most common APIs available to application programmers are the Windows 
API for Windows systems, the POSIX API for POSIX-based systems (which 
include virtually all versions of UNIX, Linux, and Mac OS X), and the Java API 
for programs that run on the Java virtual machine. A programmer accesses an 
API via a library of code provided by the operating system. In the case of UNIX 
and Linux for programs written in the C language, the library is called libc. Note 
that — unless specified — the system-call names used throughout this text are 
generic examples. Each operating system has its own name for each system call. 

There are several reasons for doing so. One benefit concerns program 
portability. An application program mer designing a program using an API can 
expect her program to compile and run on any system that supports the same 
API. 

 
source file 

 
 

destination 
file 

Example System Call Sequence 
Acquire input file name 
Write prompt to screen 
Accept input 

Acquire output file name 
Write prompt to screen 
Accept input 

Open the input file 
if file doesn't exist, abort 

Create output file 
if file exists, abort 

Loop 
Read from input file 

Write to output file 
Until read fails 
Close output file 
Write completion message to screen 
Terminate normally 

 
Example of how system calls are used. 
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For most programming languages, the run-time support system (a set of 
functions built into libraries included with a compiler) provides a system-call 
interface that serves as the link to system calls made available by the operating 
system. The system-call interface intercepts function calls in the API and 
invokes the necessary system calls within the operating system. Typically, a 
number is associated with each system call, and the system-call interface 
maintains a table indexed according to these numbers. The system call 
interface then invokes the intended system call in the operating-system kernel 
and returns the status of the system call and any return values. 

 
 
 
 
 

open ( 

 
return 

 
Figure 2.6 The handling of a user application invoking the open() 
system call. 

System calls occur in different ways, depending on the computer in use. 
Often, more information is required than simply the identity of the desired 
system call. The exact type and amount of information vary according to the 
particular operating system and call. For example, to get input, we may need to 
specify the file or device to use as the source, as well as the address and length 
of the memory buffer into which the input should be read. Of course, the 
device or file and length may be implicit in the call. 

 
1.9 Types of System Calls 

System calls can be grouped roughly into six major categories: process 
control, file manipulation, device manipulation, information maintenance, 
communications, and protection. Figure 2.8 summarizes the types of system 
calls normally provided by an operating system. 

user application 

) 



Process Control 

A running program needs to be able to halt its execution either 
normally (end()) or abnormally (abort()). If a system call is made to terminate 
the currently running program abnormally, or if the program runs into a 
problem and causes an error trap, a dump of memory is sometimes taken and 
an error message generated. The dump is written to disk and may be examined 
by a debugger — a system program designed to aid the programmer in finding 
and correcting errors, or bugs— to determine the cause of the problem. Under 
either normal or abnormal circumstances, the operating system must transfer 
control to the invoking command interpreter. The command interpreter then 
reads the next command. In an interactive system, the command interpreter 
simply continues with the next command; it is assumed that the user will issue 
an appropriate command to respond to any error. In a GUI system, a pop-up 
window might alert the user to the error and ask for guidance. In a batch 
system, the command interpreter usually terminates the entire job and 
continues with the next job. Some systems may allow for special recovery 
actions in case an error occurs. If the program discovers an error in its input 
and wants to terminate abnormally, it may also want to define an error level. 
More severe errors can be indicated by a higher- level error parameter. 

 
Process control 

end, abort 
load, execute 
create process, terminate process 
get process attributes, set process attributes 
wait for time 
wait event, signal event 
allocate and free memory 

File management 
create file, delete file 

open, close 

read, write, reposition 
get file attributes, set file attributes 

Device management 
request device, release device 
read, write, reposition 
get device attributes, set device attributes 
logically attach or detach devices 



Information maintenance 
get time or date, set time or date 

get system data, set system data 

get process, file, or device attributes 
set process, file, or device attributes 

Communications 
create, delete communication connection 

send, receive messages 

transfer status information 
attach or detach remote devices 

Types of system calls. 

 
It is then possible to combine normal and abnormal termination by defining a 
normal termination as an error at level 0. The command interpreter or a 
following program can use this error level to determine the next action 
automatically. 

A process or job executing one program may want to load() and execute() 
another program. 

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS 
 

 Windows Unix 

Process CreateProcess() fork() 
Control ExitProcess() exit() 

 WaitForSingleObject() wait() 

File CreateFile() open() 
Manipulation ReadFile() read() 

 WriteFile() write() 
 CloseHandle() close() 

Device SetConsoleMode() ioctl() 
Manipulation ReadConsole() read() 

 WriteConsole() write() 

Information GetCurrentProcessID() getpid() 
Maintenance SetTimer() alarm() 

 Sleep() sleep() 
Communication CreatePipe() pipe() 
 CreateFileMapping() shm open() 
 MapViewOfFile() mmap() 



Protection SetFileSecurity() chmod() 
 InitlializeSecurityDescriptor() umask() 
 SetSecurityDescriptorGroup() chown() 

 
An interesting question is where to return control when the loaded 

program terminates. This question is related to whether the existing program is 
1lo1s1t, saved, or allowed to continue execution concurrently with the new program. 

If control returns to the existing program when the new program 
terminates, we must save the memory image of the existing program; thus, we 
have effectively created a mechanism for one program to call another program. If 
both programs continue concurrently, we have created a new job or process to be 
multiprogrammed. Often, there is a system call specifically for this purpose 
(create process() or submit job()). 

    

 

If we create a new job or process, or perhaps even a set of jobs or processes, we 
should be able to control its execution. This control requires the ability to 
determine and reset the attributes of a job or process, includ-ing the job’s priority, 
its maximum allowable execution time, and so on (get process attributes() and set 
process attributes()). We may also want to terminate a job or process that we 
created (terminate process()) if we find that it is incorrect or is no longer needed. 
Having created new jobs or processes, we may need to wait for them to finish 
their execution. We may want to wait for a certain amount of time to pass (wait 
time()). More probably, we will want to wait for a specific event to occur (wait 
event()). The jobs or processes should then signal when that event has occurred 
(signal event()). 
 File Management 

We first need to be able to create() and delete() files. Either system call 
requires the name of the file and perhaps some of the file’s attributes. Once the 
file is created, we need to open() it and to use it. We may also read(), write(), or 
reposition() (rewind or skip to the end of the file, for example). Finally, we need 
to close() the file, indicating that we are no longer using it. 

We may need these same sets of operations for directories if we have a 
directory structure for organizing files in the file system. In addition, for either 
files or directories, we need to be able to determine the values of various 
attributes and perhaps to reset them if necessary. File attributes include the file 
name, file type, protection codes, accounting information, and so on. At least two 
system calls, get file attributes() and set file attributes(), are required for this 
function. Some operating systems provide many more calls, such as calls for file 
move() and copy(). 



 Device Management 

A process may need several resources to execute — main memory, disk 
drives, access to files, and so on. If the resources are available, they can be 
granted, and control can be returned to the user process. Otherwise, the process 
will have to wait until sufficient resources are available. 

The various resources controlled by the operating system can be thought 
of as devices. Some of these devices are physical devices (for example, disk 
drives), while others can be thought of as abstract or virtual devices (for example, 
files). A system with multiple users may require us to first request() a device, to 
ensure exclusive use of it. After we are finished with the device, we release() it. 
These functions are similar to the open() and close() system calls for files. Other 
operating systems allow unmanaged access to devices. 

 
 Information Maintenance 

Many system calls exist simply for the purpose of transferring information 
between the user program and the operating system. For example, most systems 
have a system call to return the current time() and date(). Other system calls may 
return information about the system, such as the number of current users, the 
version number of the operating system, the amount of free memory or disk 
space, and so on. 

Many operating systems provide a time profile of a program to indicate 
the amount of time that the program executes at a particular location or set of 
locations. A time profile requires either a tracing facility or regular timer 
interrupts. At every occurrence of the timer interrupt, the value of the program 
counter is recorded. With sufficiently frequent timer interrupts, a statistical 
picture of the time spent on various parts of the program can be obtained. 

In addition, the operating system keeps information about all its processes, 
and system calls are used to access this information. Generally, calls are also used 
to reset the process information (get process attributes() and set process 
attributes()). 

 
 Communication 

There are two common models of interprocess communication: the 
message-passing model and the shared-memory model. In the message-passing 
model, the communicating processes exchange messages with one another to 
transfer information. Messages can be exchanged between the processes either 
directly or indirectly through a common mailbox. Before communication can take 
place, a connection must be opened. The name of the other communicator must 
be known, be it another process on the same system or a process on another 
computer connected by a communications network. Each computer in a network 
has a host name by which it is commonly known. A host also has a network 
identifier, such as an IP address. Similarly, each process has a process name, and 
this name is translated into an identifier by which the operating system can refer 
to the process. The get hostid() and get processid() system calls do this 
translation. The identifiers are then passed to the general-purpose open() and 



close() calls provided by the file system or to specific open connection() and 
close connection() system calls, depending on the system’s model of 
communication. The recipient process usually must give its permission for 
communication to take place with an accept connection() call. Most processes 
that will be receiving connections are special-purpose daemons, which are 
system programs provided for that purpose. They execute a wait for connection() 
call and are awakened when a connection is made. The source of the 
communication, known as the client, and the receiving daemon, known as a 
server, then exchange messages by using read message() and write message() 
system calls. The close connection() call terminates the communication. 

In the shared-memory model, processes use shared memory create() and 
shared memory attach() system calls to create and gain access to regions of 
memory owned by other processes. Shared memory requires that two or more 
processes agree to remove this restriction. They can then exchange information 
by reading and writing data in the shared areas. 

Both of the models just discussed are common in operating systems, and 
most systems implement both. Message passing is useful for exchanging smaller 
amounts of data, because no conflicts need be avoided. It is also easier to 
implement than is shared memory for intercomputer communication. 

 
 Protection 

Protection provides a mechanism for controlling access to the resources 
provided by a computer system. Historically, protection was a concern only on 
multiprogrammed computer systems with several users. However, with the 
advent of networking and the Internet, all computer systems, from servers to 
mobile handheld devices, must be concerned with protection. 

Typically, system calls providing protection include set permission() and 
get permission(), which manipulate the permission settings of resources such as 
files and disks. The allow user() and deny user() system calls specify whether 
particular users can — or cannot — be allowed access to certain resources. 

 System Programs 

System programs, also known as system utilities, provide a convenient 
environment for program development and execution. Some of them are simply 
user interfaces to system calls. Others are considerably more complex. They can 
be divided into these categories: 

File management. These programs create, delete, copy, rename, print, dump, 
list, and generally manipulate files and directories. 
Status information. Some programs simply ask the system for the date, time, 
amount of available memory or disk space, number of users, or similar status 
information. Others are more complex, providing detailed performance, logging, 
and debugging information. Typically, these pro-grams format and print the 
output to the terminal or other output devices or files or display it in a window of 



the GUI. Some systems also support a registry, which is used to store and 
retrieve configuration information. 
File modification. Several text editors may be available to create and modify the 
content of files stored on disk or other storage devices. There may also be special 
commands to search contents of files or perform transformations of the text. 
Programming-language support. Compilers, assemblers, debuggers, and 
interpreters for common programming languages (such as C, C++, Java, and 
PERL) are often provided with the operating system or available as a separate 
download. 
Program loading and execution. Once a program is assembled or com-piled, it 
must be loaded into memory to be executed. The system may provide absolute 
loaders, relocatable loaders, linkage editors, and overlay loaders. Debugging 
systems for either higher-level languages or machine language are needed as 
well. 
Communications. These programs provide the mechanism for creating virtual 
connections among processes, users, and computer systems. They allow users to 
send messages to one another’s screens, to browse Web pages, to send e-mail 
messages, to log in remotely, or to transfer files from one machine to another. 

 
Background services. All general-purpose systems have methods for launching 
certain system-program processes at boot time. Some of these processes 
terminate after completing their tasks, while others continue to run until the 
system is halted. Constantly running system-program processes are known as 
services, subsystems, or daemons. 

Along with system programs, most operating systems are supplied with 
programs that are useful in solving common problems or performing common 
operations. Such application programs include Web browsers, word proces-sors 
and text formatters, spreadsheets, database systems, compilers, plotting and 
statistical-analysis packages, and games. 

 
1.10 Operating-System Design and Implementation 

In this section, we discuss problems we face in designing and implementing an 
operating system. There are, of course, no complete solutions to such problems, 
but there are approaches that have proved successful. 

 
 Design Goals 

The first problem in designing a system is to define goals and 
specifications. At the highest level, the design of the system will be affected by 
the choice of hardware and the type of system: batch, time sharing, single user, 
multiuser, distributed, real time, or general purpose. 

Beyond this highest design level, the requirements may be much harder to 
specify. The requirements can, however, be divided into two basic groups: user 
goals and system goals. 



Users want certain obvious properties in a system. The system should be 
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course, 
these specifications are not particularly useful in the system design, since there is 
no general agreement on how to achieve them. 

A similar set of requirements can be defined by those people who must 
design, create, maintain, and operate the system. The system should be easy to 
design, implement, and maintain; and it should be flexible, reliable, error free, 
and efficient. Again, these requirements are vague and may be interpreted in 
various ways. 

There is,  in short, no unique solution to the problem of defining the 
requirements for an operating system. The wide range of systems in existence 
shows that different requirements can result in a large variety of solutions for 
different environments. For example, the requirements for VxWorks, a real time 
operating system for embedded systems, must have been substantially different 
from those for MVS, a large multiuser, multiaccess operating system for IBM 
mainframes. Specifying and designing an operating system is a highly creative 
task. 

Although no textbook can tell you how to do it, general principles have 
been developed in the field of software engineering, and we turn now to a 
discussion of some of these principles. 
 Mechanisms and Policies 

One important principle is the separation of policy from mechanism. 
Mecha-nisms determine how to do something; policies determine what will be 
done. For example, the timer construct (see Section 1.5.2) is a mechanism for 
ensuring CPU protection, but deciding how long the timer is to be set for a 
particular user is a policy decision. 

 
The separation of policy and mechanism is important for flexibility. 

Policies are likely to change across places or over time. In the worst case, each 
change in policy would require a change in the underlying mechanism. A general 
mechanism insensitive to changes in policy would be more desirable. A change in 
policy would then require redefinition of only certain parameters of the system. 
For instance, consider a mechanism for giving priority to certain types of 
programs over others. If the mechanism is properly separated from policy, it can 
be used either to support a policy decision that I/O-intensive programs should 
have priority over CPU-intensive ones or to support the opposite policy. 

Microkernel-based operating systems take the separation of mechanism 
and policy to one extreme by implementing a basic set of primitive building 
blocks. These blocks are almost policy free, allowing more advanced mechanisms 
and policies to be added via user-created kernel modules or user programs 
themselves. As an example, consider the history of UNIX. 

Policy decisions are important for all resource allocation. Whenever it is 
necessary to decide whether or not to allocate a resource, a policy decision must 
be made. Whenever the question is how rather than what, it is a mechanism that 
must be determined. 



 Implementation 

Once an operating system is designed, it must be implemented. Because 
operating systems are collections of many programs, written by many people over 
a long period of time, it is difficult to make general statements about how they are 
implemented. Early operating systems were written in assembly language. Now, 
although some operating systems are still written in assembly language, most are 
written in a higher-level language such as C or an even higher-level language 
such as C++. Actually, an operating system can be written in more than one 
language. The lowest levels of the kernel might be assembly language. Higher- 
level routines might be in C, and system programs might be in C or C++, in 
interpreted scripting languages like PERL or Python, or in shell scripts. In fact, a 
given Linux distribution probably includes programs written in all of those 
languages. 

The first system that was not written in assembly language was probably 
the Master Control Program (MCP) for Burroughs computers. MCP was written 
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in the 
system programming language PL/1. The Linux and Windows operating system 
kernels are written mostly in C, although there are some small sections of 
assembly code for device drivers and for saving and restoring the state of 
registers. 

The advantages of using a higher-level language, or at least a systems- 
implementation language, for implementing operating systems are the same as 
those gained when the language is used for application programs: the code can be 
written faster, is more compact, and is easier to understand and debug. In 
addition, improvements in compiler technology will improve the generated code 
for the entire operating system by simple recompilation. Finally, an operating 
system is far easier to port — to move to some other hardware — if it is written 
in a higher-level language. For example, MS-DOS was written in Intel 8088 
assembly language. Consequently, it runs natively only on the Intel X86 family of 
CPUs. (Note that although MS-DOS runs natively only on Intel X86, emulators 
of the X86 instruction set allow the operating system to run on other CPUs . 

The only possible disadvantages of implementing an operating system in a 
higher-level language are reduced speed and increased storage requirements. 
This, however, is no longer a major issue in today’s systems. Although an expert 
assembly-language programmer can produce efficient small routines, for large 
programs a modern compiler can perform complex analysis and apply 
sophisticated optimizations that produce excellent code. Modern processors have 
deep pipelining and multiple functional units that can handle the details of 
complex dependencies much more easily than can the human mind. 

 

 

 

 



1.11Operating-System Structure 
 
A system as large and complex as a modern operating system must be engineered 
carefully if it is to function properly and be modified easily. A common approach 
is to partition the task into small components, or modules, rather than have one 
monolithic system. Each of these modules should be a well-defined portion of 
the system, with carefully defined inputs, outputs, and functions. In this section, 
we discuss how these components are interconnected and melded into a kernel. 
1.11.1 Simple Structure 

Many operating systems do not have well-defined structures. Frequently, 
such systems started as small, simple, and limited systems and then grew beyond 
their original scope. MS-DOS is an example of such a system. It was originally 
designed and implemented by a few people who had no idea that it would become 
so popular. It was written to provide the most functionality in the least space, so it 
was not carefully divided into modules. Figure 2.11 shows its structure. 

 
In MS-DOS, the interfaces and levels of functionality are not well 

separated. For instance, application programs are able to access the basic I/O 
routines to write directly to the display and disk drives. Such freedom leaves MS- 
DOS vulnerable to errant (or malicious) programs, causing entire system crashes 
when user programs fail. Of course, MS-DOS was also limited by the hardware 
of its era. Because the Intel 8088 for which it was written provides no dual mode 
and no hardware protection, the designers of MS-DOS had no choice but to leave 
the base hardware accessible. 

Another example of limited structuring is the original UNIX operating 
system. Like MS-DOS, UNIX initially was limited by hardware functionality. It 
consists of two separable parts: the kernel and the system programs. The kernel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 MS-DOS layer structure. 
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Figure 2.12 Traditional UNIX system structure. 

 
is further separated into a series of interfaces and device drivers, which have 
been added and expanded over the years as UNIX has evolved. We can view 
the traditional UNIX operating system as being layered to some extent, as 
shown in Figure 2.12. Everything below the system-call interface and above 
the physical hardware is the kernel. The kernel provides the file system, CPU 
scheduling, memory management, and other operating-system functions 
through system calls. 
 
1.11.2 Layered Approach 

With proper hardware support, operating systems can be broken into 
pieces that are smaller and more appropriate than those allowed by the original 
MS-DOS and UNIX systems. The operating system can then retain much 
greater control over the computer and over the applications that make use of 
that computer. Implementers have more freedom in changing the inner 
workings of the system and in creating modular operating systems. Under a 
top-down approach, the overall functionality and features are determined and 
are separated into components. Information hiding is also important, because it 
leaves programmers free to implement the low-level routines as they see fit, 
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hardware 

provided that the external interface of the routine stays unchanged and that the 
routine itself performs the advertised task. 

 
A system can be made modular in many ways. One method is the 

layered approach, in which the operating system is broken into a number of 
layers (levels). The bottom layer (layer 0) is the hardware; the highest (layer N) 
is the user interface. This layering structure is depicted in Figure 2.13. 

 
 

 

Figure 2.13 A layered operating system. 

An operating-system layer is an implementation of an abstract object 
made up of data and the operations that can manipulate those data. A typical 
operating-system layer — say, layer M — consists of data structures and a set 
of routines that can be invoked by higher-level layers. Layer M, in turn, can 
invoke operations on lower-level layers. 

The main advantage of the layered approach is simplicity of 
construction and debugging. The layers are selected so that each uses functions 
(operations) and services of only lower-level layers. This approach simplifies 
debugging and system verification. The first layer can be debugged without 
any concern for the rest of the system, because, by definition, it uses only the 
basic hardware (which is assumed correct) to implement its functions. Once the 
first layer is debugged, its correct functioning can be assumed while the second 
layer is debugged, and so on. If an error is found during the debugging of a 
particular layer, the error must be on that layer, because the layers below it are 
already debugged. Thus, the design and implementation of the system are 
simplified. 

Each layer is implemented only with operations provided by lower- 
level layers. A layer does not need to know how these operations are 
implemented; it needs to know only what these operations do. Hence, each 
layer hides the existence of certain data structures, operations, and hardware 
from higher-level layers. 



The major difficulty with the layered approach involves appropriately 
defining the various layers. Because a layer can use only lower-level layers, 
careful planning is necessary. For example, the device driver for the backing 
store (disk space used by virtual-memory algorithms) must be at a lower level 
than the memory-management routines, because memory management requires 
the ability to use the backing store. 

A final problem with layered implementations is that they tend to be 
less efficient than other types. For instance, when a user program executes an 
I/O operation, it executes a system call that is trapped to the I/O layer, which 
calls the memory-management layer, which in turn calls the CPU-scheduling 
layer, which is then passed to the hardware. At each layer, the parameters may 
be modified, data may need to be passed, and so on. Each layer adds overhead 
to the system call. The net result is a system call that takes longer than does one 
on a nonlayered system. 

 
1.11.3 Microkernels 

 
We have already seen that as UNIX expanded, the kernel became large 

and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon 
University developed an operating system called Mach that modularized the 
kernel using the microkernel approach. This method structures the operating 
system by removing all nonessential components from the kernel and 
implementing them as system and user-level programs. The result is a smaller 
kernel. There is little consensus regarding which services should remain in the 
kernel and which should be implemented in user space.. Figure 2.14 illustrates 
the architecture of a typical microkernel. 

The main function of the microkernel is to provide communication 
between the client program and the various services that are also running in 
user space. Communication is provided through message passing, which was 
described in Section 2.4.5. For example, if the client program wishes to access 
a file, it must interact with the file server. The client program and service never 
interact directly. Rather, they communicate indirectly by exchanging messages 
with the microkernel. 

 
One benefit of the microkernel approach is that it makes extending the 

operating system easier. All new services are added to user space and 
consequently do not require modification of the kernel. When the kernel does 
have to be modified, the changes tend to be fewer, because the microkernel is a 
smaller kernel. The resulting operating system is easier to port from one 
hardware design to another. The microkernel also provides more security and 
reliability, since most services are running as user — rather than kernel — 
processes. If a service fails, the rest of the operating system remains untouched. 
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Figure 2.14 Architecture of a typical microkernel. 
 
 

Unfortunately, the performance of microkernels can suffer due to increased 
system-function overhead. Consider the history of Windows NT. The first 
release had a layered microkernel organization. This version’s performance 
was low compared with that of Windows 95. Windows NT 4.0 partially 
corrected the performance problem by moving layers from user space to kernel 
space and integrating them more closely. By the time Windows XP was 
designed, Windows architecture had become more monolithic than 
microkernel. 

 
1.11.4 Modules 
Perhaps the best current methodology for operating-system design involves 
using loadable kernel modules. Here, the kernel has a set of core components 
and links in additional services via modules, either at boot time or during run 
time. This type of design is common in modern implementations of UNIX, 
such as Solaris, Linux, and Mac OS X, as well as Windows. 



The idea of the design is for the kernel to provide core services while 
other services are implemented dynamically, as the kernel is running. Linking 
services dynamically is preferable to adding new features directly to the kernel, 
which would require recompiling the kernel every time a change was made. Thus, 
for example, we might build CPU scheduling and memory management 
algorithms directly into the kernel and then add support for different file systems 
by way of loadable modules. 

The overall result resembles a layered system in that each kernel section 
has defined, protected interfaces; but it is more flexible than a layered system, 
because any module can call any other module. The approach is also similar to 
the microkernel approach in that the primary module has only core functions and 
knowledge of how to load and communicate with other modules; but itis more 
efficient, because modules do not need to invoke message passing in order to 
communicate. 
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Figure 2.15 Solaris loadable modules. 
 

The Solaris operating system structure, shown in Figure 2.15, is organized 
around a core kernel with seven types of loadable kernel modules: 

Scheduling classes 
File systems 
Loadable system calls 
Executable formats 
STREAMS modules 
Miscellaneous 

Device and bus drivers 



Linux also uses loadable kernel modules, primarily for supporting device 
drivers and file systems. We cover creating loadable kernel modules in Linux as a 
programming exercise at the end of this chapter. 

 
1.11.5 Hybrid Systems 

In practice, very few operating systems adopt a single, strictly defined 
structure. Instead, they combine different structures, resulting in hybrid systems 
that address performance, security, and usability issues. For example, both Linux 
and Solaris are monolithic, because having the operating system in a single 
address space provides very efficient performance. However, they are also 
modular, so that new functionality can be dynamically added to the kernel. 
Windows is largely monolithic as well (again primarily for performance reasons), 
but it retains some behavior typical of microkernel systems, including providing 
support for separate subsystems (known as operating-system personalities) that 
run as user-mode processes. Windows systems also provide support for 
dynamically loadable kernel modules. In this, we explore the structure of three 
hybrid systems: the Apple Mac OS X operating system and the two most 
prominent mobile operating systems — iOS and Android. 

 
 1.11.6 Mac OS X 

The Apple Mac OS X operating system uses a hybrid structure. As shown 
in Figure 2.16, it is a layered system. The top layers include the Aqua user 
interface (Figure 2.4) and a set of application environments and services. 
Notably, the Cocoa environment specifies an API for the Objective-C 
programming language, which is used for writing Mac OS X applications. Below 
these layers is the kernel environment, which consists primarily of the Mach 
microkernel and the BSD UNIX kernel. Mach provides memory management; 
support for remote procedure calls (RPCs) and interprocess communication (IPC) 
facilities, including message passing; and thread scheduling. The BSD component 
provides a BSD command-line interface, support for networking and file systems, 
and an implementation of POSIX APIs, including Pthreads. In addition to Mach 
and BSD, the kernel environment provides an I/O kit for development of device 
drivers and dynamically loadable modules (which Mac OS X refers to as kernel 
extensions). As shown in Figure 2.16, the BSD application environment can 
make use of BSD facilities directly. 

 1.11.7 iOS 
iOS is a mobile operating system designed by Apple to run its smartphone, the 
iPhone, as well as its tablet computer, the iPad. iOS is structured on the Mac OS 
X operating system, with added functionality pertinent to mobile devices, but 
does not directly run Mac OS X applications. The structure of iOS appears in 
Figure 2.17. 

 
Cocoa Touch is an API for Objective-C that provides several frameworks for 
developing applications that run on iOS devices. The fundamental difference 
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between Cocoa, mentioned earlier, and Cocoa Touch is that the latter provides 
support for hardware features unique to mobile devices, such as touch screens. 
The media services layer provides services for graphics, audio, and video. 

 
 

 

 

 

Figure 2.16 The Mac OS X structure. 
 

The core services layer provides a variety of features, including support for 
cloud computing and databases. The bottom layer represents the core 
operating system, which is based on the kernel environment shown in Figure 
2.16. 

 
 

 

 

 

 

Figure 2.17 Architecture of Apple’s iOS. 
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Linux kernel 

1.11.8 Android 
The Android operating system was designed by the Open Handset 

Alliance (led primarily by Google) and was developed for Android 
smartphones and tablet computers. Whereas iOS is designed to run on Apple 
mobile devices and is close-sourced, Android runs on a variety of mobile 
platforms and is open-sourced, partly explaining its rapid rise in popularity. 
The structure of Android appears in Figure 2.18. 

Android is similar to iOS in that it is a layered stack of software that 
provides a rich set of frameworks for developing mobile applications. At the 
bottom of this software stack is the Linux kernel, although it has been modified 
by Google and is currently outside the normal distribution of Linux releases. 
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Figure 2.18   Architecture of Google’s Android. 
Linux is used primarily for process, memory, and device-driver support 

for hardware and has been expanded to include power management. The Android 
runtime environment includes a core set of libraries as well as the Dalvik virtual 
machine. Software designers for Android devices develop applications in the Java 
language. However, rather than using the standard Java API, Google has designed 
a separate Android API for Java development. The Java class files are first 
compiled to Java bytecode and then translated into an executable file that runs on 
the Dalvik virtual machine. The Dalvik virtual machine was designed for Android 
and is optimized for mobile devices with limited memory and CPU processing 
capabilities. 

Application Framework 



The set of libraries available for Android applications includes frameworks for 
 developing web browsers (webkit), database support (SQLite), and multi-media.  
The libc library is similar to the standard C library but is  much smaller and has been  

designed for the   
that characterize mobile devices. 

 



   



UNIT-II 
Process Management 

A process can be thought of as a program in execution. A process will 
need certain resources — such as CPU time, memory, files, and I/O devices — to 
accomplish its task. These resources are allocated to the process either when it is 
created or while it is executing. 

A process is the unit of work in most systems. Systems consist of a 
collection of processes: operating-system processes execute system code, and 
user processes execute user code. All these processes may execute concurrently. 

Although traditionally a process contained only a single thread of control 
as it ran, most modern operating systems now support processes that have 
multiple threads. 

The operating system is responsible for several important aspects of 
process and thread management: the creation and deletion of both user and 
system processes; the scheduling of processes; and the provision of mechanisms 
for synchronization, communication, and deadlock handling for processes. 

 
Early computers allowed only one program to be executed at a time. This 

program had complete control of the system and had access to all the system’s 
resources. In contrast, contemporary computer systems allow multiple pro-grams 
to be loaded into memory and executed concurrently. This evolution required 
firmer control and more compartmentalization of the various pro-grams; and 
these needs resulted in the notion of a process, which is a program in execution. 
A process is the unit of work in a modern time-sharing system. 

The more complex the operating system is, the more it is expected to do 
on behalf of its users. Although its main concern is the execution of user 
programs, it also needs to take care of various system tasks that are better left 
outside the kernel itself. A system therefore consists of a collection of processes: 
operating-system processes executing system code and user processes executing 
user code. Potentially, all these processes can execute concurrently, with the CPU 
(or CPUs) multiplexed among them. By switching the CPU between processes, 
the operating system can make the computer more productive. In this chapter, you 
will read about what processes are and how they work. 



OBJECTIVES 

1. To introduce the notion of a process, forms the basis of all 
computation. 

2. To describe the various features of processes, including scheduling, 
creation, and termination. 

3. To explore interprocess communication using shared memory and 
message passing. 

4. To describe communication in client – server systems. 
5. To introduce the critical-section problem, whose solutions can be 

used to ensure the consistency of shared data. 
6. To present both software and hardware solutions of the critical- 

section problem. 
7. To examine several classical process-synchronization problems. 
8. To explore several tools that are used to solve process 

synchronization problems. 
9. To introduce CPU scheduling, the basis for multiprogrammed 

operating systems. 
10. To describe various CPU-scheduling algorithms. 
11. To discuss evaluation criteria for selecting a CPU-scheduling 

algorithm for a particular system. 
12. To examine the scheduling algorithms of several operating 

systems. 



 Process Concept 

A batch system executes jobs, whereas a time-shared system has user 
programs, or tasks. Even on a single-user system, a user may be able to run 
several programs at one time: a word processor, a Web browser, and an e-mail 
package. And even if a user can execute only one program at a time, such as on 
an embedded device that does not support multitasking, the operating system may 
need to support its own internal programmed activities, such as memory 
management. In many respects, all these activities are similar, so we call all of 
them processes. 

 
 The Process 

Informally, a process is a program in execution. A process is more than the 
program code, which is sometimes known as the text section. It also includes the 
current activity, as represented by the value of the program counter and the 
contents of the processor’s registers. A process generally also includes the 
process stack, which contains temporary data (such as function parameters, 
return addresses, and local variables), and a data section, which contains global 
variables. A process may also include a heap, which is memory that is 
dynamically allocated during process run time. The structure of a process in 
memory is shown in Figure 2.1. 

A program is a passive entity, such as a file containing a list of 
instructions stored on disk (often called an executable file). In contrast, a process 
is an active entity, with a program counter specifying the next instruction to 
execute and a set of associated resources. A program becomes a process when an 
executable file is loaded into memory. Two common techniques for loading 
executable files are double-clicking an icon representing the executable file and 
entering the name of the executable file on the command line (as in prog.exe or 
a.out). 

max 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Process in memory. 
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 Process State 

As a process executes, it changes state. The state of a process is defined in 
part by the current activity of that process. A process may be in one of the 
following states: 

 
New. The process is being created. 
Running. Instructions are being executed. 
Waiting. The process is waiting for some event to occur (such as an I/O 
completion or reception of a signal). 
Ready. The process is waiting to be assigned to a processor. 
Terminated. The process has finished execution. 

 
The state diagram corresponding to these states is presented in Figure2.2. 

 
 
 
 

waiting 

Figure 2.2 Diagram of process state 
 
 

3.1.3 Process Control Block 

Each process is represented in the operating system by a process control block 
(PCB) — also called a task control block. A PCB is shown in Figure 2.3. It 
contains many pieces of information associated with a specific process, including 
these: 

 
Process state. The state may be new, ready, running, waiting, halted, and so on. 

 
Program counter. The counter indicates the address of the next instruction to be 
executed for this process. 
CPU registers. The registers vary in number and type, depending on the 
computer architecture. They include accumulators, index registers, stack pointers, 
and general-purpose registers, plus any condition-code information. Along with 



the program counter, this state information must be saved when an interrupt 
occurs, to allow the process to be continued correctly afterward (Figure 3.4). 

 
CPU-scheduling information. This information includes a process priority, 
pointers to scheduling queues, and any other scheduling parameters. 
Memory-management information. This information may include such items as 
the value of the base and limit registers and the page tables, or the segment tables, 
depending on the memory system used by the operating system. 

 
Accounting information. This information includes the amount of CPU and real 
time used, time limits, account numbers, job or process numbers, and so on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Process control block (PCB). 
 

I/O status information. This information includes the list of I/O devices 
allocated to the process, a list of open files, and so on. 

2.1.4 Threads 
The process model discussed so far has implied that a process is a 

program that performs a single thread of execution. For example, when a process 
is running a word-processor program, a single thread of instructions is being 
executed. This single thread of control allows the process to perform only one 
task at a time. The user cannot simultaneously type in characters and run the spell 
checker within the same process, for example. 

 
 Process Scheduling 

The objective of multiprogramming is to have some process running at all 
times, to maximize CPU utilization. The objective of time sharing is to switch the 
CPU among processes so frequently that users can interact with each program 
while it is running. To meet these objectives, the process scheduler selects an 
available process (possibly from a set of several available processes) for program 
execution on the CPU. For a single-processor system, there will never be more 
than one running process. If there are more processes, the rest will have to wait 
until the CPU is free and can be rescheduled. 
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Figure 2.4 The ready queue and various I/O device queues. 

 Scheduling Queues 
As processes enter the system, they are put into a job queue, which consists 

of all processes in the system. The processes that are residing in main memory 
and are ready and waiting to execute are kept on a list called the ready queue. 
This queue is generally stored as a linked list. A ready-queue header contains 
pointers to the first and final PCBs in the list. Each PCB includes a pointer field 
that points to the next PCB in the ready queue. 
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The system also includes other queues. When a process is allocated the 
CPU, it executes for a while and eventually quits, is interrupted, or waits for the 
occurrence of a particular event, such as the completion of an I/O request. 
Suppose the process makes an I/O request to a shared device, such as a disk. 
Since there are many processes in the system, the disk may be busy with the I/O 
request of some other process. The process therefore may have to wait for the 
disk. The list of processes waiting for a particular I/O device is called a device 
queue. Each device has its own device queue (Figure 2.4). 
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Figure 2.5 Queueing-diagram representation of process scheduling. 
 

A common representation of process scheduling is a queueing diagram, 
such as that in Figure 2.5. Each rectangular box represents a queue. Two types of 
queues are present: the ready queue and a set of device queues. The circles 
represent the resources that serve the queues, and the arrows indicate the flow of 
processes in the system. 

A new process is initially put in the ready queue. It waits there until it is 
selected for execution, or dispatched. Once the process is allocated the CPU and 
is executing, one of several events could occur: 

 
The process could issue an I/O request and then be placed in an I/O queue. 
The process could create a new child process and wait for the child’s termination. 



The process could be removed forcibly from the CPU, as a result of an 
interrupt, and be put back in the ready queue. 

In the first two cases, the process eventually switches from the waiting 
state to the ready state and is then put back in the ready queue. A process 
continues this cycle until it terminates, at which time it is removed from all 
queues and has its PCB and resources deallocated. 

 
 Schedulers 

 
A process migrates among the various scheduling queues throughout its 

lifetime. The operating system must select, for scheduling purposes, processes 
from these queues in some fashion. The selection process is carried out by the 
appropriate scheduler. 

Often, in a batch system, more processes are submitted than can be 
executed immediately. These processes are spooled to a mass-storage device 
(typically a disk), where they are kept for later execution. The long-term 
scheduler, or job scheduler, selects processes from this pool and loads them into 
memory for execution. 

The short-term scheduler, or CPU scheduler, selects from among the 
processes that are ready to execute and allocates the CPU to one of them. 

The long-term scheduler executes much less frequently. The long-term 
scheduler controls the degree of multiprogramming (the number of processes in 
memory). If the degree of multiprogramming is stable, then the average rate of 
process creation must be equal to the average departure rate of processes leaving 
the system. Thus, the long-term scheduler may need to be invoked only when a 
process leaves the system. Because of the longer interval between executions, the 
long-term scheduler can afford to take more time to decide which process should 
be selected for execution. 

It is important that the long-term scheduler make a careful selection. In 
general, most processes can be described as either I/O bound or CPU bound. An 
I/O-bound process is one that spends more of its time doing I/O than it spends 
doing computations. A CPU-bound process, in contrast, generates I/O requests 
infrequently, using more of its time doing computations. It is important that the 
long-term scheduler select a good process mix of I/O-bound and CPU-bound 
processes. If all processes are I/O bound, the ready queue will almost always be 
empty, and the short-term scheduler will have little to do. If all processes are 
CPU bound, the I/O waiting queue will almost always be empty, devices will go 
unused, and again  the system  will be unbalanced. The system  with the best 
performance will thus have a combination of CPU-bound and I/O-bound 
processes. 

 
This medium-term scheduler is diagrammed in Figure 2.6. The key idea 

behind a medium-term scheduler is that sometimes it can be advantageous to 
remove a process from memory (and from active contention for the CPU) and 
thus reduce the degree of multiprogramming. 
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Figure 2.6 Addition of medium-term scheduling to the queueing diagram. 
 

 Context Switch 
When an interrupt occurs, the system needs to save the current context of 

the process running on the CPU so that it can restore that context when its 
processing is done, essentially suspending the process and then resuming it. The 
context is represented in the PCB of the process. It includes the value of the CPU 
registers, the process state (see Figure 2.2), and memory-management 
information. Generically, we perform a state save of the current state of the CPU, 
be it in kernel or user mode, and then a state restore to resume operations. 

Switching the CPU to another process requires performing a state save of 
the current process and a state restore of a different process. This task is known as 
a context switch. When a context switch occurs, the kernel saves the context of 
the old process in its PCB and loads the saved context of the new process 
scheduled to run. Switching speed varies from machine to machine, depending on 
the memory speed, the number of registers that must be copied, and the existence 
of special instructions (such as a single instruction to load or store all registers). A 
typical speed is a few milliseconds. 

 
 Operations on Processes 

The processes in most systems can execute concurrently, and they may be 
created and deleted dynamically. Thus, these systems must provide a mechanism 
for process creation and termination. 

 
 Process Creation 

 
During the course of execution, a process may create several new 

processes. As mentioned earlier, the creating process is called a parent process, 
and the new processes are called the children of that process. Each of these new 
processes may in turn create other processes, forming a tree of processes. 



Most operating systems (including UNIX, Linux, and Windows) identify 
processes according to a unique process identifier (or pid), which is typically an 
integer number. The pid provides a unique value for each process in the system, 
and it can be used as an index to access various attributes of a process within the 
kernel. 

The init process (which always has a pid of 1) serves as the root parent 
process for all user processes. Once the system has booted, the init process can 
also create various user processes, such as a web or print server, an ssh server, 
and the like. In Figure 2.7, we see two children of init— kthreadd and sshd. The 
kthreadd process is responsible for creating additional processes that perform 
tasks on behalf of the kernel (in this situation, khelper and pdflush). The sshd 
process is responsible for managing clients that connect to the system by using 
ssh (which is short for secure shell). The login process is responsible for 
managing clients that directly log onto the system. In this example, a client has 
logged on and is using the bash shell, which has been assigned pid 8416. Using 
the bash command-line interface, this user has created the process ps as well as 
the emacs editor. 

On UNIX and Linux systems, we can obtain a listing of processes by 
using the ps command. For example, the command 

ps -el 
will list complete information for all processes currently active in the system. It is 
easy to construct a process tree similar to the one shown in Figure 3.8 by 
recursively tracing parent processes all the way to the init process. 
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Figure 2.7 A tree of processes on a typical Linux system. 



In general, when a process creates a child process, that child process will 
need certain resources (CPU time, memory, files, I/O devices) to accomplish its 
task. A child process may be able to obtain its resources directly from the 
operating system, or it may be constrained to a subset of the resources of the 
parent process. The parent may have to partition its resources among its children, 
or it may be able to share some resources (such as memory or files) among 
several of its children. 

In addition to supplying various physical and logical resources, the parent 
process may pass along initialization data (input) to the child process. For 
example, consider a process whose function is to display the contents of a file — 
say, image.jpg— on the screen of a terminal. When the process is created, it will 
get, as an input from its parent process, the name of the file image.jpg. Using that 
file name, it will open the file and write the contents out. It may also get the name 
of the output device. Alternatively, some operating systems pass resources to 
child processes. On such a system, the new process may get two open files, 
image.jpg and the terminal device, and may simply transfer the datum between 
the two. 
When a process creates a new process, two possibilities for execution exist: 
The parent continues to execute concurrently with its children. 
The parent waits until some or all of its children have terminated. 
There are also two address-space possibilities for the new process: 
The child process is a duplicate of the parent process (it has the same program 
and data as the parent). 
The child process has a new program loaded into it. 

 
To illustrate these differences, let’s first consider the UNIX operating 

system. In UNIX, as we’ve seen, each process is identified by its process 
identifier, which is a unique integer. A new process is created by the fork() 
system call. The new process consists of a copy of the address space of the 
original process. This mechanism allows the parent process to communicate 
easily with its child process. Both processes (the parent and the child) continue 
execution at the instruction after the fork(), with one difference: the return code 
for the fork() is zero for the new (child) process, whereas the (nonzero) process 
identifier of the child is returned to the parent. 

After a fork() system call, one of the two processes typically uses the 
exec() system call to replace the process’s memory space with a new program. 
The exec() system call loads a binary file into memory (destroying the memory 
image of the program containing the exec() system call) and starts its execution. 
In this manner, the two processes are able to communicate and then go their 
separate ways. The parent can then create more children; or, if it has nothing else 
to do while the child runs, it can issue a wait() system call to move itself off the 
ready queue until the termination of the child. Because the call to exec() overlays 
the process’s address space with a new program, the call to exec() does not return 
control unless an error occurs. 

We now have two different processes running copies of the same 
program. The only difference is that the value of pid (the process identifier) for 
the child process is zero, while that for the parent is an integer value greater than 



zero (in fact, it is the actual pid of the child process). The child process inherits 
privileges and scheduling attributes from the parent, as well certain resources, 
such as open files. The child process then overlays its address space with the 
UNIX command /bin/ls (used to get a directory listing) using the execlp() system 
call (execlp() is a version of the exec() system call). The parent waits for the child 
process to complete with the wait() system call. When the child process 
completes (by either implicitly or explicitly invoking exit()), the parent process 
resumes from the call to wait(), where it completes using the exit() system call. 
This is also illustrated in Figure 2.8. 

Of course, there is nothing to prevent the child from not invoking exec() 
and instead continuing to execute as a copy of the parent process. In this scenario, 
the parent and child are concurrent processes running the same code instructions. 
Because the child is a copy of the parent, each process has its own copy of any 
data. 
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Figure 2.8 Process creation using the fork() system call. 

As an alternative example, we next consider process creation in Windows. 
Processes are created in the Windows API using the CreateProcess() function, 
which is similar to fork() in that a parent creates a new child process. However, 
whereas fork() has the child process inheriting the address space of its parent, 
CreateProcess() requires loading a specified program into the address space of the 
child process at process creation. Furthermore, whereas fork() is passed no 
parameters, CreateProcess() expects no fewer than ten parameters. 

 
 Process Termination 

A process terminates when it finishes executing its final statement and 
asks the operating system to delete it by using the exit() system call. At that point, 
the process may return a status value (typically an integer) to its parent process 
(via the wait() system call). All the resources of the process, including physical 
and virtual memory, open files, and I/O buffers — are deallocated by the 
operating system. 

 
A process can cause the termination of another process via an appropriate 

system call (for example, TerminateProcess() in Windows). Usually, such a 
system call can be invoked only by the parent of the process that is to be 

parent (pid > 0) 
wait() 
parent 

pid = fork() 



terminated Thus, when one process creates a new process, the identity of the 
newly created process is passed to the parent. 

A parent may terminate the execution of one of its children for a variety 
of reasons, such as these: 

The child has exceeded its usage of some of the resources that it has 
been allocated. The task assigned to the child is no longer required. The parent is 
exiting, and the operating system does not allow a child to continue if its parent 
terminates. 

Some systems do not allow a child to exist if its parent has terminated. In 
such systems, if a process terminates (either normally or abnormally), then all its 
children must also be terminated. This phenomenon, referred to as cascading 
termination, is normally initiated by the operating system. 

To illustrate process execution and termination, consider that, in Linux 
and UNIX systems, we can terminate a process by using the exit() system call, 
providing an exit status as a parameter: 

/* exit with status 1 */ 
exit(1); 

In fact, under normal termination, exit() may be called either directly (as 
shown above) or indirectly (by a return statement in main()). 

A parent process may wait for the termination of a child process by using 
the wait() system call. The wait() system call is passed a parameter that allows the 
parent to obtain the exit status of the child. This system call also returns the 
process identifier of the terminated child so that the parent can tell which of its 
children has terminated: 

pid t pid; int status; 
pid = wait(&status); 

When a process terminates, its resources are deallocated by the operating 
system. However, its entry in the process table must remain there until the parent 
calls wait(), because the process table contains the process’s exit status. A process 
that has terminated, but whose parent has not yet called wait(), is known as a 
zombie process. 
 Interprocess Communication 

 
Processes executing concurrently in the operating system may be either 

independent processes or cooperating processes. A process is independent if it 
cannot affect or be affected by the other processes executing in the system. Any 
process that does not share data with any other process is independent. A process 
is cooperating if it can affect or be affected by the other processes executing in 
the system. Clearly, any process that shares data with other processes is a 
cooperating process. 
There are several reasons for providing an environment that allows process 
cooperation: 



Information sharing. Several users may be interested in the same piece of 
information (for instance, a shared file), we must provide an environment to 
allow concurrent access to such information. 
Computation speedup. If we want a particular task to run faster, we must break 
it into subtasks, each of which will be executing in parallel with the others. 
Modularity. We may want to construct the system in a modular fashion, dividing 
the system functions into separate processes or threads. 
Convenience. Even an individual user may work on many tasks at the same time. 
For instance, a user may be editing, listening to music, and compiling in parallel. 

 
Cooperating processes require an interprocess communication (IPC) 

mechanism that will allow them to exchange data and information. There are two 
fundamental models of interprocess communication: shared memory and 
message passing. In the shared-memory model, a region of memory that is 
shared by cooperating processes is established. Processes can then exchange 
information by reading and writing data to the shared region. In the message- 
passing model, communication takes place by means of messages exchanged 
between the cooperating processes. The two communications models are 
contrasted in Figure 2.9. 
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Figure 2.9 Communications models. 
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 Shared-Memory Systems 
Interprocess communication using shared memory requires communicating 
processes to establish a region of shared memory. Typically, a shared-memory 
region resides in the address space of the process creating the shared-memory 
segment. Other processes that wish to communicate using this shared-memory 
segment must attach it to their address space. Recall that, normally, the operating 
system tries to prevent one process from accessing another process’s memory. 
Shared memory requires that two or more processes agree to remove this 
restriction. They can then exchange information by reading and writing data in 
the shared areas. The form of the data and the location are determined by these 
processes and are not under the operating system’s control. The processes are also 
responsible for ensuring that they are not writing to the same location 
simultaneously. 

To illustrate the concept of cooperating processes, let’s consider the 
producer – consumer problem, which is a common paradigm for cooperating 
processes. A producer process produces information that is consumed by a 
consumer process. For example, a compiler may produce assembly code that is 
consumed by an assembler. The assembler, in turn, may produce object modules 
that are consumed by the loader. The producer – consumer problem 

 
item next 

 

produced; 

while (true) { 
/* produce an item in next produced */ 

while (((in + 1) % BUFFER SIZE) == out) 
; /* do nothing */ 

buffer[in] = next produced; 
in = (in + 1) % BUFFER SIZE; 

} 

Figure 2.10The producer process using shared memory. 
also provides a useful metaphor for the client – server paradigm. We generally 
think of a server as a producer and a client as a consumer. For example, a web 
server produces (that is, provides) HTML files and images, which are consumed 
(that is, read) by the client web browser requesting the resource. 

One solution to the producer – consumer problem uses shared memory. 
To allow producer and consumer processes to run concurrently, we must have 
available a buffer of items that can be filled by the producer and emptied by the 
consumer. This buffer will reside in a region of memory that is shared by the 
producer and consumer processes. A producer can produce one item while the 
consumer is consuming another item. The producer and consumer must be 
synchronized, so that the consumer does not try to consume an item that has not 
yet been produced. 



Two types of buffers can be used. The unbounded buffer places no 
practical limit on the size of the buffer. The consumer may have to wait for new 
items, but the producer can always produce new items. The bounded buffer 
assumes a fixed buffer size. In this case, the consumer must wait if the buffer is 
empty, and the producer must wait if the buffer is full. 

Let’s look more closely at how the bounded buffer illustrates interprocess 
communication using shared memory. The following variables reside in a region 
of memory shared by the producer and consumer processes: 

#define BUFFER SIZE 10 
typedef struct { 

. . . 
}item; 

 
item buffer[BUFFER SIZE]; 
int in = 0; 
int out = 0; 

Figure: 2.11The producer process using shared memory 
The shared buffer is implemented as a circular array with two logical 

pointers: in and out. The variable in points to the next free position in the buffer; 
out points to the first full position in the buffer. The buffer is empty when in == 
out; the buffer is full when ((in + 1) % BUFFER SIZE) == out. 

The code for the producer process is shown in Figure 2.11, and the code 
for the consumer process is shown in Figure 2.12. The producer process has a 

item next consumed; 
while (true) { 

while (in == out) 
; /* do nothing */ 

next consumed = buffer[out]; 
out = (out + 1) % BUFFER SIZE; 
/* consume the item in next consumed */ 

} 
Figure 2.12 The consumer process using shared memory. 

 
local variable next produced in which the new item to be produced is stored. The 
consumer process has a local variable next consumed in which the item to be 
consumed is stored. 

This scheme allows at most BUFFER SIZE − 1 items in the buffer at the 
same time. We leave it as an exercise for you to provide a solution in which 
BUFFER SIZE items can be in the buffer at the same time. 



 Message-Passing Systems 
Shared-memory environment scheme requires that these processes share a 

region of memory and that the code for accessing and manipulating the shared 
memory be written explicitly by the application programmer. Another way to 
achieve the same effect is for the operating system to provide the means for 
cooperating processes to communicate with each other via a message-passing 
facility. 

Message passing provides a mechanism to allow processes to 
communicate and to synchronize their actions without sharing the same address 
space. It is particularly useful in a distributed environment, where the 
communicating processes may reside on different computers connected by a 
network. For example, an Internet chat program could be designed so that chat 
participants communicate with one another by exchanging messages. 

A message-passing facility provides at least two operations: 

send(message) receive(message) 
Messages sent by a process can be either fixed or variable in size. If only 

fixed-sized messages can be sent, the system-level implementation is straight- 
forward. Conversely, variable-sized messages require a more complex system- 
level implementation, but the programming task becomes simpler. 

If processes P and Q want to communicate, they must send messages to 
and receive messages from each other: a communication link must exist between 
them. This link can be implemented in a variety of ways. Here are several 
methods for logically implementing a link and the send()/receive() operations: 

 
Direct or indirect communication 
Synchronous or asynchronous communication 
Automatic or explicit buffering 

 
 Naming 

Processes that want to communicate must have a way to refer to each other. They 
can use either direct or indirect communication. Under direct communication, 
each process that wants to communicate must explicitly name the recipient or 
sender of the communication. In this scheme, the send() and receive() primitives 
are defined as: 

send(P, message)— Send a message to process P. 
receive(Q, message)— Receive a message from process Q. 

 
A communication link in this scheme has the following properties: 

 
A link is established automatically between every pair of processes that want to 
communicate. 
The processes need to know only each other’s identity to communicate. 
A link is associated with exactly two processes. Between each pair of processes, 
there exists exactly one link. 

This scheme exhibits symmetry in addressing; that is, both the sender 
process and the receiver process must name the other to communicate. A variant 



of this scheme employs asymmetry in addressing. Here, only the sender names 
the recipient; the recipient is not required to name the sender. In this scheme, the 
send() and receive() primitives are defined as follows: 

 
send(P, message)— Send a message to process P. 
receive(id, message)— Receive a message from any process. 

The variable id is set to the name of the process with which communication has 
taken place. 

The disadvantage in both of these schemes (symmetric and asymmetric) is 
the limited modularity of the resulting process definitions. Changing the identifier 
of a process may necessitate examining all other process definitions. 

With indirect communication, the messages are sent to and received from 
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which 
messages can be placed by processes and from which messages can be removed. 
Each mailbox has a unique identification. For example, POSIX message queues 
use an integer value to identify a mailbox. A process can communicate with 
another process via a number of different mailboxes, but two processes can 
communicate only if they have a shared mailbox. The send() and receive() 
primitives are defined as follows: 

 
send(A, message)— Send a message to mailbox A. 
receive(A, message)— Receive a message from mailbox A. 

In this scheme, a communication link has the following properties: 
 

A link is established between a pair of processes only if both members of the pair 
have a shared mailbox. 
A link may be associated with more than two processes. 
Between each pair of communicating processes, a number of different links may 
exist, with each link corresponding to one mailbox. 

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 
sends a message to A, while both P2 and P3 execute a receive() from A. Which 
process will receive the message sent by P1? The answer depends on which of the 
following methods we choose: 

Allow a link to be associated with two processes at most. 
Allow at most one process at a time to execute a receive() operation. 

Allow the system to select arbitrarily which process will receive the 
message (that is, either P2 or P3, but not both, will receive the message). The 
system may define an algorithm for selecting which process will receive the 
message (for example, round robin, where processes take turns receiving 
messages). The system may identify the receiver to the sender. 

 
A mailbox may be owned either by a process or by the operating system. 

If the mailbox is owned by a process (that is, the mailbox is part of the address 
space of the process), then we distinguish between the owner (which can only 
receive messages through this mailbox) and the user (which can only send 



messages to the mailbox). Since each mailbox has a unique owner, there can be 
no confusion about which process should receive a message sent to this mailbox. 
When a process that owns a mailbox terminates, the mailbox disappears. Any 
process that subsequently sends a message to this mailbox must be notified that 
the mailbox no longer exists. 

 Synchronization 
Communication between processes takes place through calls to send() and 

receive() primitives. There are different design options for implementing each 
primitive. Message passing may be either blocking or nonblocking — also 
known as synchronous and asynchronous. 

Blocking send. The sending process is blocked until the message is received by 
the receiving process or by the mailbox. 
Nonblocking send. The sending process sends the message and resumes 
operation. 
Blocking receive. The receiver blocks until a message is available. 
Nonblocking receive. The receiver retrieves either a valid message or a null. 

 Buffering 
Whether communication is direct or indirect, messages exchanged by 

commu-nicating processes reside in a temporary queue. Basically, such queues 
can be implemented in three ways: 

message next produced; 
while (true) { 

/* produce an item in next produced */ 
send(next produced); 

} 

Figure 2.13 The producer process using message passing. 
 

Zero capacity. The queue has a maximum length of zero; thus, the link cannot 
have any messages waiting in it. In this case, the sender must block until the 
recipient receives the message. 
Bounded capacity. The queue has finite length n; thus, at most n messages can 
reside in it. If the queue is not full when a new message is sent, the message is 
placed in the queue (either the message is copied or a pointer to the message is 
kept), and the sender can continue execution without waiting. The link’s capacity 
is finite, however. If the link is full, the sender must block until space is available 
in the queue. 
Unbounded capacity. The queue’s length is potentially infinite; thus, any 
number of messages can wait in it. The sender never blocks. 

The zero-capacity case is sometimes referred to as a message system with no 
buffering. The other cases are referred to as systems with automatic buffering. 



pipe 

 Pipes 
A pipe acts as a conduit allowing two processes to communicate. Pipes 

were one of the first IPC mechanisms in early UNIX systems. They typically 
provide one of the simpler ways for processes to communicate with one another, 
although they also have some limitations 

 
 Ordinary Pipes 

Ordinary pipes allow two processes to communicate in standard producer 
– consumer fashion: the producer writes to one end of the pipe (the write-end) 
and the consumer reads from the other end (the read-end). As a result, ordinary 
pipes are unidirectional, allowing only one-way communication. If two-way 
communication is required, two pipes must be used, with each pipe sending data 
in a different direction. In both program examples, one process writes the 
message Greetings to the pipe, while the other process reads this message from 
the pipe. 

On UNIX systems, ordinary pipes are constructed using the function 
pipe(int fd[]) 

This function creates a pipe that is accessed through the int fd[] file 
descriptors: fd[0] is the read-end of the pipe, and fd[1] is the write-end. 
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Figure 2.14 File descriptors for an ordinary pipe. 

 
UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using 
ordinary read() and write() system calls. 

 
An ordinary pipe cannot be accessed from outside the process that created 

it. Typically, a parent process creates a pipe and uses it to communicate with a 
child process that it creates via fork(). 



Named Pipes 
Ordinary pipes provide a simple mechanism for allowing a pair of processes to 
communicate. However, ordinary pipes exist only while the processes are 
communicating with one another. On both UNIX and Windows systems, once 
the processes have finished communicating and have terminated, the ordinary 
pipe ceases to exist. 

Named pipes provide a much more powerful communication tool. 
Communication can be bidirectional, and no parent – child relationship is 
required. Once a named pipe is established, several processes can use it for 
communication. In fact, in a typical scenario, a named pipe has several writers. 
Additionally, named pipes continue to exist after communicating processes. 

Named pipes are referred to as FIFOs in UNIX systems. Once created, 
they appear as typical files in the file system. A FIFO is created with the 
mkfifo() system call and manipulated with the ordinary open(), read(), write(), 
and close() system calls. It will continue to exist until it is explicitly deleted 
from the file system. Although FIFOs allow bidirectional communication, only 
half-duplex transmission is permitted. If data must travel in both directions, 
two FIFOs are typically used. Additionally, the communicating processes must 
reside on the same machine. 

Named pipes on Windows systems provide a richer communication 
mechanism than their UNIX counterparts. Full-duplex communication is 
allowed, and the communicating processes may reside on either the same or 
different machines. Additionally, only byte-oriented data may be transmitted 
across a UNIX FIFO, whereas Windows systems allow either byte- or 
message-oriented data. Named pipes are created with the CreateNamedPipe() 
function, and a client can connect to a named pipe using ConnectNamedPipe(). 
Communication over the named pipe can be accomplished using the ReadFile() 
and WriteFile() functions. 

 



 Thread Scheduling 

On operating systems that support them, it is kernel-level threads — not 
processes — that are being scheduled by the operating system. User-level threads 
are managed by a thread library, and the kernel is unaware of them. To run on a 
CPU, user-level threads must ultimately be mapped to an associated kernel-level 
thread, although this mapping may be indirect and may use a lightweight process 
(LWP). In this section, we explore scheduling issues involving user-level and 
kernel-level threads and offer specific examples of scheduling for Pthreads. 

 
 Contention Scope 

One distinction between user-level and kernel-level threads lies in how 
they are scheduled.The thread library schedules user-level threads to run on an 
available LWP. This scheme is known as process-contention scope (PCS), since 
competition for the CPU takes place among threads belonging to the same 
process. (When we say the thread library schedules user threads onto available 
LWPs, we do not mean that the threads are actually running on a CPU. That 
would require the operating system to schedule the kernel thread onto a physical 
CPU.) To decide which kernel-level thread to schedule onto a CPU, the kernel 
uses system-contention scope (SCS). Competition for the CPU with SCS 
scheduling takes place among all threads in the system. Systems using the one-to- 
one model, such as Windows, Linux, and Solaris, schedule threads using only 
SCS. 

 

Typically, PCS is done according to priority — the scheduler selects the 
runnable thread with the highest priority to run. User-level thread priorities are set 
by the programmer and are not adjusted by the thread library, although some 
thread libraries may allow the programmer to change the priority of a thread. It is 



important to note that PCS will typically preempt the thread currently running in 
favor of a higher-priority thread; however, there is no guarantee of time slicing 
(Section 6.3.4) among threads of equal priority. 

 
 Pthread Scheduling 

We highlight the POSIX Pthread API that allows specifying PCS or SCS 
during thread creation. Pthreads identifies the following contention scope values: 

 
PTHREAD SCOPE PROCESS schedules threads using PCS scheduling. 
PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling. 

On systems implementing the many-to-many model, the PTHREAD 
SCOPE PROCESS policy schedules user-level threads onto available LWPs. The 
number of LWPs is maintained by the thread library, perhaps using scheduler 
activations (Section 4.6.5). The PTHREAD SCOPE SYSTEM scheduling policy 
will create and bind an LWP for each user-level thread on many-to-many 
systems, effectively mapping threads using the one-to-one policy. 

The Pthread IPC provides two functions for getting — and setting — the 
contention scope policy: 

 
pthread attr setscope(pthread attr t *attr, int scope) 
pthread attr getscope(pthread attr t *attr, int *scope) 

The first parameter for both functions contains a pointer to the attribute 
set for the thread. The second parameter for the pthread attr setscope() function is 
passed either the PTHREAD SCOPE SYSTEM or the PTHREAD SCOPE 
PROCESS value, indicating how the contention scope is to be set. In the case of 
pthread attr getscope(), this second parameter contains a pointer to an int value 
that is set to the current value of the contention scope. If an error occurs, each of 
these functions returns a nonzero value. 

 
 Multiple-Processor Scheduling 

 
Our discussion thus far has focused on the problems of scheduling the 

CPU in a system with a single processor. If multiple CPUs are available, load 
sharing becomes possible — but scheduling problems become correspondingly 
more complex. Many possibilities have been tried; and as we saw with single- 
processor CPU scheduling, there is no one best solution. 

Here, we discuss several concerns in multiprocessor scheduling. We 
concentrate on systems in which the processors are identical — homogeneous — 
in terms of their functionality. We can then use any available processor to run any 
process in the queue. Note, however, that even with homogeneous 
multiprocessors, there are sometimes limitations on scheduling. Consider a 
system with an I/O device attached to a private bus of one processor. Processes 
that wish to use that device must be scheduled to run on that processor. 



 Approaches to Multiple-Processor Scheduling 

One approach to CPU scheduling in a multiprocessor system has all 
scheduling decisions, I/O processing, and other system activities handled by a 
single processor — the master server. The other processors execute only user 
code. This asymmetric multiprocessing is simple because only one processor 
accesses the system data structures, reducing the need for data sharing. 

#include <pthread.h> 
#include <stdio.h> 
#define NUM THREADS 5 

int main(int argc, char *argv[]) 
{ 

int i, scope; 
pthread t tid[NUM THREADS]; 
pthread attr t attr; 

/* get the default attributes */ 
pthread attr init(&attr); 

/* first inquire on the current scope */ 
if (pthread attr getscope(&attr, &scope) != 0) fprintf(stderr, 

"Unable to get scheduling scope\n"); 
else { 

if (scope == PTHREAD SCOPE PROCESS) 
printf("PTHREAD SCOPE PROCESS"); 

else if (scope == PTHREAD SCOPE SYSTEM) 
printf("PTHREAD SCOPE SYSTEM"); 

else 
fprintf(stderr, "Illegal scope value.\n"); 

} 
 

/* set the scheduling algorithm to PCS or SCS */ pthread attr 
setscope(&attr, PTHREAD SCOPE SYSTEM); 

/* create the threads */ 
for (i = 0; i < NUM THREADS; i++) 

pthread create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */ 
for (i = 0; i < NUM THREADS; i++) 

pthread join(tid[i], NULL); 
} 

 

/* Each thread will begin control in this function */ void 
*runner(void *param) 
{ 

/* do some work ... */ 



pthread exit(0); 
} 

Figure 2.36 Pthread scheduling API. 
 

A second approach uses symmetric multiprocessing (SMP), where each 
processor is self-scheduling. All processes may be in a common ready queue, or 
each processor may have its own private queue of ready processes. Regardless, 
scheduling proceeds by having the scheduler for each processor examine the 
ready queue and select a process to execute. As we saw in Chapter 5, if we have 
multiple processors trying to access and update a common data structure, the 
scheduler must be programmed carefully. We must ensure that two separate 
processors do not choose to schedule the same process and that processes are not 
lost from the queue. Virtually all modern operating systems support SMP, 
including Windows, Linux, and Mac OS X. 

 Processor Affinity 
Consider what happens to cache memory when a process has been running 

on a specific processor. The data most recently accessed by the process populate 
the cache for the processor. As a result, successive memory accesses by the 
process are often satisfied in cache memory. Now consider what happens if the 
process migrates to another processor. The contents of cache memory must be 
invalidated for the first processor, and the cache for the second processor must be 
repopulated. Because of the high cost of invalidating and repopulating caches, 
most SMP systems try to avoid migration of processes from one processor to 
another and instead attempt to keep a process running on the same processor. 
This is known as processor affinity — that is, a process has an affinity for the 
processor on which it is currently running. 

Processor affinity takes several forms. When an operating system has a 
policy of attempting to keep a process running on the same processor — but not 
guaranteeing that it will do so — we have a situation known as soft affinity. 
Here, the operating system will attempt to keep a process on a single processor, 
but it is possible for a process to migrate between processors. In contrast, some 
systems provide system calls that support hard affinity, thereby allowing a 
process to specify a subset of processors on which it may run. Many systems 
provide both soft and hard affinity. For example, Linux implements soft affinity, 
but it also provides the sched setaffinity() system call, which supports hard 
affinity. 

The main-memory architecture of a system can affect processor affinity 
issues. Figure 2.37 illustrates an architecture featuring non-uniform memory 
access (NUMA), in which a CPU has faster access to some parts of main memory 
than to other parts. Typically, this occurs in systems containing combined CPU 
and memory boards. The CPUs on a board can access the memory on that board 
faster than they can access memory on other boards in the system. If the operating 
system’s CPU scheduler and memory-placement algorithms work together, then a 



process that is assigned affinity to a particular CPU can be allocated memory on 
the board where that CPU resides. This example also shows that operating 
systems are frequently not as cleanly defined and implemented as described in 
operating-system  textbooks.  Rather,  the  ―solid  lines‖  between  sections  of  an 
operating  system  are  frequently  only  ―dotted  lines,‖  with  algorithms  creating 
connections in ways aimed at optimizing performance and reliability. 

 
 Load Balancing 

 
On SMP systems, it is important to keep the workload balanced among all 

processors to fully utilize the benefits of having more than one processor. 
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Figure 2.37 NUMA and CPU scheduling. 
 

Otherwise, one or more processors may sit idle while other processors have high 
workloads, along with lists of processes awaiting the CPU. Load balancing 
attempts to keep the workload evenly distributed across all processors in an SMP 
system. It is important to note that load balancing is typically necessary only on 
systems where each processor has its own private queue of eligible processes to 
execute. On systems with a common run queue, load balancing is often 
unnecessary, because once a processor becomes idle, it immediately extracts a 
runnable process from the common run queue. It is also important to note, 
however, that in most contemporary operating systems supporting SMP, each 
processor does have a private queue of eligible processes. 

There are two general approaches to load balancing: push migration and 
pull migration. With push migration, a specific task periodically checks the load 
on each processor and — if it finds an imbalance — evenly distributes the load by 
moving (or pushing) processes from overloaded to idle or less-busy processors. 



Pull migration occurs when an idle processor pulls a waiting task from a busy 
processor. Push and pull migration need not be mutually exclusive and are in fact 
often implemented in parallel on load-balancing systems. For example, the Linux 
schedulercand the ULE scheduler available for FreeBSD systems implement both 
techniques. 

The benefit of keeping a process running on the same processor is that the 
process can take advantage of its data being in that processor’s cache memory. 
Either pulling or pushing a process from one processor to another removes this 
benefit. As is often the case in systems engineering, there is no absolute rule 
concerning what policy is best. Thus, in some systems, an idle processor always 
pulls a process from a non-idle processor. In other systems, processes are moved 
only if the imbalance exceeds a certain threshold. 

 Multicore Processors 
Traditionally, SMP systems have allowed several threads to run 

concurrently by providing multiple physical processors. However, a recent 
practice in computer 
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Figure 2.38 Memory stall. 
hardware has been to place multiple processor cores on the same physical chip, 
resulting in a multicore processor. Each core maintains its architectural state and 
thus appears to the operating system to be a separate physical processor. SMP 
systems that use multicore processors are faster and consume less power than 
systems in which each processor has its own physical chip. 

Multicore processors may complicate scheduling issues. Let’s consider 
how this can happen. Researchers have discovered that when a processor accesses 
memory, it spends a significant amount of time waiting for the data to become 
available. This situation, known as a memory stall, may occur for various 
reasons, such as a cache miss (accessing data that are not in cache memory). 
Figure 2.38 illustrates a memory stall. In this scenario, the processor can spend up 
to 50 percent of its time waiting for data to become available from memory. To 
remedy this situation, many recent hardware designs have implemented 
multithreaded processor cores in which two (or more) hardware threads are 
assigned to each core. That way, if one thread stalls while waiting for memory, 
the core can switch to another thread. Figure 2.39 illustrates a dual-threaded 
processor core on which the execution of thread 0 and the execution of thread 1 
are interleaved. From an operating-system perspective, each hardware thread 

C compute cycle M m  

 



appears as a logical processor that is available to run a software thread. Thus, on a 
dual-threaded, dual-core system, four logical processors are presented to the 
operating system. The UltraSPARC T3 CPU has sixteen cores per chip and eight 
hardware threads per core. From the perspective of the operating system, there 
appear to be 128 logical processors. 
In general, there are two ways to multithread a processing core: coarse-grained 
and fine-grained multithreading. With coarse-grained multithreading, a thread 
executes on a processor until a long-latency event such as a memory stall occurs. 
Because of the delay caused by the long-latency event, the processor must switch 
to another thread to begin execution. However, the cost of switching between 
threads is high, since the instruction pipeline must be flushed before the other 
thread can begin execution on the processor core. Once this new thread begins 
execution, it begins filling the pipeline with its instructions. Fine-grained (or 
interleaved) multithreading switches between threads at a much finer level of 
granularity — typically at the boundary of an instruction cycle. However, the 
architectural design of fine-grained systems includes logic for thread switching. 
As a result, the cost of switching between threads is small. 
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Figure 2.39 Multithreaded multicore system. 
 

Notice that a multithreaded multicore processor actually requires two 
different levels of scheduling. On one level are the scheduling decisions that must 
be made by the operating system as it chooses which software thread to run on 
each hardware thread (logical processor). For this level of scheduling, the 
operating system may choose any scheduling algorithm. A second level of 
scheduling specifies how each core decides which hardware thread to run. There 
are several strategies to adopt in this situation. The UltraSPARC T3, mentioned 
earlier, uses a simple round-robin algorithm to schedule the eight hardware 
threads to each core. Another example, the Intel Itanium, is a dual-core processor 
with two hardware-managed threads per core. Assigned to each hardware thread 
is a dynamic urgency value ranging from 0 to 7, with 0 representing the lowest 
urgency and 7 the highest. The Itanium identifies five different events that may 
trigger a thread switch. When one of these events occurs, the thread-switching 
logic compares the urgency of the two threads and selects the thread with the 
highest urgency value to execute on the processor core. 
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Memory Management 
The main purpose of a computer system is to execute programs. These 

programs, together with the data they access, must be at least partially in main 
memory during execution. 

To improve both the utilization of the CPU and the speed of its response 
to users, a general-purpose computer must keep several processes in memory. 
Many memory-management schemes exist, reflecting various approaches, and 
the effectiveness of each algorithm depends on the situation. Selection of a 
memory-management scheme for a system depends on many factors, especially 
on the hardware design of the system. Most algorithms require hardware 
support. 

 
Main Memory 

 Background 

Memory is central to the operation of a modern computer system. 
Memory consists of a large array of bytes, each with its own address. The CPU 
fetches instructions from memory according to the value of the program 
counter. These instructions may cause additional loading from and storing to 
specific memory addresses. 

A typical instruction-execution cycle, for example, first fetches an 
instruction from memory. The instruction is then decoded and may cause 
operands to be fetched from memory. After the instruction has been executed 
on the operands, results may be stored back in memory. The memory unit sees 
only a stream of memory addresses; it does not know how they are generated 
(by the instruction counter, indexing, indirection, literal addresses, and so on) 
or what they are for (instructions or data). Accordingly, we can ignore how a 
program generates a memory address. We are interested only in the sequence 
of memory addresses generated by the running program. 

 Basic Hardware 
Main memory and the registers built into the processor itself are the 

only general-purpose storage that the CPU can access directly. There are 
machine instructions that take memory addresses as arguments, but none that 
take disk addresses. Therefore, any instructions in execution, and any data 
being used by the instructions, must be in one of these direct-access storage 
devices. If the data are not in memory, they must be moved there before the 
CPU can operate on them. 

Registers that are built into the CPU are generally accessible within one 
cycle of the CPU clock. Most CPUs can decode instructions and perform 
simple operations on register contents at the rate of one or more operations per 
clock tick. The same cannot be said of main memory, which is accessed via a 



transaction on the memory bus. Completing a memory access may take many 
cycles of the CPU clock. In such cases, the processor normally needs to stall, 
since it does not have the data required to complete the instruction that it is 
executing. This situation is intolerable because of the frequency of memory 
accesses. The remedy is to add fast memory between the CPU and main 
memory, typically on the CPU chip for fast access. To manage a cache built 
into the CPU, the hardware automatically speeds up memory access without 
any operating-system control. 

Not only are we concerned with the relative speed of accessing physical 
memory, but we also must ensure correct operation. For proper system 
operation we must protect the operating system from access by user processes. 
On multiuser systems, we must additionally protect user processes from one 
another. This protection must be provided by the hardware because the 
operating system doesn’t usually intervene between the CPU and its memory 
accesses (because of the resulting performance penalty). 

We first need to make sure that each process has a separate memory 
space. Separate per-process memory space protects the processes from each 
other and is fundamental to having multiple processes loaded in memory for 
concurrent execution. To separate memory spaces, we need the ability to 
determine the range of legal addresses that the process may access and to 
ensure that the process can access only these legal addresses. We can provide 
this protection by using two registers, usually a base and a limit, as illustrated 
in Figure 8.1. The base register holds the smallest legal physical memory 
address; the limit register specifies the size of the range. For example, if the 
base register holds 
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Figure 8.1 A base and a limit register define a logical address space. 
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300040 and the limit register is 120900, then the program can legally access all 
addresses from 300040 through 420939 (inclusive). 

Protection of memory space is accomplished by having the CPU 
hardware compare every address generated in user mode with the registers. 
Any attempt by a program executing in user mode to access operating-system 
memory or other users’ memory results in a trap to the operating system, which 
treats the attempt as a fatal error (Figure 8.2). This scheme prevents a user 
program from (accidentally or deliberately) modifying the code or data 
structures of either the operating system or other users. 

The base and limit registers can be loaded only by the operating system, 
which uses a special privileged instruction. Since privileged instructions can be 
executed only in kernel mode, and since only the operating system executes in 
kernel mode, only the operating system can load the base and limit registers. 
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Figure 8.2 Hardware address protection with base and limit registers. 
 

This scheme allows the operating system to change the value of the 
registers but prevents user programs from changing the registers’ contents. 

The operating system, executing in kernel mode, is given unrestricted 
access to both operating-system memory and users’ memory. This provision 
allows the operating system to load users’ programs into users’ memory, to 
dump out those programs in case of errors, to access and modify parameters of 
system calls, to perform I/O to and from user memory, and to provide many 
other services. Consider, for example, that an operating system for a 
multiprocessing system must execute context switches, storing the state of one 
process from the registers into main memory before loading the next process’s 
context from main memory into the registers. 



 Address Binding 
 

Usually, a program resides on a disk as a binary executable file. To be 
executed, the program must be brought into memory and placed within a 
process. Depending on the memory management in use, the process may be 
moved between disk and memory during its execution. The processes on the 
disk that are waiting to be brought into memory for execution form the input 
queue. 

The normal single-tasking procedure is to select one of the processes in 
the input queue and to load that process into memory. As the process is 
executed, it accesses instructions and data from memory. Eventually, the 
process terminates, and its memory space is declared available. 

Most systems allow a user process to reside in any part of the physical 
memory. Thus, although the address space of the computer may start at 00000, 
the first address of the user process need not be 00000. You will see later how a 
user program actually places a process in physical memory. 

In most cases, a user program goes through several steps — some of 
which may be optional — before being executed (Figure 8.3). Addresses may 
be represented in different ways during these steps. Addresses in the source 
program are generally symbolic (such as the variable count). A compiler 
typically binds these symbolic addresses to relocatable addresses (such as ―14 
bytes from the beginning of this module‖). The linkage editor or loader in turn 
binds the relocatable addresses to absolute addresses (such as 74014). Each 
binding is a mapping from one address space to another. 

Classically, the binding of instructions and data to memory addresses 
can be done at any step along the way: 

 
Compile time. If you know at compile time where the process will reside in 
memory, then absolute code can be generated. For example, if you know that a 
user process will reside starting at location R, then the generated compiler code 
will start at that location and extend up from there. If, at some later time, the 
starting location changes, then it will be necessary to recompile this code. The 
MS-DOS .COM-format programs are bound at compile time. 

 
Load time. If it is not known at compile time where the process will reside in 
memory, then the compiler must generate relocatable code. In this case, final 
binding is delayed until load time. If the starting address changes, we need only 
reload the user code to incorporate this changed value. 

 
Execution time. If the process can be moved during its execution from one 
memory segment to another, then binding must be delayed until run time. 
Special hardware must be available for this scheme to work, as will be 
discussed in Section 8.1.3. Most general-purpose operating systems use this 
method. 
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Figure 8.3 Multistep processing of a user program. 

 Logical Versus Physical Address Space 
An address generated by the CPU is commonly referred to as a logical 

address, whereas an address seen by the memory unit — that is, the one loaded 
into the memory-address register of the memory — is commonly referred to 
as a physical address. 



The compile-time and load-time address-binding methods generate 
identical logical and physical addresses. However, the execution-time address- 
binding scheme results in differing logical and physical addresses. In this case, 
we usually refer to the logical address as a virtual address. We use logical 
address and virtual address interchangeably in this text. The set of all logical 
addresses generated by a program is a logical address space. The set of all 
physical addresses corresponding to these logical addresses is a physical 
address space. Thus, in the execution-time address-binding scheme, the 
logical and physical address spaces differ. 

The run-time mapping from virtual to physical addresses is done by a 
hardware device called the memory-management unit (MMU). We can 
choose from many different methods to accomplish such mapping, as we 
discuss in Section 8.3 through Section 8.5. For the time being, we illustrate this 
mapping with a simple MMU scheme that is a generalization of the base- 
register scheme described in Section 8.1.1. The base register is now called a 
relocation register. The value in the relocation register is added to every 
address generated by a user process at the time the address is sent to memory 
(see Figure 8.4). For example, if the base is at 14000, then an attempt by the 
user to address location 0 is dynamically relocated to location 14000; an access 
to location 346 is mapped to location 14346. 

The user program never sees the real physical addresses. The program 
can create a pointer to location 346, store it in memory, manipulate it, and 
compare it with other addresses — all as the number 346. Only when it is used 
as a memory address (in an indirect load or store, perhaps) is it relocated 
relative to the base register. The user program deals with logical addresses. The 
memory-mapping hardware converts logical addresses into physical addresses. 
This form of execution-time binding was discussed in Section 8.1.2. The final 
location of a referenced memory address is not determined until the reference 
is made. 

We now have two different types of addresses: logical addresses (in the 
range 0 to max) and physical addresses (in the range R + 0 to R + max for a 
base value R). The user program generates only logical addresses and thinks 
that the process runs in locations 0 to max. However, these logical addresses 
must be mapped to physical addresses before they are used. The concept of a 
logical address space that is bound to a separate physical address space is 
central to proper memory management. 
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Figure 8.4 Dynamic relocation using a relocation register. 

 Dynamic Loading 

In our discussion so far, it has been necessary for the entire program 
and all data of a process to be in physical memory for the process to execute. 
The size of a process has thus been limited to the size of physical memory. 
To obtain better memory-space utilization, we can use dynamic loading. 
With dynamic loading, a routine is not loaded until it is called. All routines 
are kept on disk in a relocatable load format. The main program is loaded 
into memory and is executed. When a routine needs to call another routine, 
the calling routine first checks to see whether the other routine has been 
loaded. If it has not, the relocatable linking loader is called to load the 
desired routine into memory and to update the program’s address tables to 
reflect this change. Then control is passed to the newly loaded routine. 

The advantage of dynamic loading is that a routine is loaded only 
when it is needed. This method is particularly useful when large amounts of 
code are needed to handle infrequently occurring cases, such as error 
routines. In this case, although the total program size may be large, the 
portion that is used (and hence loaded) may be much smaller. 

Dynamic loading does not require special support from the operating 
system. It is the responsibility of the users to design their programs to take 
advantage of such a method. Operating systems may help the programmer, 
however, by providing library routines to implement dynamic loading. 



 Dynamic Linking and Shared Libraries 
Dynamically linked libraries are system libraries that are linked to 

user programs when the programs are run (refer back to Figure 8.3). Some 
operating systems support only static linking, in which system libraries are 
treated like any other object module and are combined by the loader into the 
binary program image. Dynamic linking, in contrast, is similar to dynamic 
loading. Here, though, linking, rather than loading, is postponed until execution 
time. This feature is usually used with system libraries, such as language 
subroutine libraries. Without this facility, each program on a system must 
include a copy of its language library (or at least the routines referenced by the 
program) in the executable image. This requirement wastes both disk space and 
main memory. 

With dynamic linking, a stub is included in the image for each library- 
routine reference. The stub is a small piece of code that indicates how to locate 
the appropriate memory-resident library routine or how to load the library if the 
routine is not already present. When the stub is executed, it checks to see 
whether the needed routine is already in memory. If it is not, the program loads 
the routine into memory. Either way, the stub replaces itself with the address of 
the routine and executes the routine. Thus, the next time that particular code 
segment is reached, the library routine is executed directly, incurring no cost 
for dynamic linking. Under this scheme, all processes that use a language 
library execute only one copy of the library code. 

This feature can be extended to library updates (such as bug fixes). A 
library may be replaced by a new version, and all programs that reference the 
library will automatically use the new version. Without dynamic linking, all 
such programs would need to be relinked to gain access to the new library. So 
that programs will not accidentally execute new, incompatible versions of 
libraries, version information is included in both the program and the library. 
More than one version of a library may be loaded into memory, and each 
program uses its version information to decide which copy of the library to use. 
Versions with minor changes retain the same version number, whereas versions 
with major changes increment the number. Thus, only programs that are 
compiled with the new library version are affected by any incompatible 
changes incorporated in it. Other programs linked before the new library was 
installed will continue using the older library. This system is also known as 
shared libraries. 

Unlike dynamic loading, dynamic linking and shared libraries generally 
require help from the operating system. If the processes in memory are 
protected from one another, then the operating system is the only entity that 
can check to see whether the needed routine is in another process’s memory 
space or that can allow multiple processes to access the same memory 
addresses. 



 Swapping 

A process must be in memory to be executed. A process, however, 
can be swapped temporarily out of memory to a backing store and then 
brought back into memory for continued execution (Figure 8.5). Swapping 
makes it possible for the total physical address space of all processes to 
exceed the real physical memory of the system, thus increasing the degree of 
multiprogramming in a system. 

 Standard Swapping 

Standard swapping involves moving processes between main memory and a 
backing store. The backing store is commonly a fast disk. It must be large 
enough to accommodate copies of all memory images for all users, and it 
must provide direct access to these memory images. The system maintains a 
ready queue consisting of all processes whose memory images are on the 
backing store or in memory and are ready to run. Whenever the CPU 
scheduler decides to execute a process, it calls the dispatcher. The dispatcher 
checks to see whether the next process in the queue is in memory. If it is not, 
and if there is no free memory region, the dispatcher swaps out a process 
currently in memory and swaps in the desired process. It then reloads 
registers and transfers control to the selected process. 
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Figure 8.5 Swapping of two processes using a disk as a backing store. 



The context-switch time in such a swapping system is fairly high. To 
get an idea of the context-switch time, let’s assume that the user process is 100 
MB in size and the backing store is a standard hard disk with a transfer rate of 
50 MB per second. The actual transfer of the 100-MB process to or from main 
memory takes 

 

100 MB/50 MB per second = 2 seconds 
The swap time is 200 milliseconds. Since we must swap both out and 

in, the total swap time is about 4,000 milliseconds. 
Notice that the major part of the swap time is transfer time. The total 

transfer time is directly proportional to the amount of memory swapped. If we 
have a computer system with 4 GB of main memory and a resident operating 
system taking 1 GB, the maximum size of the user process is 3 GB. However, 
many user processes may be much smaller than this — say, 100 MB. A 100- 
MB process could be swapped out in 2 seconds, compared with the 60 seconds 
required for swapping 3 GB. Clearly, it would be useful to know exactly how 
much memory a user process is using, not simply how much it might be using. 
Then we would need to swap only what is actually used, reducing swap time. 
For this method to be effective, the user must keep the system informed of any 
changes in memory requirements. Thus, a process with dynamic memory 
requirements will need to issue system calls (request memory() and release 
memory()) to inform the operating system of its changing memory needs. 

Swapping is constrained by other factors as well. If we want to swap a 
process, we must be sure that it is completely idle. Of particular concern is any 
pending I/O. A process may be waiting for an I/O operation when we want to 
swap that process to free up memory. However, if the I/O is asynchronously 
accessing the user memory for I/O buffers, then the process cannot be 
swapped. Assume that the I/O operation is queued because the device is busy. 
If we were to swap out process P1 and swap in process P2, the I/O operation 
might then attempt to use memory that now belongs to process P2. There are 
two main solutions to this problem: never swap a process with pending I/O, or 
execute I/O operations only into operating-system buffers. Transfers between 
operating-system buffers and process memory then occur only when the 
process is swapped in. Note that this double buffering itself adds overhead. 
We now need to copy the data again, from kernel memory to user memory, 
before the user process can access it. 

Standard swapping is not used in modern operating systems. It requires 
too much swapping time and provides too little execution time to be a 
reasonable memory-management solution. Modified versions of swapping, 
however, are found on many systems, including UNIX, Linux, and Windows. 
In one common variation, swapping is normally disabled but will start if the 
amount of free memory (unused memory available for the operating system or 
processes to use) falls below a threshold amount. Swapping is halted when the 
amount of free memory increases. Another variation involves swapping 
portions of processes — rather than entire processes — to decrease swap time. 



 Swapping on Mobile Systems 
Although most operating systems for PCs and servers support some 

modified version of swapping, mobile systems typically do not support 
swapping in any form. Mobile devices generally use flash memory rather 
than more spacious hard disks as their persistent storage. The resulting space 
constraint is one reason why mobile operating-system designers avoid 
swapping. Other reasons include the limited number of writes that flash 
memory can tolerate before it becomes unreliable and the poor throughput 
between main memory and flash memory in these devices. 

Instead of using swapping, when free memory falls below a certain 
threshold, Apple’s iOS asks applications to voluntarily relinquish allocated 
memory. Read-only data (such as code) are removed from the system and 
later reloaded from flash memory if necessary. Data that have been modified 
(such as the stack) are never removed. However, any applications that fail to 
free up sufficient memory may be terminated by the operating system. 

Android does not support swapping and adopts a strategy similar to 
that used by iOS. It may terminate a process if insufficient free memory is 
available. However, before terminating a process, Android writes its 
application state to flash memory so that it can be quickly restarted. 

Because of these restrictions, developers for mobile systems must 
carefully allocate and release memory to ensure that their applications do not 
use too much memory or suffer from memory leaks. Note that both iOS and 
Android support paging, so they do have memory-management abilities. 

 
 Contiguous Memory Allocation 

The main memory must accommodate both the operating 
system and the various user processes. We therefore need to allocate main 
memory in the most efficient way possible. This section explains one early 
method, contiguous memory allocation. The memory is usually divided into 
two partitions: one for the resident operating system and one for the user 
processes. We can place the operating system in either low memory or high 
memory. The major factor affecting this decision is the location of the 
interrupt vector. Since the interrupt vector is often in low memory, 
programmers usually place the operating system in low memory as well. 
Thus, in this text, we discuss only the situation in which the operating 
system resides in low memory. The development of the other situation is 
similar. 

We usually want several user processes to reside in memory at the 
same time. We therefore need to consider how to allocate available memory 
to the processes that are in the input queue waiting to be brought into 
memory. In contiguous memory allocation, each process is contained in a 
single section of memory that is contiguous to the section containing the next 
process. 



 Memory Protection 

Before discussing memory allocation further, we must discuss the issue 
of memory protection. We can prevent a process from accessing memory it 
does not own by combining two ideas previously discussed. If we have a 
system with a relocation register (Section 8.1.3), together with a limit register 
(Section 8.1.1), we accomplish our goal. The relocation register contains the 
value of the smallest physical address; the limit register contains the range of 
logical addresses (for example, relocation = 100040 and limit = 74600). Each 
logical address must fall within the range specified by the limit register. The 
MMU maps the logical address dynamically by adding the value in the 
relocation register. This mapped address is sent to memory (Figure 8.6). 

When the CPU scheduler selects a process for execution, the dispatcher 
loads the relocation and limit registers with the correct values as part of the 
context switch. Because every address generated by a CPU is checked against 
these registers, we can protect both the operating system and the other users’ 
programs and data from being modified by this running process. 

The relocation-register scheme provides an effective way to allow the 
operating system’s size to change dynamically. This flexibility is desirable in 
many situations. For example, the operating system contains code and buffer 
space for device drivers. If a device driver (or other operating-system service) 
is not commonly used, we do not want to keep the code and data in memory, as 
we might be able to use that space for other purposes. Such code is sometimes 
called transient operating-system code; it comes and goes as needed. Thus, 
using this code changes the size of the operating system during program 
execution. 

 
 Memory Allocation 

Now we are ready to turn to memory allocation. One of the simplest 
methods for allocating memory is to divide memory into several fixed-sized 
partitions. Each partition may contain exactly one process. Thus, the degree of 
multiprogramming is bound by the number of partitions. In this multiple- 
partition method, when a partition is free, a process is selected from the input 
queue and is loaded into the free partition. When the process terminates, the 
partition becomes available for another process. This method was originally 
used by the IBM OS/360 operating system (called MFT) but is no longer in 
use. The method described next is a generalization of the fixed-partition 
scheme (called MVT); it is used primarily in batch environments. Many of the 
ideas presented here are also applicable to a time-sharing environment in which 
pure segmentation is used for memory management (Section 8.4). 
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Figure 8.6 Hardware support for relocation and limit registers. 

 
In the variable-partition scheme, the operating system keeps a table 

indicating which parts of memory are available and which are occupied. 
Initially, all memory is available for user processes and is considered one large 
block of available memory, a hole. Eventually, as you will see, memory 
contains a set of holes of various sizes. 

As processes enter the system, they are put into an input queue. The 
operating system takes into account the memory requirements of each process 
and the amount of available memory space in determining which processes are 
allocated memory. When a process is allocated space, it is loaded into memory, 
and it can then compete for CPU time. When a process terminates, it releases 
its memory, which the operating system may then fill with another process 
from the input queue. 

At any given time, then, we have a list of available block sizes and an 
input queue. The operating system can order the input queue according to a 
scheduling algorithm. Memory is allocated to processes until, finally, the 
memory requirements of the next process cannot be satisfied — that is, no 
available block of memory (or hole) is large enough to hold that process. The 
operating system can then wait until a large enough block is available, or it can 
skip down the input queue to see whether the smaller memory requirements of 
some other process can be met. 

In general, as mentioned, the memory blocks available comprise a set of 
holes of various sizes scattered throughout memory. When a process arrives 
and needs memory, the system searches the set for a hole that is large enough 
for this process. If the hole is too large, it is split into two parts. One part is 
allocated to the arriving process; the other is returned to the set of holes. When 
a process terminates, it releases its block of memory, which is then placed back 
in the set of holes. If the new hole is adjacent to other holes, these adjacent 
holes are merged to form one larger hole. At this point, the system may need to 
check whether there are processes waiting for memory and whether this newly 



freed and recombined memory could satisfy the demands of any of these 
waiting processes. 

This procedure is a particular instance of the general dynamic storage- 
allocation problem, which concerns how to satisfy a request of size n from a 
list of free holes. There are many solutions to this problem. The first-fit, best- 
fit, and worst-fit strategies are the ones most commonly used to select a free 
hole from the set of available holes. 

 
First fit. Allocate the first hole that is big enough. Searching can start either at 
the beginning of the set of holes or at the location where the previous first-fit 
search ended. We can stop searching as soon as we find a free hole that is large 
enough. 
Best fit. Allocate the smallest hole that is big enough. We must search the 
entire list, unless the list is ordered by size. This strategy produces the smallest 
leftover hole. 
Worst fit. Allocate the largest hole. Again, we must search the entire list, 
unless it is sorted by size. This strategy produces the largest leftover hole, 
which may be more useful than the smaller leftover hole from a best-fit 
approach. 

 
Simulations have shown that both first fit and best fit are better than worst fit 
in terms of decreasing time and storage utilization. Neither first fit nor best fit 
is clearly better than the other in terms of storage utilization, but first fit is 
generally faster. 

 
 Fragmentation 

Both the first-fit and best-fit strategies for memory allocation suffer 
from external fragmentation. As processes are loaded and removed from 
memory, the free memory space is broken into little pieces. External 
fragmentation exists when there is enough total memory space to satisfy a 
request but the available spaces are not contiguous: storage is fragmented into a 
large number of small holes. This fragmentation problem can be severe. In the 
worst case, we could have a block of free (or wasted) memory between every 
two processes. If all these small pieces of memory were in one big free block 
instead, we might be able to run several more processes. 

Whether we are using the first-fit or best-fit strategy can affect the 
amount of fragmentation. (First fit is better for some systems, whereas best fit 
is better for others.) Another factor is which end of a free block is allocated. 
(Which is the leftover piece — the one on the top or the one on the bottom?) 
No matter which algorithm is used, however, external fragmentation will be a 
problem. 



Depending on the total amount of memory storage and the average 
process size, external fragmentation may be a minor or a major problem. 
Statistical analysis of first fit, for instance, reveals that, even with some 
optimization, given N allocated blocks, another 0.5 N blocks will be lost to 
fragmentation. That is, one-third of memory may be unusable! This property 
is known as the 50-percent rule. 

Memory fragmentation can be internal as well as external. Consider a 
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose 
that the next process requests 18,462 bytes. If we allocate exactly the 
requested block, we are left with a hole of 2 bytes. The overhead to keep 
track of this hole will be substantially larger than the hole itself. The general 
approach to avoiding this problem is to break the physical memory into 
fixed-sized blocks and allocate memory in units based on block size. With 
this approach, the memory allocated to a process may be slightly larger than 
the requested memory. The difference between these two numbers is 
internal fragmentation — unused memory that is internal to a partition. 

One solution to the problem of external fragmentation is compaction. 
The goal is to shuffle the memory contents so as to place all free memory 
together in one large block. Compaction is not always possible, however. If 
relocation is static and is done at assembly or load time, compaction cannot 
be done. It is possible only if relocation is dynamic and is done at execution 
time. If addresses are relocated dynamically, relocation requires only moving 
the program and data and then changing the base register to reflect the new 
base address. When compaction is possible, we must determine its cost. The 
simplest compaction algorithm is to move all processes toward one end of 
memory; all holes move in the other direction, producing one large hole of 
available memory. This scheme can be expensive. 

Another possible solution to the external-fragmentation problem is to 
permit the logical address space of the processes to be noncontiguous, thus 
allowing a process to be allocated physical memory wherever such memory 
is available. Two complementary techniques achieve this solution: 
segmentation (Section 8.4) and paging (Section 8.5). These techniques can 
also be combined. 
 Segmentation 

As we’ve already seen, the user’s view of memory is not the same as 
the actual physical memory. This is equally true of the programmer’s view of 
memory. Indeed, dealing with memory in terms of its physical properties is 
inconvenient to both the operating system and the programmer. What if the 
hardware could provide a memory mechanism that mapped the 
programmer’s view to the actual physical memory? The system would have 
more freedom to manage memory, while the programmer would have a more 
natural programming environment. Segmentation provides such a 
mechanism. 
 Basic Method 

Do programmers think of memory as a linear array of bytes, some 
containing instructions and others containing data? Most programmers would 
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say  ―no.‖  Rather,  they  prefer  to  view  memory  as  a  collection  of  variable- 
sized segments, with no necessary ordering among the segments (Figure 8.7). 

When writing a program, a programmer thinks of it as a main 
program with a set of methods, procedures, or functions. It may also include 
various data structures: objects, arrays, stacks, variables, and so on. Each of 
these modules or data elements is referred to by name. The programmer talks 
about ―the stack,‖ ―the math library,‖ and ―the main program‖ without caring 
what addresses in memory these elements occupy. She is not concerned with 
whether the stack is stored before or after the Sqrt() function. Segments vary 
in length, and the length of each is intrinsically defined by its purpose in the 
program. Elements within a segment are identified by their offset from the 
beginning of the segment: the first statement of the program, the seventh 
stack frame entry in the stack, the fifth instruction of the Sqrt(), and so on. 

Segmentation is a memory-management scheme that supports this 
programmer view of memory. A logical address space is a collection of 
segments. 
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Figure 8.7 Programmer’s view of a program. 
 

Each segment has a name and a length. The addresses specify both 
the segment name and the offset within the segment. The programmer 
therefore specifies each address by two quantities: a segment name and an 
offset. 

For simplicity of implementation, segments are numbered and are 
referred to by a segment number, rather than by a segment name. Thus, a 
logical address consists of a two tuple: 

<segment-number, offset>. 
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Normally, when a program is compiled, the compiler automatically 
constructs segments reflecting the input program. 

A C compiler might create separate segments for the following: 

The code 

Global variables 
The heap, from which memory is allocated 

The stacks used by each thread 
The standard C library 

 
Libraries that are linked in during compile time might be assigned 

separate segments. The loader would take all these segments and assign them 
segment numbers. 

 
 Segmentation Hardware 

Although the programmer can now refer to objects in the program by 
a two-dimensional address, the actual physical memory is still, of course, a 
one-dimensional sequence of bytes. Thus, we must define an implementation 
to map two-dimensional user-defined addresses into one-dimensional 
physical addresses. 

 
 

trap: addressing error physical memory 
 

Figure 8.8 Segmentation hardware. 
 

This mapping is effected by a segment table. Each entry in the segment table 
has a segment base and a segment limit. The segment base contains the 
starting physical address where the segment resides in memory, and the 
segment limit specifies the length of the segment. 



The use of a segment table is illustrated in Figure 8.8. A logical 
address consists of two parts: a segment number, s, and an offset into that 
segment, d. The segment number is used as an index to the segment table. 
The offset d of the logical address must be between 0 and the segment limit. 
If it is not, we trap to the operating system (logical addressing attempt 
beyond end of segment). When an offset is legal, it is added to the segment 
base to produce the address in physical memory of the desired byte. The 
segment table is thus essentially an array of base – limit register pairs. 

As an example, consider the situation shown in Figure 8.9. We have 
five segments numbered from 0 through 4. The segments are stored in 
physical memory as shown. The segment table has a separate entry for each 
segment, giving the beginning address of the segment in physical memory 
(or base) and the length of that segment (or limit). For example, segment 2 is 
400 bytes long and begins at location 4300. Thus, a reference to byte 53 of 
segment 2 is mapped onto location 4300 + 53 = 4353. A reference to segment 
3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052. A 
reference to byte 1222 of segment 0 would result in a trap to the operating 
system, as this segment is only 1,000 bytes long. 

 
 Paging 

Segmentation permits the physical address space of a process to be 
non-contiguous. Paging is another memory-management scheme that offers 
this advantage. However, paging avoids external fragmentation and the need 
for compaction, whereas segmentation does not. It also solves the 
considerable problem of fitting memory chunks of varying sizes onto the 
backing store. Most memory-management schemes used before the 
introduction of paging suffered from this problem. The problem arises 
because, when code fragments or data residing in main memory need to be 
swapped out, space must be found on the backing store. The backing store 
has the same fragmentation problems discussed in connection with main 
memory, but access is much slower, so compaction is impossible. Because of 
its advantages over earlier methods, paging in its various forms is used in 
most operating systems, from those for mainframes through those for 
smartphones. Paging is implemented through cooperation between the 
operating system and the computer hardware. 
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Figure 8.9 Example of segmentation. 
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 Basic Method 
The basic method for implementing paging involves breaking physical mem- 
ory into fixed-sized blocks called frames and breaking logical memory into 
blocks of the same size called pages. When a process is to be executed, its 
pages are loaded into any available memory frames from their source (a file 
system or the backing store). The backing store is divided into fixed-sized 
blocks that are the same size as the memory frames or clusters of multiple 
frames. This rather simple idea has great functionality and wide 
ramifications. For example, the logical address space is now totally separate 
from the physical address space, so a process can have a logical 64-bit 
address space even though the system has less than 264 bytes of physical 
memory. 

The hardware support for paging is illustrated in Figure 8.10. Every 
address generated by the CPU is divided into two parts: a page number (p) 
and a page 
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Figure 8.10 Paging hardware. 
 

offset (d). The page number is used as an index into a page table. The page 
table contains the base address of each page in physical memory. This base 
address is combined with the page offset to define the physical memory 
address that is sent to the memory unit. The paging model of memory is 
shown in Figure 8.11. 
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Figure 8.11 Paging model of logical and physical memory. 
 
 

The page size (like the frame size) is defined by the hardware. The size of a 
page is a power of 2, varying between 512 bytes and 1 GB per page, 
depending on the computer architecture. The selection of a power of 2 as a 
page size makes the translation of a logical address into a page number and 
page offset particularly easy. If the size of the logical address space is 2m, 
and a page size is 2n bytes, then the high-order m − n bits of a logical 
address designate the page number, and the n low-order bits designate the 
page offset. Thus, the logical address is as follows: 

 
page number page offset 

P D 
m – n N 

where p is an index into the page table and d is the displacement within the 
page. 



As a concrete (although minuscule) example, consider the memory in Figure 
8.12. Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes 
and a physical memory of 32 bytes (8 pages), we show how the programmer’s 
view of memory can be mapped into physical memory. Logical address 0 is 
page 0, offset 0. Indexing into the page table, we find that page 0 
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Figure 8.12 Paging example for a 32-byte memory with 4-byte pages. 
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is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 
4) + 0]. Logical address 3 (page 0, offset 3) maps to physical address 23 
[= (5 × 4) + 3]. Logical address 4 is page 1, offset 0; according to the page 
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to 
physical address 24 [= (6 4) + 0]. Logical address 13 maps to physical 
address 9. 

You may have noticed that paging itself is a form of dynamic 
relocation. Every logical address is bound by the paging hardware to some 
physical address. Using paging is similar to using a table of base (or 
relocation) registers, one for each frame of memory. 

When we use a paging scheme, we have no external 
fragmentation: any free frame can be allocated to a process that needs it. 
However, we may have some internal fragmentation. Notice that frames 
are allocated as units. If the memory requirements of a process do not 
happen to coincide with page boundaries, the last frame allocated may not 
be completely full. For example, if page size is 2,048 bytes, a process of 
72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36 
frames, resulting in internal fragmentation of 2,048 − 1,086 =962 bytes. In 
the worst case, a process would need n pages plus 1 byte. It would be 
allocated n + 1 frames, resulting in internal fragmentation of almost an 
entire frame. 

If process size is independent of page size, we expect internal 
fragmentation to average one-half page per process. This consideration 
suggests that small page sizes are desirable. However, overhead is 
involved in each page-table entry, and this overhead is reduced as the size 
of the pages increases. Also, disk I/O is more efficient when the amount 
data being transferred is larger (Chapter 10). Generally, page sizes have 
grown over time as processes, data sets, and main memory have become 
larger. Today, pages typically are between 4 KB and 8 KB in size, and 
some systems support even larger page sizes. Some CPUs and kernels 
even support multiple page sizes. For instance, Solaris uses page sizes of 
8 KB and 4 MB, depending on the data stored by the pages. Researchers 
are now developing support for variable on-the-fly page size. 

Frequently, on a 32-bit CPU, each page-table entry is 4 bytes long, 
but that size can vary as well. A 32-bit entry can point to one of 232 
physical page frames. If frame size is 4 KB (212), then a system with 4- 
byte entries can address 244 bytes (or 16 TB) of physical memory. We 
should note here that the size of physical memory in a paged memory 
system is different from the maximum logical size of a process. As we 
further explore paging, we introduce other information that must be kept 
in the page-table entries. That information reduces the number 
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Figure 8.13 Free frames (a) before allocation and (b) after allocation. 
 

of bits available to address page frames. Thus, a system with 32-bit page-table 
entries may address less physical memory than the possible maximum. A 32- 
bit CPU uses 32-bit addresses, meaning that a given process space can only be 
232 bytes (4 TB). Therefore, paging lets us use physical memory that is larger 
than what can be addressed by the CPU’s address pointer length. 

When a process arrives in the system to be executed, its size, expressed in 
pages, is examined. Each page of the process needs one frame. Thus, if the 
process requires n pages, at least n frames must be available in memory. If n 
frames are available, they are allocated to this arriving process. The first page 
of the process is loaded into one of the allocated frames, and the frame number 
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is put in the page table for this process. The next page is loaded into another 
frame, its frame number is put into the page table, and so on (Figure 8.13). 

An important aspect of paging is the clear separation between the 
programmer’s view of memory and the actual physical memory. The 
programmer views memory as one single space, containing only this one 
program. In fact, the user program is scattered throughout physical memory, 
which also holds other programs. The difference between the programmer’s 
view of memory and the actual physical memory is reconciled by the address- 
translation hardware. The logical addresses are translated into physical 
addresses. This mapping is hidden from the programmer and is controlled by 
the operating system. Notice that the user process by definition is unable to 
access memory it does not own. It has no way of addressing memory outside of 
its page table, and the table includes only those pages that the process owns. 
Since the operating system is managing physical memory, it must be aware of 
the allocation details of physical memory — which frames are allocated, which 
frames are available, how many total frames there are, and so on. This 
information is generally kept in a data structure called a frame table. The 
frame table has one entry for each physical page frame, indicating whether the 
latter is free or allocated and, if it is allocated, to which page of which process 
or processes. 

In addition, the operating system must be aware that user processes 
operate in user space, and all logical addresses must be mapped to produce 
physical addresses. If a user makes a system call (to do I/O, for example) and 
provides an address as a parameter (a buffer, for instance), that address must be 
mapped to produce the correct physical address. The operating system 
maintains a copy of the page table for each process, just as it maintains a copy 
of the instruction counter and register contents. This copy is used to translate 
logical addresses to physical addresses whenever the operating system must 
map a logical address to a physical address manually. It is also used by the 
CPU dispatcher to define the hardware page table when a process is to be 
allocated the CPU. Paging therefore increases the context-switch time. 

 
 Hardware Support 

Each operating system has its own methods for storing page tables. 
Some allocate a page table for each process. A pointer to the page table is 
stored with the other register values (like the instruction counter) in the process 
control block. When the dispatcher is told to start a process, it must reload the 
user registers and define the correct hardware page-table values from the stored 
user page table. Other operating systems provide one or at most a few page 
tables, which decreases the overhead involved when processes are context- 
switched. 

The hardware implementation of the page table can be done in several 
ways. In the simplest case, the page table is implemented as a set of dedicated 
registers. These registers should be built with very high-speed logic to make 
the paging-address translation efficient. Every access to memory must go 
through the paging map, so efficiency is a major consideration. 



The CPU dispatcher reloads these registers, just as it reloads the other 
registers. Instructions to load or modify the page-table registers are, of 
course, privileged, so that only the operating system can change the memory 
map. The DEC PDP-11 is an example of such an architecture. The address 
consists of 16 bits, and the page size is 8 KB. The page table thus consists of 
eight entries that are kept in fast registers. 

The use of registers for the page table is satisfactory if the page table 
is reasonably small (for example, 256 entries). Most contemporary 
computers, however, allow the page table to be very large (for example, 1 
million entries). For these machines, the use of fast registers to implement 
the page table is not feasible. Rather, the page table is kept in main memory, 
and a page-table base register (PTBR) points to the page table. Changing 
page tables requires changing only this one register, substantially reducing 
context-switch time. 

The problem with this approach is the time required to access a user 
memory location. If we want to access location i, we must first index into the 
page table, using the value in the PTBR offset by the page number for i. This 
task requires a memory access. It provides us with the frame number, which 
is combined with the page offset to produce the actual address. We can then 
access the desired place in memory. With this scheme, two memory accesses 
are needed to access a byte (one for the page-table entry, one for the byte). 
Thus, memory access is slowed by a factor of 2. This delay would be 
intolerable under most circumstances. 

The standard solution to this problem is to use a special, small, fast- 
lookup hardware cache called a translation look-aside buffer (TLB). The 
TLB is associative, high-speed memory. Each entry in the TLB consists of 
two parts: a key (or tag) and a value. When the associative memory is 
presented with an item, the item is compared with all keys simultaneously. If 
the item is found, the corresponding value field is returned. The search is 
fast; a TLB lookup in modern hardware is part of the instruction pipeline, 
essentially adding no performance penalty. To be able to execute the search 
within a pipeline step, however, the TLB must be kept small. It is typically 
between 32 and 1,024 entries in size. Some CPUs implement separate 
instruction and data address TLBs. That can double the number of TLB 
entries available, because those lookups occur in different pipeline steps. We 
can see in this development an example of the evolution of CPU technology: 
systems have evolved from having no TLBs to having multiple levels of 
TLBs, just as they have multiple levels of caches. 

The TLB is used with page tables in the following way. The TLB 
contains only a few of the page-table entries. When a logical address is 
generated by the CPU, its page number is presented to the TLB. If the page 
number is found, its frame number is immediately available and is used to 
access memory. As just mentioned, these steps are executed as part of the 
instruction pipeline within the CPU, adding no performance penalty 
compared with a system that does not implement paging. 
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If the page number is not in the TLB (known as a TLB miss), a 
memory reference to the page table must be made. Depending on the CPU, this 
may be done automatically in hardware or via an interrupt to the operating 
system. When the frame number is obtained, we can use it to access memory 
(Figure 8.14). In addition, we add the page number and frame number to the 
TLB, so that they will be found quickly on the next reference. If the TLB is 
already full of entries, an existing entry must be selected for replacement. 
Replacement policies range from least recently used (LRU) through round- 
robin to random. Some CPUs allow the operating system to participate in LRU 
entry replacement, while others handle the matter themselves. Furthermore, 
some TLBs allow certain entries to be wired down, meaning that they cannot 
be removed from the TLB. Typically, TLB entries for key kernel code are 
wired down. 
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Figure 8.14Paging hardware with TLB. 
Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An 
ASID uniquely identifies each process and is used to provide address-space 
protection for that process. When the TLB attempts to resolve virtual page 
numbers, it ensures that the ASID for the currently running process matches 
the ASID associated with the virtual page. If the ASIDs do not match, the 
attempt is treated as a TLB miss. In addition to providing address-space 
protection, an ASID allows the TLB to contain entries for several different 
processes simultaneously. If the TLB does not support separate ASIDs, then 
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every time a new page table is selected (for instance, with each context 
switch), the TLB must be flushed (or erased) to ensure that the next 
executing process does not use the wrong translation information. Otherwise, 
the TLB could include old entries that contain valid virtual addresses but have 
incorrect or invalid physical addresses left over from the previous process. 

The percentage of times that the page number of interest is found in the 
TLB is called the hit ratio. An 80-percent hit ratio, for example, means that we 
find the desired page number in the TLB 80 percent of the time. If it takes 100 
nanoseconds to access memory, then a mapped-memory access takes 100 
nanoseconds when the page number is in the TLB. If we fail to find the page 
number in the TLB then we must first access memory for the page table and 
frame number (100 nanoseconds) and then access the desired byte in memory 
(100 nanoseconds), for a total of 200 nanoseconds. (We are assuming that a 
page-table lookup takes only one memory access, but it can take more, as we 
shall see.) To find the effective memory-access time, we weight the case by its 
probability: 

effective access time = 0.80 × 100 + 0.20 × 200 = 
120 nanoseconds 

In this example, we suffer a 20-percent slowdown in average memory-access 
time (from 100 to 120 nanoseconds).For a 99-percent hit ratio, which is much 
more realistic, we have 

effective access time = 0.99 × 100 + 0.01 × 200 = 101 nanoseconds 
This increased hit rate produces only a 1 percent slowdown in access time. 

As we noted earlier, CPUs today may provide multiple levels of TLBs. 
Calculating memory access times in modern CPUs is therefore much more 
complicated than shown in the example above. For instance, the Intel Core i7 
CPU has a 128-entry L1 instruction TLB and a 64-entry L1 data TLB. In the 
case of a miss at L1, it takes the CPU six cycles to check for the entry in the L2 
512-entry TLB. A miss in L2 means that the CPU must either walk through the 
page-table entries in memory to find the associated frame address, which can 
take hundreds of cycles, or interrupt to the operating system to have it do the 
work. 

A complete performance analysis of paging overhead in such a system 
would require miss-rate information about each TLB tier. We can see from the 
general information above, however, that hardware features can have a signif- 
icant effect on memory performance and that operating-system improvements 
(such as paging) can result in and, in turn, be affected by hardware changes 
(such as TLBs). 

TLBs are a hardware feature and therefore would seem to be of little 
concern to operating systems and their designers. But the designer needs to 
understand the function and features of TLBs, which vary by hardware 
platform. For optimal operation, an operating-system design for a given 
platform must implement paging according to the platform’s TLB design. 
Likewise, a change in the TLB design (for example, between generations of 
Intel CPUs) may necessitate a change in the paging implementation of the 
operating systems that use it. 



 Protection 

Memory protection in a paged environment is accomplished by 
protection bits associated with each frame. Normally, these bits are kept in the 
page table. 

One bit can define a page to be read – write or read-only. Every 
reference to memory goes through the page table to find the correct frame 
number. At the same time that the physical address is being computed, the 
protection bits can be checked to verify that no writes are being made to a read- 
only page. An attempt to write to a read-only page causes a hardware trap to 
the operating system (or memory-protection violation). 

We can easily expand this approach to provide a finer level of 
protection. We can create hardware to provide read-only, read  – write, or 
execute-only protection; or, by providing separate protection bits for each kind 
of access, we can allow any combination of these accesses. Illegal attempts will 
be trapped to the operating system. 

One additional bit is generally attached to each entry in the page table: a 
valid – invalid bit. When this bit is set to valid, the associated page is in the 
process’s logical address space and is thus a legal (or valid) page. When the bit 
is set toinvalid, the page is not in the process’s logical address space. Illegal 
addresses are trapped by use of the valid – invalid bit. The operating system 
sets this bit for each page to allow or disallow access to the page. 

Suppose, for example, that in a system with a 14-bit address space (0 to 
16383), we have a program that should use only addresses 0 to 10468. Given a 
page size of 2 KB, we have the situation shown in Figure 8.15. Addresses in 
pages 0, 1, 2, 3, 4, and 5 are mapped normally through the page table. Any 
attempt to generate an address in pages 6 or 7, however, will find that the valid 
– invalid bit is set to invalid, and the computer will trap to the operating system 
(invalid page reference). 

Notice that this scheme has created a problem. Because the program 
extends only to address 10468, any reference beyond that address is illegal. 
However, references to page 5 are classified as valid, so accesses to addresses 
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. 
This problem is a result of the 2-KB page size and reflects the internal 
fragmentation of paging. 

Rarely does a process use all its address range. In fact, many processes 
use only a small fraction of the address space available to them. It would be 
wasteful in these cases to create a page table with entries for every page in the 
address range. Most of this table would be unused but would take up valuable 
memory space. Some systems provide hardware, in the form of a page-table 
length register (PTLR), to indicate the size of the page table. This value is 
checked against every logical address to verify that the address is in the valid 
range for the process. Failure of this test causes an error trap to the operating 
system. 



 Shared Pages 
An advantage of paging is the possibility of sharing common code. 

This con-sideration is particularly important in a time-sharing environment. 
Consider a system that supports 40 users, each of whom executes a text editor. 
If the text editor consists of 150 KB of code and 50 KB of data space, we need 
8,000 KB to support the 40 users. If the code is reentrant code (or pure code), 
however, it can be shared, as shown in Figure 8.16. 

Here, we see three processes sharing a three-page editor — each page 
50 KB in size (the large page size is used to simplify the figure). Each process 
has its own data page. 

Reentrant code is non-self-modifying code: it never changes during 
execution. Thus, two or more processes can execute the same code at the same 
time. 

Each process has its own copy of registers and data storage to hold the 
data for the process’s execution. The data for two different processes will, of 
course, be different. 

Only one copy of the editor need be kept in physical memory. Each 
user’s page table maps onto the same physical copy of the editor, but data 
pages are mapped onto different frames. Thus, to support 40 users, we need 
only one copy of the editor (150 KB), plus 40 copies of the 50 KB of data 
space per user. The total space required is now 2,150 KB instead of 8,000 KB 
— a significant savings. 

Other heavily used programs can also be shared — compilers, window 
systems, run-time libraries, database systems, and so on. To be sharable, the 
code must be reentrant. The read-only nature of shared code should not be left 
to the correctness of the code; the operating system should enforce this 
property. 



     0  

     1  

     2 page 0 
0000 

0 
 

frame number 
 valid–invalid 

bit 
 

 

 page 0    3 page 1 

  0 2 v   
 page 1    4 page 2 
  1 3 v   
  2 4 v   
 page 2    5  
  3 7 v   
 page 3 4 8 v 6  
       
  5 9 v   

10,46 
8 

page 4 6 0 i 7 page 3 
 7 0 i   

 page 5    8 page 4 
12,28 

7 
  

page tab 
 
le 

 
 

     9 page 5 

      • 
      • 
      • 
      page n 

 

Figure 8.15 Valid (v) or invalid (i) bit in a page table. 
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Figure 8.16 Sharing of code in a paging environment. 
 

 Structure of the Page Table 
In this section, we explore some of the most common techniques for 

structuring the page table, including hierarchical paging, hashed page tables, 
and inverted page tables. 

 
 Hierarchical Paging 

Most modern computer systems support a large logical address space 
(232 to 264). In such an environment, the page table itself becomes excessively 
large. For example, consider a system with a 32-bit logical address space. If 
the page size in such a system is 4 KB (212), then a page table may consist of 
up to 1 million entries (232/212). Assuming that each entry consists of 4 bytes, 
each process may need up to 4 MB of physical address space for the page table 
alone. Clearly, we would not want to allocate the page table contiguously in 
main memory. One simple solution to this problem is to divide the page table 
into smaller pieces. We can accomplish this division in several ways. 

One way is to use a two-level paging algorithm, in which the page 
table itself is also paged (Figure 8.17). For example, consider again the system 
with a 32-bit logical address space and a page size of 4 KB. A logical address 
is divided into a page number consisting of 20 bits and a page offset consisting 
of 12 bits. Because we page the page table, the page number is further divided 
into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as 
follows: 
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Figure 8.17 A two-level page-table scheme. 
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Figure 8.18 Address translation for a two-level 32-bit paging architecture. 

page number page offset 

10 10  12 

where p1 is an index into the outer page table and p2 is the displacement within 
the page of the inner page table. The address-translation method for this 
architecture is shown in Figure 8.18. Because address translation works from 
the outer page table inward, this scheme is also known as a forward-mapped 
page table. 

Consider the memory management of one of the classic systems, the 
VAX minicomputer from Digital Equipment Corporation (DEC). The VAX 
was the most popular minicomputer of its time and was sold from 1977 through 
2000. The VAX architecture supported a variation of two-level paging. The 
VAX is a 32-bit machine with a page size of 512 bytes. The logical address 
space of a process is divided into four equal sections, each of which consists of 
230 bytes. Each section represents a different part of the logical address space 
of a process. The first 2 high-order bits of the logical address designate the 
appropriate section. The next 21 bits represent the logical page number of that 
section, and the final 9 bits represent an offset in the desired page. By 
partitioning the page table in this manner, the operating system can leave 
partitions unused until a process needs them. Entire sections of virtual address 
space are frequently unused, and multilevel page tables have no entries for 
these spaces, greatly decreasing the amount of memory needed to store virtual 
memory data structures. 

An address on the VAX architecture is as follows: 
 

section page offset 
s p d 
2 21 9 

p1 p2 d 
 



where s designates the section number, p is an index into the page table, and d 
is the displacement within the page. Even when this scheme is used, the size of 
a one-level page table for a VAX process using one section is 221 bits ∗ 4 bytes 
per entry = 8 MB. To further reduce main-memory use, the VAX pages the 
user-process page tables. 

For a system with a 64-bit logical address space, a two-level paging 
scheme is no longer appropriate. To illustrate this point, let’s suppose that the 
page size in such a system is 4 KB (212). In this case, the page table consists of 
up to 252 entries. If we use a two-level paging scheme, then the inner page 
tables can conveniently be one page long, or contain 210 4-byte entries. The 
addresses look like this: 

 
outer page inner page offset 

p1 p2 d 
42 10 12 

The outer page table consists of 242 entries, or 244 bytes. The obvious 
way to avoid such a large table is to divide the outer page table into smaller 
pieces. 

We can divide the outer page table in various ways. For example, we 
can page the outer page table, giving us a three-level paging scheme. Suppose 
that the outer page table is made up of standard-size pages (210 entries, or 212 
bytes). In this case, a 64-bit address space is still daunting: 

 
2nd outer 

page 
 
outer page 

inner 
page 

 
offset 

p1 p2 p3 d 
32 10 10 12 

 
The outer page table is still 234 bytes (16 GB) in size. 
The next step would be a four-level paging scheme, where the second- 

level outer page table itself is also paged, and so forth. The 64-bit UltraSPARC 
would require seven levels of paging — a prohibitive number of memory 
accesses — to translate each logical address. You can see from this example 
why, for 64-bit architectures, hierarchical page tables are generally considered 
inappropriate. 
 Hashed Page Tables 

A common approach for handling address spaces larger than 32 bits is 
to use a hashed page table, with the hash value being the virtual page number. 
Each entry in the hash table contains a linked list of elements that hash to the 
same location (to handle collisions). Each element consists of three fields: (1) 
the virtual page number, (2) the value of the mapped page frame, and (3) a 
pointer to the next element in the linked list. 



logical 
address 

d p 

The algorithm works as follows: The virtual page number in the 
virtual address is hashed into the hash table. The virtual page number is 
compared with field 1 in the first element in the linked list. If there is a 
match, the corresponding page frame (field 2) is used to form the desired 
physical address. If there is no match, subsequent entries in the linked list are 
searched for a matching virtual page number. This scheme is shown in Figure 
8.19. 

A variation of this scheme that is useful for 64-bit address spaces has 
been proposed. This variation uses clustered page tables, which are similar 
to 
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Figure 8.19 Hashed page table. 
 

hashed page tables except that each entry in the hash table refers to several 
pages (such as 16) rather than a single page. Therefore, a single page-table 
entry can store the mappings for multiple physical-page frames. Clustered 
page tables are particularly useful for sparse address spaces, where memory 
references are noncontiguous and scattered throughout the address space. 
 Inverted Page Tables 

Usually, each process has an associated page table. The page table 
has one entry for each page that the process is using (or one slot for each 
virtual address, regardless of the latter’s validity). This table representation is 
a natural one, since processes reference pages through the pages’ virtual 
addresses. The operating system must then translate this reference into a 
physical memory address. Since the table is sorted by virtual address, the 
operating system is able to calculate where in the table the associated 
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physical address entry is located and to use that value directly. One of the 
drawbacks of this method is that each page table may consist of millions of 
entries. These tables may consume large amounts of physical memory just to 
keep track of how other physical memory is being used. 
To solve this problem, we can use an inverted page table. An inverted page 
table has one entry for each real page (or frame) of memory. Each entry 
consists of the virtual address of the page stored in that real memory location, 
with information about the process that owns the page. Thus, only one page 
table is in the system, and it has only one entry for each page of physical 
memory. Figure 8.20 shows the operation of an inverted page table. Compare 
it with Figure 8.10, which depicts a standard page table in operation. Inverted 
page tables often require that an address-space identifier (Section 8.5.2) be 
stored in each entry of the page table, since the table usually contains several 
different address spaces mapping physical memory. Storing the address- 
space identifier ensures that a logical page for a particular process is mapped 
to the corresponding physical page frame. Examples of systems using 
inverted page tables include the 64-bit UltraSPARC and PowerPC. 

 

page table 
 

Figure 8.20 Inverted page table. 
 

To illustrate this method, we describe a simplified version of the 
inverted page table used in the IBM RT. IBM was the first major company to 
use inverted page tables, starting with the IBM System 38 and continuing 
through the RS/6000 and the current IBM Power CPUs. For the IBM RT, 
each virtual address in the system consists of a triple: 

<process-id, page-number, offset>. 



Each inverted page-table entry is a pair <process-id, page-number> where 
the process-id assumes the role of the address-space identifier. When a 
memory reference occurs, part of the virtual address, consisting of <process- 
id, page-number>, is presented to the memory subsystem. The inverted page 
table is then searched for a match. If a match is found — say, at entry i — 
then the physical address <i, offset> is generated. If no match is found, then 
an illegal address access has been attempted. 

Although this scheme decreases the amount of memory needed to 
store each page table, it increases the amount of time needed to search the 
table when a page reference occurs. Because the inverted page table is sorted 
by physical address, but lookups occur on virtual addresses, the whole table 
might need to be searched before a match is found. This search would take 
far too long. To alleviate this problem, we use a hash table, as described in 
Section 8.6.2, to limit the search to one — or at most a few — page-table 
entries. Of course, each access to the hash table adds a memory reference to 
the procedure, so one virtual memory reference requires at least two real 
memory reads — one for the hash-table entry and one for the page table. 
(Recall that the TLB is searched first, before the hash table is consulted, 
offering some performance improvement.) 

Systems that use inverted page tables have difficulty implementing 
shared memory. Shared memory is usually implemented as multiple virtual 
addresses (one for each process sharing the memory) that are mapped to one 
physical address. This standard method cannot be used with inverted page 
tables; because there is only one virtual page entry for every physical page, 
one physical page cannot have two (or more) shared virtual addresses. A 
simple technique for addressing this issue is to allow the page table to 
contain only one mapping of a virtual address to the shared physical address. 
This means that references to virtual addresses that are not mapped result in 
page faults. 
 Oracle SPARC Solaris 

Consider as a final example a modern 64-bit CPU and operating 
system that are tightly integrated to provide low-overhead virtual memory. 
Solaris running on the SPARC CPU is a fully 64-bit operating system and as 
such has to solve the problem of virtual memory without using up all of its 
physical memory by keeping multiple levels of page tables. Its approach is a 
bit complex but solves the problem efficiently using hashed page tables. 
There are two hash tables — one for the kernel and one for all user processes. 
Each maps memory addresses from virtual to physical memory. Each hash- 
table entry represents a contiguous area of mapped virtual memory, which is 
more efficient than having a separate hash-table entry for each page. Each 
entry has a base address and a span indicating the number of pages the entry 
represents. 

Virtual-to-physical translation would take too long if each address 
required searching through a hash table, so the CPU implements a TLB that 
holds translation table entries (TTEs) for fast hardware lookups. A cache of 
these TTEs reside in a translation storage buffer (TSB), which includes an 



entry per recently accessed page. When a virtual address reference occurs, 
the hardware searches the TLB for a translation. If none is found, the 
hardware walks through the in-memory TSB looking for the TTE that 
corresponds to the virtual address that caused the lookup. This TLB walk 
functionality is found on many modern CPUs. If a match is found in the 
TSB, the CPU copies the TSB entry into the TLB, and the memory 
translation completes. If no match is found in the TSB, the kernel is 
interrupted to search the hash table. The kernel then creates a TTE from the 
appropriate hash table and stores it in the TSB for automatic loading into the 
TLB by the CPU memory-management unit. Finally, the interrupt handler 
returns control to the MMU, which completes the address translation and 
retrieves the requested byte or word from main memory. 

Example: Intel 32 and 64-bit Architectures 
The architecture of Intel chips has dominated the personal computer 

landscape for several years. The 16-bit Intel 8086 appeared in the late 1970s 
and was soon followed by another 16-bit chip — the Intel 8088 — which 
was notable for being the chip used in the original IBM PC. Both the 8086 
chip and the 8088 chip were based on a segmented architecture. Intel later 
produced a series of 32-bit chips. The IA-32, which included the family of 
32-bit Pentium processors. The IA-32 architecture supported both paging and 
segmentation. More recently, Intel has produced a series of 64-bit chips 
based on the x86-64 architecture. Currently, all the most popular PC 
operating systems run on Intel chips, including Windows, Mac OS X, and 
Linux (although Linux, of course, runs on several other architectures as 
well). Notably, however, Intel’s dominance has not spread to mobile 
systems, where the ARM architecture currently enjoys considerable success 
(see Section 8.8). 
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Figure 8.21 Logical to physical address translation in IA-32. 

 
In this section, we examine address translation for both IA-32 and 

x86-64 architectures. Before we proceed, however, it is important to note that 
because Intel has released several versions — as well as variations — of its 
architectures over the years, we cannot provide a complete description of the 
memory-management structure of all its chips. Nor can we provide all of the 
CPU details, as that information is best left to books on computer 
architecture. Rather, we present the major memory-management concepts of 
these Intel CPUs. 



 IA-32 Architecture 

Memory management in IA-32 systems is divided into two 
components — segmentation and paging — and works as follows: The CPU 
generates logical addresses, which are given to the segmentation unit. The 
segmentation unit produces a linear address for each logical address. The 
linear address is then given to the paging unit, which in turn generates the 
physical address in main memory. Thus, the segmentation and paging units 
form the equivalent of the memory-management unit (MMU). This scheme is 
shown in Figure 8.21. 

 IA-32 Segmentation 
The IA-32 architecture allows a segment to be as large as 4 GB, and 

the maximum number of segments per process is 16 K. The logical address 
space of a process is divided into two partitions. The first partition consists of 
up to 8 K segments that are private to that process. The second partition 
consists of up to 8 K segments that are shared among all the processes. 
Information about the first partition is kept in the local descriptor table 
(LDT); information about the second partition is kept in the global 
descriptor table (GDT). Each entry in the LDT and GDT consists of an 8- 
byte segment descriptor with detailed information about a particular segment, 
including the base location and limit of that segment. 

The logical address is a pair (selector, offset), where the selector is a 
16-bit number: 

 
s g p 

13 1 2 
 

in which s designates the segment number, g indicates whether the segment 
is in the GDT or LDT, and p deals with protection. The offset is a 32-bit 
number specifying the location of the byte within the segment in question. 

The machine has six segment registers, allowing six segments to be 
addressed at any one time by a process. It also has six 8-byte microprogram 
registers to hold the corresponding descriptors from either the LDT or GDT. 
This cache lets the Pentium avoid having to read the descriptor from memory 
for every memory reference. 

The linear address on the IA-32 is 32 bits long and is formed as 
follows. The segment register points to the appropriate entry in the LDT or 
GDT. The base and limit information about the segment in question is used 
to generate a linear address. First, the limit is used to check for address 
validity. If the address is not valid, a memory fault is generated, resulting in a 
trap to the operating system. If it is valid, then the value of the offset is added 
to the value of the base, resulting in a 32-bit linear address. This is shown in 
Figure 8.22. In the following section, we discuss how the paging unit turns 
this linear address into a physical address. 
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Figure 8.22 IA-32 segmentation. 
 

 IA-32 Paging 
The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 

4-KB pages, IA-32 uses a two-level paging scheme in which the division of the 
32-bit linear address is as follows: 

page number page offset 

10 10  12 
The address-translation scheme for this architecture is similar to the 

scheme shown in Figure 8.18. The IA-32 address translation is shown in more 
detail in Figure 8.23. The 10 high-order bits reference an entry in the outermost 
page table, which IA-32 terms the page directory. (The CR3 register points to 
the page directory for the current process.) The page directory entry points to 
an inner page table that is indexed by the contents of the innermost 10 bits in 
the linear address. Finally, the low-order bits 0 – 11 refer to the offset in the 4- 
KB page pointed to in the page table. 

One entry in the page directory is the Page Size flag, which — if set — 
indicates that the size of the page frame is 4 MB and not the standard 4 KB. If 
this flag is set, the page directory points directly to the 4-MB page frame, 
bypassing the inner page table; and the 22 low-order bits in the linear address 
refer to the offset in the 4-MB page frame. 

To improve the efficiency of physical memory use, IA-32 page tables 
can be swapped to disk. In this case, an invalid bit is used in the page directory 
entry to indicate whether the table to which the entry is pointing is in memory 
or on disk. If the table is on disk, the operating system can use the other 31 bits 
to specify the disk location of the table. The table can then be brought into 
memory on demand. 
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Figure 8.23 Paging in the IA-32 architecture. 
 

As software developers began to discover the 4-GB memory 
limitations of 32-bit architectures, Intel adopted a page address extension 
(PAE), which allows 32-bit processors to access a physical address space 
larger than 4 GB. The fundamental difference introduced by PAE support 
was that paging went from a two-level scheme (as shown in Figure 8.23) to a 
three-level scheme, where the top two bits refer to a page directory pointer 
table. Figure 8.24 illustrates a PAE system with 4-KB pages. (PAE also 
supports 2-MB pages.) 
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Figure 8.24 Page address extensions. 
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Figure 8.25 x86-64 linear address. 
 

PAE also increased the page-directory and page-table entries from 32 
to 64 bits in size, which allowed the base address of page tables and page 
frames to extend from 20 to 24 bits. Combined with the 12-bit offset, adding 
PAE support to IA-32 increased the address space to 36 bits, which supports 
up to 64 GB of physical memory. It is important to note that operating 
system support is required to use PAE. Both Linux and Intel Mac OS X 
support PAE. However, 32-bit versions of Windows desktop operating 
systems still provide support for only 4 GB of physical memory, even if PAE 
is enabled. 
8.7.2 x86-64 

 
Intel has had an interesting history of developing 64-bit architectures. 

Its initial entry was the IA-64 (later named Itanium) architecture, but that 
architecture was not widely adopted. Meanwhile, another chip manufacturer 
— AMD — began developing a 64-bit architecture known as x86-64 that 
was based on extending the existing IA-32 instruction set. The x86-64 
supported much larger logical and physical address spaces, as well as several 
other architectural advances. Historically, AMD had often developed chips 



based on Intel’s architecture, but now the roles were reversed as Intel 
adopted AMD’s x86-64 architecture. In discussing this architecture, rather 
than using the commercial names AMD64 and Intel 64, we will use the more 
general term x86-64. 

 
Support for a 64-bit address space yields an astonishing 264 bytes of 

addressable memory — a number greater than 16 quintillion (or 16 
exabytes). However, even though 64-bit systems can potentially address this 
much memory, in practice far fewer than 64 bits are used for address 
representation in current designs. The x86-64 architecture currently provides 
a 48-bit virtual address with support for page sizes of 4 KB, 2 MB, or 1 GB 
using four levels of paging hierarchy. The representation of the linear 
address appears in Figure 8.25. Because this addressing scheme can use 
PAE, virtual addresses are 48 bits in size but support 52-bit physical 
addresses (4096 terabytes). 

 
 Virtual Memory 

In previous, we discussed various memory-management strategies 
used in computer systems. All these strategies have the same goal: to keep 
many processes in memory simultaneously to allow multiprogramming. 
However, they tend to require that an entire process be in memory before it 
can execute. 

Virtual memory is a technique that allows the execution of processes 
that are not completely in memory. One major advantage of this scheme is 
that programs can be larger than physical memory. Further, virtual memory 
abstracts main memory into an extremely large, uniform array of storage, 
separating logical memory as viewed by the user from physical memory. 
This technique frees programmers from the concerns of memory-storage 
limitations. Virtual memory also allows processes to share files easily and to 
implement shared memory. In addition, it provides an efficient mechanism 
for process creation. Virtual memory is not easy to implement, however, and 
may substantially decrease performance if it is used carelessly. In this 
chapter, we discuss virtual memory in the form of demand paging and 
examine its complexity and cost. 
Background 

The memory-management algorithms outlined in Chapter 8 are 
necessary because of one basic requirement: The instructions being executed 
must be in physical memory. The first approach to meeting this requirement 
is to place the entire logical address space in physical memory. Dynamic 
loading can help to ease this restriction, but it generally requires special 
precautions and extra work by the programmer. 

The requirement that instructions must be in physical memory to be 
executed seems both necessary and reasonable; but it is also unfortunate, 
since it limits the size of a program to the size of physical memory. In fact, 
an examination of real programs shows us that, in many cases, the entire 
program is not needed. For instance, consider the following: 



Programs often have code to handle unusual error conditions. Since 
these errors seldom, if ever, occur in practice, this code is almost never 
executed. 

Arrays, lists, and tables are often allocated more memory than they 
actually need. An array may be declared 100 by 100 elements, even though it 
is seldom larger than 10 by 10 elements. An assembler symbol table may 
have room for 3,000 symbols, although the average program has less than 
200 symbols. 

Certain options and features of a program may be used rarely. For 
instance, the routines on U.S. government computers that balance the budget 
have not been used in many years. 

Even in those cases where the entire program is needed, it may not all 
be needed at the same time. 

The ability to execute a program that is only partially in memory would 
confer many benefits: 

A program would no longer be constrained by the amount of physical 
memory that is available. Users would be able to write programs for an 
extremely large virtual address space, simplifying the programming task. 

Because each user program could take less physical memory, more 
programs could be run at the same time, with a corresponding increase in 
CPU utilization and throughput but with no increase in response time or 
turnaround time. 

Less I/O would be needed to load or swap user programs into memory, 
so each user program would run faster. Thus, running a program that is not 
entirely in memory would benefit both the system and the user. 

Virtual memory involves the separation of logical memory as 
perceived by users from physical memory. This separation allows an 
extremely large virtual memory to be provided for programmers when only a 
smaller physical memory is available (Figure 8.26). Virtual memory makes 
the task of programming much easier, because the programmer no longer 
needs to worry about the amount of physical memory available; she can 
concentrate instead on the problem to be programmed. 

The virtual address space of a process refers to the logical (or virtual) 
view of how a process is stored in memory. Typically, this view is that a 
process begins at a certain logical address — say, address 0 — and exists in 
contiguous memory, as shown in Figure 8.27. Recall, that in fact physical 
memory may be organized in page frames and that the physical page frames 
assigned to a process may not be contiguous. It is up to the memory- 
management unit (MMU) to map logical pages to physical page frames in 
memory. 

Note in Figure 8.27 that we allow the heap to grow upward in memory 
as it is used for dynamic memory allocation. Similarly, we allow for the stack 
to grow downward in memory through successive function calls. The large 
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blank space (or hole) between the heap and the stack is part of the virtual 
address space but will require actual physical pages only if the heap or stack 
grows. Virtual address spaces that include holes are known as sparse address 
spaces. Using a sparse address space is beneficial because the holes can be 
filled as the stack or heap segments grow or if we wish to dynamically link 
libraries (or possibly other shared objects) during program execution. 
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Figure 8.26 Diagram showing virtual memory that is larger than physical 
memory. 
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Figure 8.27 Virtual address space. 
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Figure 8.28 Shared library using virtual memory. 



In addition to separating logical memory from physical memory, virtual 
memory allows files and memory to be shared by two or more processes 
through page sharing (Section 8.5.4). This leads to the following benefits: 

 
System libraries can be shared by several processes through mapping of the 
shared object into a virtual address space. Although each process considers the 
libraries to be part of its virtual address space, the actual pages where the 
libraries reside in physical memory are shared by all the processes (Figure 
8.28). Typically, a library is mapped read-only into the space of each process 
that is linked with it. 

Virtual memory allows one process to create a region of memory that it 
can share with another process. Processes sharing this region consider it part of 
their virtual address space, yet the actual physical pages of memory are shared, 
much as is illustrated in Figure 8.28. 

Pages can be shared during process creation with the fork() system call, 
thus speeding up process creation. 

 Demand Paging 
Consider how an executable program might be loaded from disk into 

memory. One option is to load the entire program in physical memory at 
program execution time. However, a problem with this approach is that we 
may not initially need the entire program in memory. Suppose a program starts 
with a list of available options from which the user is to select. Loading the 
entire program into memory results in loading the executable code for all 
options, regardless of whether or not an option is ultimately selected by the 
user. An alternative strategy is to load pages only as they are needed. This 
technique is known as demand paging and is commonly used in virtual 
memory systems. With demand-paged virtual memory, pages are loaded only 
when they are demanded during program execution. Pages that are never 
accessed are thus never loaded into physical memory. 

A demand-paging system is similar to a paging system with swapping 
(Figure 8.29) where processes reside in secondary memory (usually a disk). 
When we want to execute a process, we swap it into memory. Rather than 
swapping the entire process into memory, though, we use a lazy swapper. A 
lazy swapper never swaps a page into memory unless that page will be needed. 
In  the  context  of  a  demand-paging  system,  use  of  the  term  ―swapper‖  is 
technically incorrect. A swapper manipulates entire processes, whereas a 
pager is concerned with the individual pages of a process. We thus use 
―pager,‖ rather than ―swapper,‖ in connection with demand paging. 
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Figure 8.29 Transfer of a paged memory to contiguous disk space. 

 
 Basic Concepts 

When a process is to be swapped in, the pager guesses which pages will 
be used before the process is swapped out again. Instead of swapping in a 
whole process, the pager brings only those pages into memory. Thus, it avoids 
reading into memory pages that will not be used anyway, decreasing the swap 
time and the amount of physical memory needed. 

With this scheme, we need some form of hardware support to 
distinguish between the pages that are in memory and the pages that are on the 
disk. The valid – invalid bit scheme described in Section 8.5.3 can be used for 
this purpose. This time, however, when this bit is set to ―valid,‖ the associated 
page is both legal and in memory. If the bit is set to ―invalid,‖ the page either 
is not valid (that is, not in the logical address space of the process) or is valid 
but is currently on the disk. The page-table entry for a page that is brought into 



memory is set as usual, but the page-table entry for a page that is not currently 
in memory is either simply marked invalid or contains the address of the page 
on disk. This situation is depicted in Figure 8.30. 

Notice that marking a page invalid will have no effect if the process 
never attempts to access that page. Hence, if we guess right and page in all 
pages that are actually needed and only those pages, the process will run 
exactly as though we had brought in all pages. While the process executes and 
accesses pages that are memory resident, execution proceeds normally. 
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Figure 8.30 Page table when some pages are not in main memory. 
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But what happens if the process tries to access a page that was not brought into 
memory? Access to a page marked invalid causes a page fault. The paging 
hardware, in translating the address through the page table, will notice that the 
invalid bit is set, causing a trap to the operating system. This trap is the result 
of the operating system’s failure to bring the desired page into memory. The 
procedure for handling this page fault is straightforward (Figure 8.31): 

We check an internal table (usually kept with the process control block) 
for this process to determine whether the reference was a valid or an invalid 
memory access. 

If the reference was invalid, we terminate the process. If it was valid 
but we have not yet brought in that page, we now page it in. 

We find a free frame (by taking one from the free-frame list, for example). 
We schedule a disk operation to read the desired page into the newly allocated 
frame. 
When the disk read is complete, we modify the internal table kept with the 
process and the page table to indicate that the page is now in memory. 



We restart the instruction that was interrupted by the trap. The process can now 
access the page as though it had always been in memory. 
In the extreme case, we can start executing a process with no pages in memory. 
When the operating system sets the instruction pointer to the first instruction of 
the process, which is on a non-memory-resident page, the process immediately 
faults for the page. After this page is brought into memory, the process 
continues to execute, faulting as necessary until every page that it needs is in 
memory. At that point, it can execute with no more faults. This scheme is pure 
demand paging: never bring a page into memory until it is required. 

Theoretically, some programs could access several new pages of 
memory with each instruction execution (one page for the instruction and many 
for data), possibly causing multiple page faults per instruction. This situation 
would result in unacceptable system performance. Fortunately, analysis of 
running processes shows that this behavior is exceedingly unlikely. Programs 
tend to have locality of reference, which results in reasonable performance 
from demand paging. 
The hardware to support demand paging is the same as the hardware for paging 
and swapping: 

Page table. This table has the ability to mark an entry invalid 
through a valid – invalid bit or a special value of protection bits. 
Secondary memory. This memory holds those pages that are not 
present in main memory. The secondary memory is usually a high- 
speed disk. It is known as the swap device, and the section of disk 
used for this purpose is known as swap space. 

A crucial requirement for demand paging is the ability to restart any 
instruction after a page fault. Because we save the state (registers, condition 
code, instruction counter) of the interrupted process when the page fault occurs, 
we must be able to restart the process in exactly the same place and state, 
except that the desired page is now in memory and is accessible. In most cases, 
this requirement is easy to meet. A page fault may occur at any memory 
reference. If the page fault occurs on the instruction fetch, we can restart by 
fetching the instruction again. If a page fault occurs while we are fetching an 
operand, we must fetch and decode the instruction again and then fetch the 
operand. 

As a worst-case example, consider a three-address instruction such as 
ADD the content of A to B, placing the result in C. These are the steps to 
execute this instruction: 



Fetch and decode the instruction (ADD). 
Fetch A. 
Fetch B. 

Add A and B. 
Store the sum in C. 

If we fault when we try to store in C (because C is in a page not 
currently in memory), we will have to get the desired page, bring it in, 
correct the page table, and restart the instruction. The restart will require 
fetching the instruction again, decoding it again, fetching the two operands 
again, and then adding again. However, there is not much repeated work 
(less than one complete instruction), and the repetition is necessary only 
when a page fault occurs. 

The major difficulty arises when one instruction may modify several 
different locations. For example, consider the IBM System 360/370 MVC 
(move character) instruction, which can move up to 256 bytes from one 
location to another (possibly overlapping) location. If either block (source 
or destination) straddles a page boundary, a page fault might occur after the 
move is partially done. In addition, if the source and destination blocks 
overlap, the source block may have been modified, in which case we cannot 
simply restart the instruction. 

 
This problem can be solved in two different ways. In one solution, the 

microcode computes and attempts to access both ends of both blocks. If a 
page fault is going to occur, it will happen at this step, before anything is 
modified. The move can then take place; we know that no page fault can 
occur, since all the relevant pages are in memory. The other solution uses 
temporary registers to hold the values of overwritten locations. If there is a 
page fault, all the old values are written back into memory before the trap 
occurs. This action restores memory to its state before the instruction was 
started, so that the instruction can be repeated. 

This is by no means the only architectural problem resulting from 
adding paging to an existing architecture to allow demand paging, but it 
illustrates some of the difficulties involved. Paging is added between the 
CPU and the memory in a computer system. It should be entirely transparent 
to the user process. Thus, people often assume that paging can be added to 
any system. Although this assumption is true for a non-demand-paging 
environment, where a page fault represents a fatal error, it is not true where a 
page fault means only that an additional page must be brought into memory 
and the process restarted. 



 Performance of Demand Paging 
Demand paging can significantly affect the performance of a 

computer system. To see why, let’s compute the effective access time for a 
demand-paged memory. For most computer systems, the memory-access 
time, denoted ma, ranges from 10 to 200 nanoseconds. As long as we have 
no page faults, the effective access time is equal to the memory access time. 
If, however, a page fault occurs, we must first read the relevant page from 
disk and then access the desired word. 

Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect 
p to be close to zero — that is, we would expect to have only a few page 
faults. The effective access time is then 

effective access time = (1 − p) × ma + p × page fault time. 

To compute the effective access time, we must know how much 
time is needed to service a page fault. A page fault causes the following 
sequence to occur: 

Trap to the operating system. 
Save the user registers and process state. 
Determine that the interrupt was a page fault. 
Check that the page reference was legal and determine the location of 
the page on the disk. 
Issue a read from the disk to a free frame: 
Wait in a queue for this device until the read request is serviced. 
Wait for the device seek and/or latency time. 
Begin the transfer of the page to a free frame. 
While waiting, allocate the CPU to some other user (CPU scheduling, 
optional). 
Receive an interrupt from the disk I/O subsystem (I/O completed). 
Save the registers and process state for the other user (if step 6 is 
executed). 
Determine that the interrupt was from the disk. 
Correct the page table and other tables to show that the desired page is 
now in memory. 
Wait for the CPU to be allocated to this process again. 
Restore the user registers, process state, and new page table, and then 
resume the interrupted instruction. 

 
Not all of these steps are necessary in every case. For example, we are 
assuming that, in step 6, the CPU is allocated to another process while the 
I/O occurs. This arrangement allows multiprogramming to maintain CPU 
utilization but requires additional time to resume the page-fault service 
routine when the I/O transfer is complete. 



In any case, we are faced with three major components of the page-fault 
service time: 

 
Service the page-fault interrupt. 
Read in the page. 
Restart the process. 
The first and third tasks can be reduced, with careful coding, to 

several hundred instructions. These tasks may take from 1 to 100 
microseconds each. The page-switch time, however, will probably be close 
to 8 milliseconds. (A typical hard disk has an average latency of 3 
milliseconds, a seek of 5 milliseconds, and a transfer time of 0.05 
milliseconds. Thus, the total paging time is about 8 milliseconds, including 
hardware and software time.) Remember also that we are looking at only 
the device-service time. If a queue of processes is waiting for the device, 
we have to add device-queueing time as we wait for the paging device to be 
free to service our request, increasing even more the time to swap. 

With an average page-fault service time of 8 milliseconds and a 
memory-access time of 200 nanoseconds, the effective access time in 
nanoseconds is 

 
effective access time = (1 − p) × (200) + p (8 milliseconds) 

(1 − p) × 200 + p × 8,000,000 
200 + 7,999,800 × p. 

 
We see, then, that the effective access time is directly proportional 

to the page-fault rate. If one access out of 1,000 causes a page fault, the 
effective access time is 8.2 microseconds. The computer will be slowed 
down by a factor of 40 because of demand paging! If we want performance 
degradation to be less than 10 percent, we need to keep the probability of 
page faults at the following level: 

 
220 > 200 + 7,999,800 × p, 
20 > 7,999,800 × p, 
p < 0.0000025. 

 
That is, to keep the slowdown due to paging at a reasonable level, we can 
allow fewer than one memory access out of 399,990 to page-fault. In sum, it 
is important to keep the page-fault rate low in a demand-paging system. 
Otherwise, the effective access time increases, slowing process execution 
dramatically. 



An additional aspect of demand paging is the handling and overall use of 
swap space. Disk I/O to swap space is generally faster than that to the file 
system. It is a faster file system because swap space is allocated in much 
larger blocks, and file lookups and indirect allocation methods are not used 
(Chapter 10). The system can therefore gain better paging throughput by 
copying an entire file image into the swap space at process startup and then 
performing demand paging from the swap space. Another option is to 
demand pages from the file system initially but to write the pages to swap 
space as they are replaced. This approach will ensure that only needed 
pages are read from the file system but that all subsequent paging is done 
from swap space. 

Some systems attempt to limit the amount of swap space used 
through demand paging of binary files. Demand pages for such files are 
brought directly from the file system. However, when page replacement is 
called for, these frames can simply be overwritten (because they are never 
modified), and the pages can be read in from the file system again if 
needed. Using this approach, the file system itself serves as the backing 
store. However, swap space must still be used for pages not associated with 
a file (known as anonymous memory); these pages include the stack and 
heap for a process. This method appears to be a good compromise and is 
used in several systems, including Solaris and BSD UNIX. 

Mobile operating systems typically do not support swapping. 
Instead, these systems demand-page from the file system and reclaim read- 
only pages (such as code) from applications if memory becomes 
constrained. Such data can be demand-paged from the file system if it is 
later needed. Under iOS, anonymous memory pages are never reclaimed 
from an application unless the application is terminated or explicitly 
releases the memory. 

 
 Copy-on-Write 

We illustrated how a process can start quickly by demand-paging in 
the page containing the first instruction. However, process creation using 
the fork() system call may initially bypass the need for demand paging by 
using a technique similar to page sharing (covered in Section 8.5.4). This 
technique provides rapid process creation and minimizes the number of new 
pages that must be allocated to the newly created process. 

Recall that the fork() system call creates a child process that is a 
duplicate of its parent. Traditionally, fork() worked by creating a copy of 
the parent’s address space for the child, duplicating the pages belonging to 
the parent. However, considering that many child processes invoke the 
exec() system call immediately after creation, the copying of the parent’s 
address space may be unnecessary. Instead, we can use a technique known 
as copy-on-write, which works by allowing the parent and child processes 
initially to share the same pages. These shared pages are marked as copy- 
on-write pages, meaning that if either process writes to a shared page, a 
copy of the shared page is created. Copy-on-write is illustrated in Figures 



8.32 and 8.33, which show the contents of the physical memory before and 
after process 1 modifies page C. 

For example, assume that the child process attempts to modify a 
page containing portions of the stack, with the pages set to be copy-on- 
write. The operating system will create a copy of this page, mapping it to 
the address space of the child process. The child process will then modify 
its copied page and not the page belonging to the parent process. Obviously, 
when the copy-on-write technique is used, only the pages that are modified 
by either process are copied; all unmodified pages can be shared by the 
parent and child processes. Note, too, that only pages that can be modified 
need be marked as copy-on-write. Pages that cannot be modified (pages 
containing executable code) can be shared by the parent and child. Copy- 
on-write is a common technique used by several operating systems, 
including Windows XP, Linux, and Solaris. 

When it is determined that a page is going to be duplicated using 
copy-on-write, it is important to note the location from which the free page 
will be allocated. Many operating systems provide a pool of free pages for 
such requests. These free pages are typically allocated when the stack or 
heap for a process must expand or when there are copy-on-write pages to be 
managed. 
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Figure 8.32 Before process 1 modifies page C. 
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Figure 8.33 After process 1 modifies page C. 
 

Operating systems typically allocate these pages using a technique 
known as zero-fill-on-demand. Zero-fill-on-demand pages have been 
zeroed-out before being allocated, thus erasing the previous contents. 

Several versions of UNIX (including Solaris and Linux) provide a 
variation of the fork() system call — vfork() (for virtual memory fork) — 
that operates differently from fork() with copy-on-write. With vfork(), the 
parent process is suspended, and the child process uses the address space of 
the parent. Because vfork() does not use copy-on-write, if the child process 
changes any pages of the parent’s address space, the altered pages will be 
visible to the parent once it resumes. Therefore, vfork() must be used with 
caution to ensure that the child process does not modify the address space 
of the parent. vfork() is intended to be used when the child process calls 
exec() immediately after creation. Because no copying of pages takes place, 
vfork() is an extremely efficient method of process creation and is 
sometimes used to implement UNIX command-line shell interfaces. 

Page Replacement 
In our earlier discussion of the page-fault rate, we assumed that each 

page faults at most once, when it is first referenced. This representation is 
not strictly accurate, however. If a process of ten pages actually uses only 
half of them, then demand paging saves the I/O necessary to load the five 
pages that are never used. We could also increase our degree of 
multiprogramming by running twice as many processes. Thus, if we had 
forty frames, we could run eight processes, rather than the four that could 
run if each required ten frames (five of which were never used). 

If we increase our degree of multiprogramming, we are over- 
allocating memory. If we run six processes, each of which is ten pages in 



size but actually uses only five pages, we have higher CPU utilization and 
throughput, with ten frames to spare. It is possible, however, that each of 
these processes, for a particular data set, may suddenly try to use all ten of 
its pages, resulting in a need for sixty frames when only forty are available. 

Further, consider that system memory is not used only for holding 
program pages. Buffers for I/O also consume a considerable amount of 
memory. This use 
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Figure 8.34 Need for page replacement. 
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can increase the strain on memory-placement algorithms. Deciding how 
much memory to allocate to I/O and how much to program pages is a 
significant challenge. Some systems allocate a fixed percentage of memory 
for I/O buffers, whereas others allow both user processes and the I/O 
subsystem to compete for all system memory. 

Over-allocation of memory manifests itself as follows. While a user 
process is executing, a page fault occurs. The operating system determines 
where the desired page is residing on the disk but then finds that there are no 
free frames on the free-frame list; all memory is in use (Figure 8.34). 

The operating system has several options at this point. It could 
terminate the user process. However, demand paging is the operating 
system’s attempt to improve the computer system’s utilization and 
throughput. Users should not be aware that their processes are running on a 
paged system — paging should be logically transparent to the user. So this 
option is not the best choice. 

The operating system could instead swap out a process, freeing all its 
frames and reducing the level of multiprogramming. Here, we discuss the 
most common solution: page replacement. 

 
 Basic Page Replacement 
Page replacement takes the following approach. If no frame is free, we find 
one that is not currently being used and free it. We can free a frame by 
writing its contents to swap space and changing the page table (and all other 
tables) to indicate that the page is no longer in memory (Figure 8.35). We 
can now use the freed frame to hold the page for which the process faulted. 
We modify the page-fault service routine to include page replacement: 

 
Find the location of the desired page on the disk. 
Find a free frame: 

If there is a free frame, use it. 
If there is no free frame, use a page-replacement algorithm to 
select a victim frame. 
Write the victim frame to the disk; change the page and frame 
tables accordingly. 

Read the desired page into the newly freed frame; change the page and 
frame tables. 
Continue the user process from where the page fault occurred. 
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Figure 8.35 Page replacement. 

 
Notice that, if no frames are free, two page transfers (one out and one 

in) are required. This situation effectively doubles the page-fault service time 
and increases the effective access time accordingly. 

We can reduce this overhead by using a modify bit (or dirty bit). 
When this scheme is used, each page or frame has a modify bit associated with 
it in the hardware. The modify bit for a page is set by the hardware whenever 
any byte in the page is written into, indicating that the page has been modified. 
When we select a page for replacement, we examine its modify bit. If the bit is 
set, we know that the page has been modified since it was read in from the 
disk. In this case, we must write the page to the disk. If the modify bit is not 
set, however, the page has not been modified since it was read into memory. In 
this case, we need not write the memory page to the disk: it is already there. 
This technique also applies to read-only pages (for example, pages of binary 
code). 

Such pages cannot be modified; thus, they may be discarded when 
desired. This scheme can significantly reduce the time required to service a 
page fault, since it reduces I/O time by one-half if the page has not been 
modified. 
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Page replacement is basic to demand paging. It completes the separation 
between logical memory and physical memory. With this mechanism, an 
enormous virtual memory can be provided for programmers on a smaller 
physical memory. With no demand paging, user addresses are mapped into 
physical addresses, and the two sets of addresses can be different. All the pages 
of a process still must be in physical memory, however. With demand paging, 
the size of the logical address space is no longer constrained by physical 
memory. If we have a user process of twenty pages, we can execute it in ten 
frames simply by using demand paging and using a replacement algorithm to 
find a free frame whenever necessary. If a page that has been modified is to be 
replaced, its contents are copied to the disk. A later reference to that page will 
cause a page fault. At that time, the page will be brought back into memory, 
perhaps replacing some other page in the process. 

We must solve two major problems to implement demand paging: we 
must develop a frame-allocation algorithm and a page-replacement 
algorithm. That is, if we have multiple processes in memory, we must decide 
how many frames to allocate to each process; and when page replacement is 
required, we must select the frames that are to be replaced. Designing 
appropriate algorithms to solve these problems is an important task, because 
disk I/O is so expensive. Even slight improvements in demand-paging methods 
yield large gains in system performance. 

There are many different page-replacement algorithms. Every operating 
system probably has its own replacement scheme. How do we select a 
particular replacement algorithm? In general, we want the one with the lowest 
page-fault rate. 

We evaluate an algorithm by running it on a particular string of memory 
references and computing the number of page faults. The string of memory 
references is called a reference string. We can generate reference strings 
artificially (by using a random-number generator, for example), or we can trace 
a given system and record the address of each memory reference. The latter 
choice produces a large number of data (on the order of 1 million addresses per 
second). To reduce the number of data, we use two facts. 

First, for a given page size (and the page size is generally fixed by the 
hardware or system), we need to consider only the page number, rather than the 
entire address. Second, if we have a reference to a page p, then any references 
to page p that immediately follow will never cause a page fault. Page p will be 
in memory after the first reference, so the immediately following references 
will not fault. 

For example, if we trace a particular process, we might record the 
following address sequence: 

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 
0103, 0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 
0105 

At 100 bytes per page, this sequence is reduced to the following reference 
string: 

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1 
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Figure 8.36 Graph of page faults versus number of frames. 

 
To determine the number of page faults for a particular reference string 

and page-replacement algorithm, we also need to know the number of page 
frames available. Obviously, as the number of frames available increases, the 
number of page faults decreases. For the reference string considered 
previously, for example, if we had three or more frames, we would have only 
three faults — one fault for the first reference to each page. In contrast, with 
only one frame available, we would have a replacement with every reference, 
resulting in eleven faults. In general, we expect a curve such as that in Figure 
8.36. As the number of frames increases, the number of page faults drops to 
some minimal level. Of course, adding physical memory increases the number 
of frames. 

We next illustrate several page-replacement algorithms. In doing so, we 
use the reference string 

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 

for a memory with three frames. 
 

 FIFO Page Replacement 
The simplest page-replacement algorithm is a first-in, first-out (FIFO) 

algorithm. A FIFO replacement algorithm associates with each page the time 
when that page was brought into memory. When a page must be replaced, the 
oldest page is chosen. Notice that it is not strictly necessary to record the time 
when a page is brought in. We can create a FIFO queue to hold all pages in 
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memory. We replace the page at the head of the queue. When a page is brought 
into memory, we insert it at the tail of the queue. 

For our example reference string, our three frames are initially empty. 
The first three references (7, 0, 1) cause page faults and are brought into these 
empty frames. The next reference (2) replaces page 7, because page 7 was 
brought in first. Since 0 is the next reference and 0 is already in memory, we 
have no fault for this reference. The first reference to 3 results in replacement 
of page 0, since it is now first in line. Because of this replacement, the next 
reference, to 0, will fault. Page 1 is then replaced by page 0. This process 
continues as shown in Figure 8.37. Every time a fault occurs, we show which 
pages are in our three frames. There are fifteen faults altogether. 

The FIFO page-replacement algorithm is easy to understand and 
program. However, its performance is not always good. On the one hand, the 
page replaced may be an initialization module that was used a long time ago 
and is no longer needed. On the other hand, it could contain a heavily used 
variable that was initialized early and is in constant use. 
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Figure 8.37 FIFO page-replacement algorithm. 
 

Notice that, even if we select for replacement a page that is in active 
use, everything still works correctly. After we replace an active page with a 
new one, a fault occurs almost immediately to retrieve the active page. Some 
other page must be replaced to bring the active page back into memory. Thus, a 
bad replacement choice increases the page-fault rate and slows process 
execution. It does not, however, cause incorrect execution. 

To illustrate the problems that are possible with a FIFO page- 
replacement algorithm, consider the following reference string: 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
Notice that the number of faults for four frames (ten) is greater than the 
number of faults for three frames (nine)! This most unexpected result is known 
as Belady’s anomaly: for some page-replacement algorithms, the page-fault 
rate may increase as the number of allocated frames increases. We would 
expect that giving more memory to a process would improve its performance. 
In some early research, investigators noticed that this assumption was not 
always true. Belady’s anomaly was discovered as a result. 



 Optimal Page Replacement 

One result of the discovery of Belady’s anomaly was the search for an optimal 
page-replacement algorithm — the algorithm that has the lowest page-fault 
rate of all algorithms and will never suffer from Belady’s anomaly. Such an 
algorithm does exist and has been called OPT or MIN. It is simply this: 

 
Replace the page that will not be used for the longest period of time. 

 
Use of this page-replacement algorithm guarantees the lowest possible page- 
fault rate for a fixed number of frames. 

 
For example, on our sample reference string, the optimal page- 

replacement algorithm would yield nine page faults, as shown in Figure 8.38. 
The first three references cause faults that fill the three empty frames. The 
reference to page 2 replaces page 7, because page 7 will not be used until 
reference 18, whereas page 0 will be used at 5, and page 1 at 14. The reference 
to page 3 replaces page 1, as page 1 will be the last of the three pages in 
memory to be referenced again. With only nine page faults, optimal 
replacement is much better than a FIFO algorithm, which results in fifteen 
faults. (If we ignore the first three, which all algorithms must suffer, then 
optimal replacement is twice as good as FIFO replacement.) In fact, no 
replacement algorithm can process this reference string in three frames with 
fewer than nine faults. 

 
Unfortunately, the optimal page-replacement algorithm is difficult to 
implement, because it requires future knowledge of the reference string. (We 
encountered a similar situation with the SJF CPU-scheduling algorithm). As a 
result, the optimal algorithm is used mainly for comparison studies. For 
instance, it may be useful to know that, although a new algorithm is not 
optimal, it is within 12.3 percent of optimal at worst and within 4.7 percent on 
average. 
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Figure 8.38 Optimal page-replacement algorithm. 



 LRU Page Replacement 
If the optimal algorithm is not feasible, perhaps an approximation of 

the optimal algorithm is possible. The key distinction between the FIFO and 
OPT algorithms (other than looking backward versus forward in time) is 
that the FIFO algorithm uses the time when a page was brought into 
memory, whereas the OPT algorithm uses the time when a page is to be 
used. If we use the recent past as an approximation of the near future, then 
we can replace the page that has not been used for the longest period of 
time. This approach is the least recently used (LRU) algorithm. 

LRU replacement associates with each page the time of that page’s 
last use. When a page must be replaced, LRU chooses the page that has not 
been used for the longest period of time. We can think of this strategy as the 
optimal page-replacement algorithm looking backward in time, rather than 
forward. (Strangely, if we let SR be the reverse of a reference string S, then 
the page-fault rate for the OPT algorithm on S is the same as the page-fault 
rate for the OPT algorithm on SR. Similarly, the page-fault rate for the LRU 
algorithm on S is the same as the page-fault rate for the LRU algorithm on 
SR.) 

The result of applying LRU replacement to our example reference 
string is shown in Figure 8.39. The LRU algorithm produces twelve faults. 
Notice that the first five faults are the same as those for optimal 
replacement. When the reference to page 4 occurs, however, LRU 
replacement sees that, of the three frames in memory, page 2 was used least 
recently. Thus, the LRU algorithm replaces page 2, not knowing that page 2 
is about to be used. When it then faults for page 2, the LRU algorithm 
replaces page 3, since it is now the least recently used of the three pages in 
memory. Despite these problems, LRU replacement with twelve faults is 
much better than FIFO replacement with fifteen. 

The LRU policy is often used as a page-replacement algorithm and is 
considered to be good. The major problem is how to implement LRU 
replacement. An LRU page-replacement algorithm may require substantial 
hardware assistance. The problem is to determine an order for the frames 
defined by the time of last use. Two implementations are feasible: 
Counters: In the simplest case, we associate with each page-table entry a 
time-of-use field and add to the CPU a logical clock or counter. The clock 
is incremented for every memory reference. Whenever a reference to a page 
is made, the contents of the clock register are copied to the time-of-use field 
in the page-table entry for that page. In this way, we always have 
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Figure 8.39 LRU page-replacement algorithm. 
 

the ―time‖ of the last reference to each page. We replace the page with the 
smallest time value. This scheme requires a search of the page table to find 
the LRU page and a write to memory (to the time-of-use field in the page 
table) for each memory access. The times must also be maintained when 
page tables are changed (due to CPU scheduling). Overflow of the clock 
must be considered. 
Stack. Another approach to implementing LRU replacement is to keep a 
stack of page numbers. Whenever a page is referenced, it is removed from 
the stack and put on the top. In this way, the most recently used page is 
always at the top of the stack and the least recently used page is always at 
the bottom (Figure 8.40). Because entries must be removed from the middle 
of the stack, it is best to implement this approach by using a doubly linked 
list with a head pointer and a tail pointer. Removing a page and putting it on 
the top of the stack then requires changing six pointers at worst. Each 
update is a little more expensive, but there is no search for a replacement; 
the tail pointer points to the bottom of the stack, which is the LRU page. 
This approach is particularly appropriate for software or microcode 
implementations of LRU replacement. 
Like optimal replacement, LRU replacement does not suffer from Belady’s 
anomaly. Both belong to a class of page-replacement algorithms, called 
stack algorithms, that can never exhibit Belady’s anomaly. A stack 
algorithm is an algorithm for which it can be shown that the set of pages in 
memory for n frames is always a subset of the set of pages that would be in 
memory with n1 frames. For LRU replacement, the set of pages in memory 
would be the n most recently referenced pages. If the number of frames is 
increased, these n pages will still be the most recently referenced and so 
will still be in memory. 

Note that neither implementation of LRU would be conceivable 
without hardware assistance beyond the standard TLB registers. The 
updating of the clock fields or stack must be done for every memory 
reference. If we were to use an interrupt for every reference to allow 
software to update such data structures, it would slow every memory 
reference by a factor of at least ten, hence slowing every user process by a 
factor of ten. Few systems could tolerate that level of overhead for memory 
management. 
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Figure 8.40 Use of a stack to record the most recent page references. 
 

 LRU-Approximation Page Replacement 
Few computer systems provide sufficient hardware support for true LRU page 
replacement. In fact, some systems provide no hardware support, and other 
page-replacement algorithms (such as a FIFO algorithm) must be used. Many 
systems provide some help, however, in the form of a reference bit. The 
reference bit for a page is set by the hardware whenever that page is referenced 
(either a read or a write to any byte in the page). Reference bits are associated 
with each entry in the page table. 

Initially, all bits are cleared (to 0) by the operating system. As a user 
process executes, the bit associated with each page referenced is set (to 1) by 
the hardware. After some time, we can determine which pages have been used 
and which have not been used by examining the reference bits, although we do 
not know the order of use. This information is the basis for many page- 
replacement algorithms that approximate LRU replacement. 

 
2 

 
1 

0 

7 

4 

 

 
7 

 
2 

1 

0 

4 

 



 Additional-Reference-Bits Algorithm 
We can gain additional ordering information by recording the reference bits 
at regular intervals. We can keep an 8-bit byte for each page in a table in 
memory. At regular intervals (say, every 100 milliseconds), a timer interrupt 
transfers control to the operating system. The operating system shifts the 
reference bit for each page into the high-order bit of its 8-bit byte, shifting 
the other bits right by 1 bit and discarding the low-order bit. These 8-bit shift 
registers contain the history of page use for the last eight time periods. If the 
shift register contains 00000000, for example, then the page has not been 
used for eight time periods. A page that is used at least once in each period 
has a shift register value of 11111111. A page with a history register value of 
11000100 has been used more recently than one with a value of 01110111. If 
we interpret these 8-bit bytes as unsigned integers, the page with the lowest 
number is the LRU page, and it can be replaced. Notice that the numbers are 
not guaranteed to be unique, however. We can either replace (swap out) all 
pages with the smallest value or use the FIFO method to choose among them. 

The number of bits of history included in the shift register can be 
varied, of course, and is selected (depending on the hardware available) to 
make the updating as fast as possible. In the extreme case, the number can be 
reduced to zero, leaving only the reference bit itself. This algorithm is called 
the second-chance page-replacement algorithm. 

 
 Second-Chance Algorithm 

The basic algorithm of second-chance replacement is a FIFO 
replacement algorithm. When a page has been selected, however, we inspect 
its reference bit. If the value is 0, we proceed to replace this page; but if the 
reference bit is set to 1, we give the page a second chance and move on to 
select the next FIFO page. When a page gets a second chance, its reference 
bit is cleared, and its arrival time is reset to the current time. Thus, a page 
that is given a second chance will not be replaced until all other pages have 
been replaced (or given second chances). In addition, if a page is used often 
enough to keep its reference bit set, it will never be replaced. 

One way to implement the second-chance algorithm (sometimes 
referred to as the clock algorithm) is as a circular queue. A pointer (that is, a 
hand on the clock) indicates which page is to be replaced next. When a frame 
is needed, the pointer advances until it finds a page with a 0 reference bit. As 
it advances, it clears the reference bits (Figure 8.41). Once a victim page is 
found, the page is replaced, and the new page is inserted in the circular queue 
in that position. Notice that, in the worst case, when all bits are set, the 
pointer cycles through the whole queue, giving each page a second chance. It 
clears all the reference bits before selecting the next page for replacement. 
Second-chance replacement degenerates to FIFO replacement if all bits are 
set. 
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Figure 8.41 Second-chance (clock) page-replacement algorithm. 
 

 Enhanced Second-Chance Algorithm 
We can enhance the second-chance algorithm by considering the 

reference bit and the modify bit as an ordered pair. With these two bits, we 
have the following four possible classes: 

 
(0, 0) neither recently used nor modified — best page to replace 
(0, 1) not recently used but modified — not quite as good, because the 
page will need to be written out before replacement 
(1, 0) recently used but clean — probably will be used again soon 
(1, 1) recently used and modified — probably will be used again soon, 
and the page will be need to be written out to disk before it can be 
replaced 

Each page is in one of these four classes. When page replacement is 
called for, we use the same scheme as in the clock algorithm; but instead of 
examining whether the page to which we are pointing has the reference bit 
set to 1, we examine the class to which that page belongs. We replace the 



first page encountered in the lowest nonempty class. Notice that we may 
have to scan the circular queue several times before we find a page to be 
replaced. 

The major difference between this algorithm and the simpler clock 
algo-rithm is that here we give preference to those pages that have been 
modified in order to reduce the number of I/Os required. 

 Counting-Based Page Replacement 
There are many other algorithms that can be used for page 

replacement. For example, we can keep a counter of the number of 
references that have been made to each page and develop the following two 
schemes. 

The least frequently used (LFU) page-replacement algorithm 
requires that the page with the smallest count be replaced. The reason for 
this selection is that an actively used page should have a large reference 
count. A problem arises, however, when a page is used heavily during the 
initial phase of a process but then is never used again. Since it was used 
heavily, it has a large count and remains in memory even though it is no 
longer needed. One solution is to shift the counts right by 1 bit at regular 
intervals, forming an exponentially decaying average usage count. 

The most frequently used (MFU) page-replacement algorithm is 
based on the argument that the page with the smallest count was probably 
just brought in and has yet to be used. 

As you might expect, neither MFU nor LFU replacement is common. 
The implementation of these algorithms is expensive, and they do not 
approximate OPT replacement well. 

 Page-Buffering Algorithms 
Other procedures are often used in addition to a specific page- 

replacement algorithm. For example, systems commonly keep a pool of free 
frames. When a page fault occurs, a victim frame is chosen as before. 
However, the desired page is read into a free frame from the pool before the 
victim is written out. This procedure allows the process to restart as soon as 
possible, without waiting for the victim page to be written out. When the 
victim is later written out, its frame is added to the free-frame pool. 

An expansion of this idea is to maintain a list of modified pages. 
Whenever the paging device is idle, a modified page is selected and is 
written to the disk. Its modify bit is then reset. This scheme increases the 
probability that a page will be clean when it is selected for replacement and 
will not need to be written out. 

Another modification is to keep a pool of free frames but to remember 
which page was in each frame. Since the frame contents are not modified 
when a frame is written to the disk, the old page can be reused directly from 
the free-frame pool if it is needed before that frame is reused. No I/O is 
needed in this case. When a page fault occurs, we first check whether the 



desired page is in the free-frame pool. If it is not, we must select a free 
frame and read into it. 

 
This technique is used in the VAX/VMS system along with a FIFO 

replace-ment algorithm. When the FIFO replacement algorithm mistakenly 
replaces a page that is still in active use, that page is quickly retrieved from 
the free-frame pool, and no I/O is necessary. The free-frame buffer provides 
protection against the relatively poor, but simple, FIFO replacement 
algorithm. This method is necessary because the early versions of VAX did 
not implement the reference bit correctly. 

Some versions of the UNIX system use this method in conjunction with 
the second-chance algorithm. It can be a useful augmentation to any page- 
replacement algorithm, to reduce the penalty incurred if the wrong victim 
page is selected. 

 
Allocation of Frames 

We turn next to the issue of allocation. How do we allocate the fixed 
amount of free memory among the various processes? If we have 93 free 
frames and two processes, how many frames does each process get? 

The simplest case is the single-user system. Consider a single-user 
system with 128 KB of memory composed of pages 1 KB in size. This 
system has 128 frames. The operating system may take 35 KB, leaving 93 
frames for the user process. Under pure demand paging, all 93 frames 
would initially be put on the free-frame list. When a user process started 
execution, it would generate a sequence of page faults. The first 93 page 
faults would all get free frames from the free-frame list. When the free- 
frame list was exhausted, a page-replacement algorithm would be used to 
select one of the 93 in-memory pages to be replaced with the 94th, and so 
on. When the process terminated, the 93 frames would once again be placed 
on the free-frame list. 

There are many variations on this simple strategy. We can require that 
the operating system allocate all its buffer and table space from the free- 
frame list. When this space is not in use by the operating system, it can be 
used to support user paging. We can try to keep three free frames reserved 
on the free-frame list at all times. Thus, when a page fault occurs, there is a 
free frame available to page into. While the page swap is taking place, a 
replacement can be selected, which is then written to the disk as the user 
process continues to execute. Other variants are also possible, but the basic 
strategy is clear: the user process is allocated any free frame. 



 Minimum Number of Frames 
Our strategies for the allocation of frames are constrained in various ways. 
We cannot, for example, allocate more than the total number of available 
frames (unless there is page sharing). We must also allocate at least a 
minimum number of frames. Here, we look more closely at the latter 
requirement. 

One reason for allocating at least a minimum number of frames 
involves performance. Obviously, as the number of frames allocated to each 
process decreases, the page-fault rate increases, slowing process execution. 
In addition, remember that, when a page fault occurs before an executing 
instruction is complete, the instruction must be restarted. Consequently, we 
must have enough frames to hold all the different pages that any single 
instruction can reference. 

For example, consider a machine in which all memory-reference 
instructions may reference only one memory address. In this case, we need 
at least one frame for the instruction and one frame for the memory 
reference. In addition, if one-level indirect addressing is allowed (for 
example, a load instruction on page 16 can refer to an address on page 0, 
which is an indirect reference to page 23), then paging requires at least 
three frames per process. Think about what might happen if a process had 
only two frames. 

The minimum number of frames is defined by the computer 
architecture. For example, the move instruction for the PDP-11 includes 
more than one word for some addressing modes, and thus the instruction 
itself may straddle two pages. In addition, each of its two operands may be 
indirect references, for a total of six frames. Another example is the IBM 
370 MVC instruction. Since the instruction is from storage location to 
storage location, it takes 6 bytes and can straddle two pages. The block of 
characters to move and the area to which it is to be moved can each also 
straddle two pages. This situation would require six frames. The worst case 
occurs when the MVC instruction is the operand of an EXECUTE 
instruction that straddles a page boundary; in this case, we need eight 
frames. 

The worst-case scenario occurs in computer architectures that allow 
multiple levels of indirection (for example, each 16-bit word could contain 
15-bit address plus a 1-bit indirect indicator). Theoretically, a simple load 
instruction could reference an indirect address that could reference an 
indirect address (on another page) that could also reference an indirect 
address (on yet another page), and so on, until every page in virtual 
memory had been touched. Thus, in the worst case, the entire virtual 
memory must be in physical memory. To overcome this difficulty, we must 
place a limit on the levels of indirection (for example, limit an instruction to 
at most 16 levels of indirection). When the first indirection occurs, a 
counter is set to 16; the counter is then decremented for each successive 
indirection for this instruction. If the counter is decremented to 0, a trap 



occurs (excessive indirection). This limitation reduces the maximum 
number of memory references per instruction to 17, requiring the same 
number of frames. 

Whereas the minimum number of frames per process is defined by the 
architecture, the maximum number is defined by the amount of available 
physical memory. In between, we are still left with significant choice in 
frame allocation. 

 
 Allocation Algorithms 

The easiest way to split m frames among n processes is to give 
everyone an equal share, m/n frames (ignoring frames needed by the 
operating system for the moment). For instance, if there are 93 frames and 
five processes, each process will get 18 frames. The three leftover frames 
can be used as a free-frame buffer pool. This scheme is called equal 
allocation. 

An alternative is to recognize that various processes will need 
differing amounts of memory. Consider a system with a 1-KB frame size. If 
a small student process of 10 KB and an interactive database of 127 KB are 
the only two processes running in a system with 62 free frames, it does not 
make much sense to give each process 31 frames. The student process does 
not need more than 10 frames, so the other 21 are, strictly speaking, wasted. 

To solve this problem, we can use proportional allocation, in which 
we allocate available memory to each process according to its size. Let the 
size of the virtual memory for process pi be si , and define 

S =   si . 
Then, if the total number of available frames is m, we allocate ai frames to 
process pi , where ai is approximately 

i = si /S × m. 

Of course, we must adjust each ai to be an integer that is greater than the 
minimum number of frames required by the instruction set, with a sum not 
exceeding m. 

With proportional allocation, we would split 62 frames between two 
processes, one of 10 pages and one of 127 pages, by allocating 4 frames and 
57 frames, respectively, since 

 
10/137 × 62 ≈ 4, and 
127/137 × 62 ≈ 57. 

 
In this way, both processes share the available frames according to their 
―needs,‖ rather than equally. 



In both equal and proportional allocation, of course, the allocation 
may vary according to the multiprogramming level. If the 
multiprogramming level is increased, each process will lose some frames to 
provide the memory needed for the new process. Conversely, if the 
multiprogramming level decreases, the frames that were allocated to the 
departed process can be spread over the remaining processes. 

Notice that, with either equal or proportional allocation, a high- 
priority process is treated the same as a low-priority process. By its 
definition, however, we may want to give the high-priority process more 
memory to speed its execution, to the detriment of low-priority processes. 
One solution is to use a proportional allocation scheme wherein the ratio of 
frames depends not on the relative sizes of processes but rather on the 
priorities of processes or on a combination of size and priority. 

 
 Global versus Local Allocation 

Another important factor in the way frames are allocated to the various 
processes is page replacement. With multiple processes competing for 
frames, we can classify page-replacement algorithms into two broad 
categories: global replacement and local replacement. Global 
replacement allows a process to select a replacement frame from the set of 
all frames, even if that frame is currently allocated to some other process; 
that is, one process can take a frame from another. Local replacement 
requires that each process select from only its own set of allocated frames. 

For example, consider an allocation scheme wherein we allow high- 
priority processes to select frames from low-priority processes for 
replacement. A process can select a replacement from among its own 
frames or the frames of any lower-priority process. This approach allows a 
high-priority process to increase its frame allocation at the expense of a 
low-priority process. With a local replacement strategy, the number of 
frames allocated to a process does not change. With global replacement, a 
process may happen to select only frames allocated to other processes, thus 
increasing the number of frames allocated to it (assuming that other 
processes do not choose its frames for replacement). 

One problem with a global replacement algorithm is that a process 
cannot control its own page-fault rate. The set of pages in memory for a 
process depends not only on the paging behavior of that process but also on 
the paging behavior of other processes. Therefore, the same process may 
perform quite differently (for example, taking 0.5 seconds for one execution 
and 10.3 seconds for the next execution) because of totally external 
circumstances. Such is not the case with a local replacement algorithm. 
Under local replacement, the set of pages in memory for a process is 
affected by the paging behavior of only that process. Local replacement 
might hinder a process, however, by not making available to it other, less 
used pages of memory. Thus, global replacement generally results in 
greater system throughput and is therefore the more commonly used 
method. 



 Non-Uniform Memory Access 
Thus far in our coverage of virtual memory, we have assumed that all 

main memory is created equal — or at least that it is accessed equally. On 
many computer systems, that is not the case. Often, in systems with 
multiple CPUs (Section 1.3.2), a given CPU can access some sections of 
main memory faster than it can access others. These performance 
differences are caused by how CPUs and memory are interconnected in the 
system. Frequently, such a system is made up of several system boards, 
each containing multiple CPUs and some memory. The system boards are 
interconnected in various ways, ranging from system buses to high-speed 
network connections like InfiniBand. As you might expect, the CPUs on a 
particular board can access the memory on that board with less delay than 
they can access memory on other boards in the system. Systems in which 
memory access times vary significantly are known collectively as non- 
uniform memory access (NUMA) systems, and without exception, they 
are slower than systems in which memory and CPUs are located on the 
same motherboard. 

Managing which page frames are stored at which locations can 
significantly affect performance in NUMA systems. If we treat memory as 
uniform in such a system, CPUs may wait significantly longer for memory 
access than if we modify memory allocation algorithms to take NUMA into 
account. Similar changes must be made to the scheduling system. The goal 
of these changes is to have memory frames allocated ―as close as possible‖ 
to  the  CPU  on  which  the  process  is  running.  The  definition  of  ―close‖  is 
―with minimum latency,‖ which typically means on the same system board 
as the CPU. 

The algorithmic changes consist of having the scheduler track the last 
CPU on which each process ran. If the scheduler tries to schedule each 
process onto its previous CPU, and the memory-management system tries 
to allocate frames for the process close to the CPU on which it is being 
scheduled, then improved cache hits and decreased memory access times 
will result. 

The picture is more complicated once threads are added. For example, 
a process with many running threads may end up with those threads 
scheduled on many different system boards. How is the memory to be 
allocated in this case? Solaris solves the problem by creating lgroups (for 
―latency groups‖)  in  the  kernel.  Each  lgroup  gathers  together  close  CPUs 
and memory. In fact, there is a hierarchy of lgroups based on the amount of 
latency between the groups. Solaris tries to schedule all threads of a process 
and allocate all memory of a process within an lgroup. If that is not 
possible, it picks nearby lgroups for the rest of the resources needed. This 
practice minimizes overall memory latency and maximizes CPU cache hit 
rates. 



Thrashing 
If the number of frames allocated to a low-priority process falls below 

the minimum number required by the computer architecture, we must 
suspend that process’s execution. We should then page out its remaining 
pages, freeing all its allocated frames. This provision introduces a swap-in, 
swap-out level of intermediate CPU scheduling. 

In fact, look at any process that does not have ―enough‖ frames. If the 
process does not have the number of frames it needs to support pages in 
active use, it will quickly page-fault. At this point, it must replace some 
page. However, since all its pages are in active use, it must replace a page 
that will be needed again right away. Consequently, it quickly faults again, 
and again, and again, replacing pages that it must bring back in 
immediately. 

This high paging activity is called thrashing. A process is thrashing 
if it is spending more time paging than executing. 

 Cause of Thrashing 
Thrashing results in severe performance problems. Consider the following 
scenario, which is based on the actual behavior of early paging systems. 

The operating system monitors CPU utilization. If CPU utilization is 
too low, we increase the degree of multiprogramming by introducing a new 
process to the system. A global page-replacement algorithm is used; it 
replaces pages without regard to the process to which they belong. Now 
suppose that a process enters a new phase in its execution and needs more 
frames. It starts faulting and taking frames away from other processes. 
These processes need those pages, however, and so they also fault, taking 
frames from other processes. These faulting processes must use the paging 
device to swap pages in and out. As they queue up for the paging device, 
the ready queue empties. As processes wait for the paging device, CPU 
utilization decreases. 

The CPU scheduler sees the decreasing CPU utilization and increases 
the degree of multiprogramming as a result. The new process tries to get 
started by taking frames from running processes, causing more page faults 
and a longer queue for the paging device. As a result, CPU utilization drops 
even further, and the CPU scheduler tries to increase the degree of 
multiprogramming even more. Thrashing has occurred, and system 
throughput plunges. The page-fault rate increases tremendously. As a result, 
the effective memory-access time increases. No work is getting done, 
because the processes are spending all their time paging. 

This phenomenon is illustrated in Figure 8.42, in which CPU 
utilization is plotted against the degree of multiprogramming. As the degree 
of multi-programming increases, CPU utilization also increases, although 
more slowly, until a maximum is reached. If the degree of 
multiprogramming is increased even further, thrashing sets in, and CPU 
utilization drops sharply. At this point, to increase CPU utilization and stop 
thrashing, we must decrease the degree of multiprogramming. 
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Figure 8.42 Thrashing. 
 

We can limit the effects of thrashing by using a local replacement 
algorithm (or priority replacement algorithm). With local replacement, if 
one process starts thrashing, it cannot steal frames from another process and 
cause the latter to thrash as well. However, the problem is not entirely 
solved. If processes are thrashing, they will be in the queue for the paging 
device most of the time. The average service time for a page fault will 
increase because of the longer average queue for the paging device. Thus, 
the effective access time will increase even for a process that is not 
thrashing. 

To prevent thrashing, we must provide a process with as many frames 
as it needs. But how do we know how many frames it ―needs‖? There are 
several techniques. The working-set strategy starts by looking at how many 
frames a process is actually using. This approach defines the locality model 
of process execution. 

The locality model states that, as a process executes, it moves from 
locality to locality. A locality is a set of pages that are actively used 
together (Figure 8.42). A program is generally composed of several 
different localities, which may overlap. 

For example, when a function is called, it defines a new locality. In 
this locality, memory references are made to the instructions of the function 
call, its local variables, and a subset of the global variables. When we exit 
the function, the process leaves this locality, since the local variables and 
instructions of the function are no longer in active use. We may return to 
this locality later. Thus, we see that localities are defined by the program 
structure and its data structures. The locality model states that all programs 
will exhibit this basic memory reference structure. Note that the locality 
model is the unstated principle behind the caching discussions so far in this 
book. If accesses to any types of data were random rather than patterned, 
caching would be useless. 
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Suppose we allocate enough frames to a process to accommodate its 
current locality. It will fault for the pages in its locality until all these pages 
are in memory; then, it will not fault again until it changes localities. If we do 
not allocate enough frames to accommodate the size of the current locality, 
the process will thrash, since it cannot keep in memory all the pages that it is 
actively using. 
 Working-Set Model 

As mentioned, the working-set model is based on the assumption of 
locality. This model uses a parameter, , to define the working-set window. 
The idea is to examine the most recent page references. The set of pages in 
the most recent page references is the working set (Figure 8.43). If a page is 
in active use, it will be in the working set. If it is no longer being used, it will 
drop from the working set time units after its last reference. Thus, the 
working set is an approximation of the program’s locality. 

For example, given the sequence of memory references shown in Figure 
9.20, if = 10 memory references, then the working set at time t1 is {1, 2, 5, 6, 
7}. By time t2, the working set has changed to {3, 4}. 

The accuracy of the working set depends on the selection of . If is too 
small, it will not encompass the entire locality; if is too large, it may overlap 
several localities. In the extreme, if is infinite, the working set is the set of 
pages touched during the process execution. 

The most important property of the working set, then, is its size. If we 
compute the working-set size, WSSi , for each process in the system, we can 
then consider that 

 

D = WSSi , 
where D is the total demand for frames. Each process is actively using the 
pages in its working set. Thus, process i needs WSSi frames. If the total 
demand is greater than the total number of available frames (D > m), 
thrashing will occur, because some processes will not have enough frames. 

Once has been selected, use of the working-set model is simple. The 
operating system monitors the working set of each process and allocates to 
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that working set enough frames to provide it with its working-set size. If there 
are enough extra frames, another process can be initiated. If the sum of the 
working-set sizes increases, exceeding the total number of available frames, 
the operating system selects a process to suspend. The process’s pages are 
written out (swapped), and its frames are reallocated to other processes. The 
suspended process can be restarted later. 

This working-set strategy prevents thrashing while keeping the degree 
of multiprogramming as high as possible. Thus, it optimizes CPU utilization. 
The difficulty with the working-set model is keeping track of the working set. 
The working-set window is a moving window. At each memory reference, a 
new reference appears at one end, and the oldest reference drops off the other 
end. A page is in the working set if it is referenced anywhere in the working- 
set window. 

We can approximate the working-set model with a fixed-interval timer 
interrupt and a reference bit. For example, assume that equals 10,000 
references and that we can cause a timer interrupt every 5,000 references. 
When we get a timer interrupt, we copy and clear the reference-bit values for 
each page. Thus, if a page fault occurs, we can examine the current reference 
bit and two in-memory bits to determine whether a page was used within the 
last 10,000 to 15,000 references. If it was used, at least one of these bits will 
be on. If it has not been used, these bits will be off. Pages with at least one bit 
on will be considered to be in the working set. 

Note that this arrangement is not entirely accurate, because we cannot 
tell where, within an interval of 5,000, a reference occurred. We can reduce 
the uncertainty by increasing the number of history bits and the frequency of 
inter-rupts (for example, 10 bits and interrupts every 1,000 references). 
However, the cost to service these more frequent interrupts will be 
correspondingly higher. 

 
 Page-Fault Frequency 

The working-set model is successful, and knowledge of the working set can 
be useful for prepaging, but it seems a clumsy way to control thrashing. A 
strategy that uses the page-fault frequency (PFF) takes a more direct 
approach. 

The specific problem is how to prevent thrashing. Thrashing has a high 
page-fault rate. Thus, we want to control the page-fault rate. When it is too 
high, we know that the process needs more frames. Conversely, if the page- 
fault rate is too low, then the process may have too many frames. We can 
establish upper and lower bounds on the desired page-fault rate (Figure 8.44). 
If the actual page-fault rate exceeds the upper limit, we allocate the process 
another frame. If the page-fault rate falls below the lower limit, we remove a 
frame from the process. Thus, we can directly measure and control the page- 
fault rate to prevent thrashing. 
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Figure 8.44 Page-fault frequency. 
 

As with the working-set strategy, we may have to swap out a process. 
If the page-fault rate increases and no free frames are available, we must 
select some process and swap it out to backing store. The freed frames are 
then distributed to processes with high page-fault rates. 

 
 Concluding Remarks 
Practically speaking, thrashing and the resulting swapping have a 
disagreeably large impact on performance. The current best practice in 
implementing a computer facility is to include enough physical memory, 
whenever possible, to avoid thrashing and swapping. From smartphones 
through mainframes, providing enough memory to keep all working sets in 
memory concurrently, except under extreme conditions, gives the best user 
experience. 

Memory-Mapped Files 
Consider a sequential read of a file on disk using the standard system calls 
open(), read(), and write(). Each file access requires a system call and disk 
access. Alternatively, we can use the virtual memory techniques discussed 
so far to treat file I/O as routine memory accesses. This approach, known as 
memory mapping a file, allows a part of the virtual address space to be 
logically associated with the file. As we shall see, this can lead to 
significant performance increases. 

 Basic Mechanism 

Memory mapping a file is accomplished by mapping a disk block to a page 
(or pages) in memory. Initial access to the file proceeds through ordinary 
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demand paging, resulting in a page fault. However, a page-sized portion of 
the file is read from the file system into a physical page (some systems may 
opt to read in more than a page-sized chunk of memory at a time). 
Subsequent reads and writes to the file are handled as routine memory 
accesses. Manipulating files through memory rather than incurring the 
overhead of using the read() and write() system calls simplifies and speeds 
up file access and usage. 

Note that writes to the file mapped in memory are not necessarily 
immediate (synchronous) writes to the file on disk. Some systems may 
choose to update the physical file when the operating system periodically 
checks whether the page in memory has been modified. When the file is 
closed, all the memory-mapped data are written back to disk and removed 
from the virtual memory of the process. 

Some operating systems provide memory mapping only through a 
specific system call and use the standard system calls to perform all other 
file I/O. However, some systems choose to memory-map a file regardless of 
whether the file was specified as memory-mapped. Let’s take Solaris as an 
example. If a file is specified as memory-mapped (using the mmap() system 
call), Solaris maps the file into the address space of the process. If a file is 
opened and accessed using ordinary system calls, such as open(), read(), 
and write(),Solaris still memory-maps the file; however, the file is mapped 
to the kernel address space. Regardless of how the file is opened, then, 
Solaris treats all file I/O as memory-mapped, allowing file access to take 
place via the efficient memory subsystem. 

Multiple processes may be allowed to map the same file concurrently, 
to allow sharing of data. Writes by any of the processes modify the data in 
virtual memory and can be seen by all others that map the same section of 
the file. Given our earlier discussions of virtual memory, it should be clear 
how the sharing of memory-mapped sections of memory is implemented: 
the virtual memory map of each sharing process points to the same page of 
physical memory — the page that holds a copy of the disk block. This 
memory sharing is illustrated in Figure 8.45. The memory-mapping system 
calls can also support copy-on-write functionality, allowing processes to 
share a file in read-only mode but to have their own copies of any data they 
modify. So that access to the shared data is coordinated, the processes 
involved might use one of the mechanisms for achieving mutual exclusion. 

Quite often, shared memory is in fact implemented by memory 
mapping files. Under this scenario, processes can communicate using 
shared memory by having the communicating processes memory-map the 
same file into their virtual address spaces. The memory-mapped file serves 
as the region of shared memory between the communicating processes 
(Figure 8.46). We have already seen this, where a POSIX shared memory 
object is created and each communicating process memory-maps the object 
into its address space. In the following section, we illustrate support in the 
Windows API for shared memory using memory-mapped files. 
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Figure 8.45 Memory-mapped files. 
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Figure 8.46 Shared memory using memory-mapped I/O. 



 Shared Memory in the Windows API 
The general outline for creating a region of shared memory using memory- 
mapped files in the Windows API involves first creating a file mapping for 
the file to be mapped and then establishing a view of the mapped file in a 
process’s virtual address space. A second process can then open and create a 
view of the mapped file in its virtual address space. The mapped file 
represents the shared-memory object that will enable communication to take 
place between the processes. 

We next illustrate these steps in more detail. In this example, a producer 
process first creates a shared-memory object using the memory-mapping 
features available in the Windows API. The producer then writes a message 
to shared memory. After that, a consumer process opens a mapping to the 
shared-memory object and reads the message written by the consumer. 

To establish a memory-mapped file, a process first opens the file to be 
mapped with the CreateFile() function, which returns a HANDLE to the 
opened file. The process then creates a mapping of this file HANDLE using 
the CreateFileMapping() function. Once the file mapping is established, the 
process then establishes a view of the mapped file in its virtual address space 
with the MapViewOfFile() function. The view of the mapped file represents 
the portion of the file being mapped in the virtual address space of the process 
the entire file or only a portion of it may be mapped. We illustrate this 
sequence in the program shown in Figure 8.47. (We eliminate much of the 
error checking for code brevity.) 

The call to CreateFileMapping() creates a named shared-memory 
object called SharedObject. The consumer process will communicate using 
this shared-memory segment by creating a mapping to the same named 
object. The producer then creates a view of the memory-mapped file in its 
virtual address space. By passing the last three parameters the value 0, it 
indicates that the mapped view is the entire file. It could instead have passed 
values specifying an offset and size, thus creating a view containing only a 
subsection of the file. (It is important to note that the entire mapping may not 
be loaded into memory when the mapping is established. Rather, the mapped 
file may be demand-paged, thus bringing pages into memory only as they are 
accessed.) The MapViewOfFile() function returns a pointer to the shared- 
memory object; any accesses to this memory location are thus accesses to the 
memory-mapped file. In this instance, the producer process writes the 
message ―Shared memory message‖ to shared memory. 



#include <windows.h> 
#include <stdio.h> 

 
int main(int argc, char *argv[]) 
{ 

HANDLE hFile, hMapFile; 
LPVOID lpMapAddress; 

 
hFile = CreateFile("temp.txt", /* file name */ 

GENERIC READ | GENERIC WRITE, /* read/write access */ 
0, /* no sharing of the file */ 
NULL, /* default security */ 
OPEN ALWAYS, /* open new or existing file */ 
FILE ATTRIBUTE NORMAL, /* routine file attributes */ 
NULL); /* no file template */ 

 
hMapFile = CreateFileMapping(hFile, /* file handle */ 

NULL, /* default security */ 
PAGE READWRITE, /* read/write access to mapped pages */ 
0, /* map entire file */ 
0, 
TEXT("SharedObject")); /* named shared memory object */ 

 
lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */ 

FILE MAP ALL ACCESS, /* read/write access */ 
0, /* mapped view of entire file */ 
0, 
0); 

 

/* write to shared memory */ 
sprintf(lpMapAddress,"Shared memory message"); 

 
UnmapViewOfFile(lpMapAddress); 
CloseHandle(hFile); 
CloseHandle(hMapFile); 

} 

Figure 8.47 Producer writing to shared memory using the Windows API. 
 

A program illustrating how the consumer process establishes a view of the 
named shared-memory object is shown in Figure 8.48. This program is 
somewhat simpler than the one shown in Figure 8.47, as all that is 
necessary is for the process to create a mapping to the existing named 
shared-memory object. The consumer process must also create a view of 
the mapped file, just as the producer process did in the program in Figure 
9.24. The consumer then reads from shared memory the message ―Shared 
memory message‖ that was written by the producer process. 



#include <windows.h> 
#include <stdio.h> 

 
int main(int argc, char *argv[]) 
{ 

HANDLE hMapFile; 
LPVOID lpMapAddress; 

 
hMapFile = OpenFileMapping(FILE MAP ALL ACCESS, /* R/W 

access */ FALSE, /* no inheritance */ 
TEXT("SharedObject")); /* name of mapped file object */ 

 

lpMapAddress = MapViewOfFile(hMapFile, /* mapped object handle */ 
FILE MAP ALL ACCESS, /* read/write access */ 
0, /* mapped view of entire file */ 
0, 
0); 

 
/* read from shared memory */ printf("Read 
message %s", lpMapAddress); 

 
UnmapViewOfFile(lpMapAddress); 
CloseHandle(hMapFile); 

} 

Figure 8.48 Consumer reading from shared memory using the Windows API. 
 

Finally, both processes remove the view of the mapped file with a call to 
UnmapViewOfFile(). We provide a programming exercise at the end of 
this chapter using shared memory with memory mapping in the 
Windows API. 

 
8.14.3 Memory-Mapped I/O 
In the case of I/O, as mentioned in Section 1.2.1, each I/O controller 
includes registers to hold commands and the data being transferred. 
Usually, special I/O instructions allow data transfers between these 
registers and system memory. To allow more convenient access to I/O 
devices, many computer architectures provide memory-mapped I/O. In 
this case, ranges of memory addresses are set aside and are mapped to 
the device registers. Reads and writes to these memory addresses cause 
the data to be transferred to and from the device registers. This method 
is appropriate for devices that have fast response times, such as video 
controllers. In the IBM PC, each location on the screen is mapped to a 
memory location. Displaying text on the screen is almost as easy as 
writing the text into the appropriate memory-mapped locations. 



Memory-mapped I/O is also convenient for other devices, such as 
the serial and parallel ports used to connect modems and printers to a 
computer. The CPU transfers data through these kinds of devices by 
reading and writing a few device registers, called an I/O port. To send 
out a long string of bytes through a memory-mapped serial port, the 
CPU writes one data byte to the data register and sets a bit in the control 
register to signal that the byte is available. The device takes the data 
byte and then clears the bit in the control register to signal that it is 
ready for the next byte. Then the CPU can transfer the next byte. If the 
CPU uses polling to watch the control bit, constantly looping to see 
whether the device is ready, this method of operation is called 
programmed I/O (PIO). If the CPU does not poll the control bit, but 
instead receives an interrupt when the device is ready for the next byte, 
the data transfer is said to be interrupt driven. 

 
Allocating Kernel Memory 
When a process running in user mode requests additional memory, 

pages are allocated from the list of free page frames maintained by the 
kernel. This list is typically populated using a page-replacement algorithm 
such as those discussed in Section 9.4 and most likely contains free pages 
scattered throughout physical memory, as explained earlier. Remember, 
too, that if a user process requests a single byte of memory, internal 
fragmentation will result, as the process will be granted an entire page 
frame. 

Kernel memory is often allocated from a free-memory pool different 
from the list used to satisfy ordinary user-mode processes. There are two 
primary reasons for this: 

The kernel requests memory for data structures of varying sizes, some 
of which are less than a page in size. As a result, the kernel must use 
memory conservatively and attempt to minimize waste due to 
fragmentation. This is especially important because many operating 
systems do not subject kernel code or data to the paging system. 

Pages allocated to user-mode processes do not necessarily have to be 
in contiguous physical memory. However, certain hardware devices interact 
directly with physical memory — without the benefit of a virtual memory 
interface — and consequently may require memory residing in physically 
contiguous pages. 

In the following sections, we examine two strategies for managing 
free memory that is assigned to kernel processes: the ―buddy system‖ and 
slab allocation. 

 Buddy System 
The buddy system allocates memory from a fixed-size segment consisting 
of physically contiguous pages. Memory is allocated from this segment 
using a power-of-2 allocator, which satisfies requests in units sized as a 
power of 2 (4 KB, 8 KB, 16 KB, and so forth). A request in units not 



appropriately sized is rounded up to the next highest power of 2. For 
example, a request for 11 KB is satisfied with a 16-KB segment. 

Let’s consider a simple example. Assume the size of a memory 
segment is initially 256 KB and the kernel requests 21 KB of memory. The 
segment is initially divided into two buddies — which we will call AL and 
AR — each 128 KB in size. One of these buddies is further divided into two 
64-KB buddies — BL and BR. However, the next-highest power of 2 from 
21 KB is 32 KB so either BL   or BR is again divided into two 32-KB 
buddies, CL and CR. One of these buddies is used to satisfy the 21-KB 
request. This scheme is illustrated in Figure 9.26, where CL is the segment 
allocated to the 21-KB request. 

An advantage of the buddy system is how quickly adjacent buddies 
can be combined to form larger segments using a technique known as 
coalescing. In Figure 8.49, for example, when the kernel releases the CL 
unit it was allocated, the system can coalesce CL and CR into a 64-KB 
segment. This segment, BL , can in turn be coalesced with its buddy BR to 
form a 128-KB segment. Ultimately, we can end up with the original 256- 
KB segment. 

The obvious drawback to the buddy system is that rounding up to the 
next highest power of 2 is very likely to cause fragmentation within 
allocated segments. For example, a 33-KB request can only be satisfied 
with a 64-KB segment. In fact, we cannot guarantee that less than 50 
percent of the allocated unit will be wasted due to internal fragmentation. In 
the following section, we explore a memory allocation scheme where no 
space is lost due to fragmentation. 

 Slab Allocation 

A second strategy for allocating kernel memory is known as slab 
allocation. A slab is made up of one or more physically contiguous pages. 
A cache consists of one or more slabs. There is a single cache for each 
unique kernel data structure — for example, a separate cache for the data 
structure representing process descriptors, a separate cache for file objects, 
a separate cache for semaphores, and so forth. Each cache is populated with 
objects that are instantiations of the kernel data structure the cache 
represents. For example, the cache representing semaphores stores instances 
of semaphore objects, the cache representing process descriptors stores 
instances of process descriptor objects, and so forth. The relationship 
among slabs, caches, and objects is shown in Figure 8.50. The figure shows 
two kernel objects 3 KB in size and three objects 7 KB in size, each stored 
in a separate cache. 
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Figure 8.49 Buddy system allocation. 
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Figure 8.50 Slab allocation. 
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The slab-allocation algorithm uses caches to store kernel objects. 
When a cache is created, a number of objects — which are initially marked 
as free— are allocated to the cache. The number of objects in the cache 
depends on the size of the associated slab. For example, a 12-KB slab 
(made up of three continguous 4-KB pages) could store six 2-KB objects. 
Initially, all objects in the cache are marked as free. When a new object for 
a kernel data structure is needed, the allocator can assign any free object 
from the cache to satisfy the request. The object assigned from the cache is 
marked as used. 

Let’s consider a scenario in which the kernel requests memory from 
the slab allocator for an object representing a process descriptor. In Linux 
systems, a process descriptor is of the type struct task struct, which requires 
approximately 1.7 KB of memory. When the Linux kernel creates a new 
task, it requests the necessary memory for the struct task struct object from 
its cache. The cache will fulfill the request using a struct task struct object 
that has already been allocated in a slab and is marked as free. 

In Linux, a slab may be in one of three possible states: 

Full. All objects in the slab are marked as used. 
Empty. All objects in the slab are marked as free. 
Partial. The slab consists of both used and free objects. 

The slab allocator first attempts to satisfy the request with a free object in a 
partial slab. If none exists, a free object is assigned from an empty slab. If 
no empty slabs are available, a new slab is allocated from contiguous 
physical pages and assigned to a cache; memory for the object is allocated 
from this slab. 

 
The slab allocator provides two main benefits: 

No memory is wasted due to fragmentation. Fragmentation is not an issue 
because each unique kernel data structure has an associated cache, and each 
cache is made up of one or more slabs that are divided into chunks the size 
of the objects being represented. Thus, when the kernel requests memory 
for an object, the slab allocator returns the exact amount of memory 
required to represent the object. 

Memory requests can be satisfied quickly. The slab allocation scheme 
is thus particularly effective for managing memory when objects are 
frequently allocated and deallocated, as is often the case with requests from 
the kernel. The act of allocating — and releasing — memory can be a time- 
consuming process. However, objects are created in advance and thus can 
be quickly allocated from the cache. Furthermore, when the kernel has 
finished with an object and releases it, it is marked as free and returned to 
its cache, thus making it immediately available for subsequent requests 
from the kernel. 



The slab allocator first appeared in the Solaris 2.4 kernel. Because of 
its general-purpose nature, this allocator is now also used for certain user- 
mode memory requests in Solaris. Linux originally used the buddy system; 
however, beginning with Version 2.2, the Linux kernel adopted the slab 
allocator. 

Recent distributions of Linux now include two other kernel memory 
allocators — the SLOB and SLUB allocators. (Linux refers to its slab 
implementation as SLAB.) 

The SLOB allocator is designed for systems with a limited amount of 
memory, such as embedded systems. SLOB (which stands for Simple List of 
Blocks) works by maintaining three lists of objects: small (for objects less 
than 256 bytes), medium (for objects less than 1,024 bytes), and large (for 
objects less than 1,024 bytes). Memory requests are allocated from an object 
on an appropriately sized list using a first-fit policy. 

Beginning with Version 2.6.24, the SLUB allocator replaced SLAB as 
the default allocator for the Linux kernel. SLUB addresses performance 
issues with slab allocation by reducing much of the overhead required by the 
SLAB allocator. One change is to move the metadata that is stored with each 
slab under SLAB allocation to the page structure the Linux kernel uses for 
each page. Additionally, SLUB removes the per-CPU queues that the SLAB 
allocator maintains for objects in each cache. For systems with a large 
number of processors, the amount of memory allocated to these queues was 
not insignificant. Thus, SLUB provides better performance as the number of 
processors on a system increases. 



 

  



UNIT 5 
Deadlocks 

In a multiprogramming environment, several processes may compete for a finite 
number of resources. A process requests resources; if the resources are not 
available at that time, the process enters a waiting state. Sometimes, a waiting 
process is never again able to change state, because the resources it has requested 
are held by other waiting processes. This situation is called a deadlock. 

Perhaps the best illustration of a deadlock can be drawn from a law passed 
by the Kansas legislature early in the 20th century.  It said, in part:  ―When two 
trains approach each other at a crossing, both shall come to a full stop and neither 
shall start up again until the other has gone.‖ 

In this, we describe methods that an operating system can use to prevent 
or deal with deadlocks. Although some applications can identify programs that 
may deadlock, operating systems typically do not provide deadlock-prevention 
facilities, and it remains the responsibility of programmers to ensure that they 
design deadlock-free programs. Deadlock problems can only become more 
common, given current trends, including larger numbers of processes, 
multithreaded programs, many more resources within a system, and an emphasis 
on long-lived file and database servers rather than batch systems. 

 System Model 
A system consists of a finite number of resources to be distributed among a 
number of competing processes. The resources may be partitioned into several 
types (or classes), each consisting of some number of identical instances. CPU 
cycles, files, and I/O devices (such as printers and DVD drives) are examples of 
resource types. If a system has two CPUs, then the resource type CPU has two 
instances. Similarly, the resource type printer may have five instances. 

If a process requests an instance of a resource type, the allocation of any 
instance of the type should satisfy the request. If it does not, then the instances are 
not identical, and the resource type classes have not been defined properly. For 
example, a system may have two printers. These two printers may be defined to 
be in the same resource class if no one cares which printer prints which output. 
However, if one printer is on the ninth floor and the other is in the basement, then 
people on the ninth floor may not see both printers as equivalent, and separate 
resource classes may need to be defined for each printer. 

Mutex locks and semaphores are also considered system resources, and 
they are a common source of deadlock. However, a lock is typically associated 
with protecting a specific data structure — that is, one lock may be used to 
protect access to a queue, another to protect access to a linked list, and so forth. 
For that reason, each lock is typically assigned its own resource class, and 
definition is not a problem. 

A process must request a resource before using it and must release the 
resource after using it. A process may request as many resources as it requires to 
carry out its designated task. Obviously, the number of resources requested may 



not exceed the total number of resources available in the system. In other words, a 
process cannot request three printers if the system has only two. 

Under the normal mode of operation, a process may utilize a resource in 
only the following sequence: 

 
Request. The process requests the resource. If the request cannot be granted 

immediately (for example, if the resource is being used by another 
process), then the requesting process must wait until it can acquire the 
resource. 

 
Use. The process can operate on the resource (for example, if the resource is a 

printer, the process can print on the printer). 
Release. The process releases the resource. 

The request and release of resources may be system calls,. Examples are 
the request() and release() device, open() and close() file, and allocate() and free() 
memory system calls. Similarly, as we saw in Chapter 5, the request and release 
of semaphores can be accomplished through the wait() and signal() operations on 
semaphores or through acquire() and release() of a mutex lock. For each use of a 
kernel-managed resource by a process or thread, the operating system checks to 
make sure that the process has requested and has been allocated the resource. A 
system table records whether each resource is free or allocated. For each resource 
that is allocated, the table also records the process to which it is allocated. If a 
process requests a resource that is currently allocated to another process, it can be 
added to a queue of processes waiting for this resource. 

A set of processes is in a deadlocked state when every process in the set is 
waiting for an event that can be caused only by another process in the set. The 
events with which we are mainly concerned here are resource acquisition and 
release. The resources may be either physical resources (for example, printers, 
tape drives, memory space, and CPU cycles) or logical resources (for example, 
semaphores, mutex locks, and files). However, other types of events may result in 
deadlocks (for example, the IPC facilities discussed in Chapter 3). 

To illustrate a deadlocked state, consider a system with three CD RW 
drives. Suppose each of three processes holds one of these CD RW drives. If each 
process now requests another drive, the three processes will be in a deadlocked 
state. Each is waiting for the event ―CD RW is released,‖ which can be caused 
only by one of the other waiting processes. This example illustrates a deadlock 
involving the same resource type. 

Deadlocks may also involve different resource types. For example, 
consider a system with one printer and one DVD drive. Suppose that process Pi is 
holding the DVD and process Pj is holding the printer. If Pi requests the printer 
and Pj requests the DVD drive, a deadlock occurs. 

Developers of multithreaded applications must remain aware of the 
possibility of deadlocks. The locking tools presented in Chapter 5 are designed to 
avoid race conditions. However, in using these tools, developers must pay careful 



attention to how locks are acquired and released. Otherwise, deadlock can occur, 
as illustrated in the dining-philosophers problem. 

 Deadlock Characterization 
In a deadlock, processes never finish executing, and system resources are 

tied up, preventing other jobs from starting. Before we discuss the various 
methods for dealing with the deadlock problem, we look more closely at features 
that characterize deadlocks. 

 Necessary Conditions 
A deadlock situation can arise if the following four conditions hold 
simultaneously in a system: 

Mutual exclusion. At least one resource must be held in a nonsharable 
mode; that is, only one process at a time can use the resource. If another 
process requests that resource, the requesting process must be delayed 
until the resource has been released. 
Hold and wait. A process must be holding at least one resource and 
waiting to acquire additional resources that are currently being held by 
other processes. 
No preemption. Resources cannot be preempted; that is, a resource can 
be released only voluntarily by the process holding it, after that process 
has completed its task. 
Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist 
such that P0 is waiting for a resource held by P1, P1 is waiting for a 
resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn 
is waiting for a resource held by P0. 

We emphasize that all four conditions must hold for a deadlock to occur. The 
circular-wait condition implies the hold-and-wait condition, so the four 
conditions are not completely independent. 

 Resource-Allocation Graph 
Deadlocks can be described more precisely in terms of a directed graph 

called a system resource-allocation graph. This graph consists of a set of 
vertices V and a set of edges E. The set of vertices V is partitioned into two 
different types of nodes: P = {P1, P2, ..., Pn}, the set consisting of all the active 
processes in the system, and R = {R1, R2, ..., Rm}, the set consisting of all resource 
types in the system. 

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ; 
it signifies that process Pi has requested an instance of resource type Rj and is 
currently waiting for that resource. A directed edge from resource type Rj to 
process Pi is denoted by Rj → Pi ; it signifies that an instance of resource type Rj 
has been allocated to process Pi . A directed edge Pi → R j is called a request 
edge; a directed edge Rj → Pi is called an assignment edge. 

Pictorially, we represent each process Pi as a circle and each resource type 
j as a rectangle. Since resource type Rj may have more than one instance, we 
represent each such instance as a dot within the rectangle. Note that a request 
edge points to only the rectangle Rj , whereas an assignment edge must also 
designate one of the dots in the rectangle. 



P1 P2 P3 

R2 

When process Pi requests an instance of resource type Rj , a request edge 
is inserted in the resource-allocation graph. When this request can be fulfilled, the 
request edge is instantaneously transformed to an assignment edge. When the 
process no longer needs access to the resource, it releases the resource. As a 
result, the assignment edge is deleted. 

The resource-allocation graph shown in Figure 5.1 depicts the following 
situation. 

The sets P, R, and E: 
P = {P1, P2, P3} 

 

R1 R3 

R4 
Figure 5.1 Resource-allocation graph. 

R = {R1, R2, R3, R4} 
◦ E = {P1 → R1, P2 → R3, R1 →  P2, R2 → P2, R2 →  P1, R3 → P3} 

Resource instances: 
One instance of resource type R1 
Two instances of resource type R2 
One instance of resource type R3 
Three instances of resource type R4 

Process states: 
Process P1 is holding an instance of resource type R2 and is waiting 
for an instance of resource type R1. 
Process P2 is holding an instance of R1 and an instance of R2 and is 
waiting for an instance of R3. 
Process P3 is holding an instance of R3. 

 
Given the definition of a resource-allocation graph, it can be shown that, if 

the graph contains no cycles, then no process in the system is deadlocked. If the 
graph does contain a cycle, then a deadlock may exist. 

If each resource type has exactly one instance, then a cycle implies that a 
deadlock has occurred. If the cycle involves only a set of resource types, each of 
which has only a single instance, then a deadlock has occurred. Each process 
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a 
necessary and a sufficient condition for the existence of deadlock. 
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R2 

If each resource type has several instances, then a cycle does not 
necessarily imply that a deadlock has occurred. In this case, a cycle in the graph is 
a necessary but not a sufficient condition for the existence of deadlock. 

To illustrate this concept, we return to the resource-allocation graph 
depicted in Figure 5.1. Suppose that process P3 requests an instance of resource 
type R2. Since no resource instance is currently available, we add a request edge 
P3 → R2 to the graph (Figure 5.2). At this point, two minimal cycles exist in the 
system: 

 

R1 R3 

R4 
 

Figure 5.2 Resource-allocation graph with a deadlock. 
 

P1 → R1 → P2 → R3 → P3 → R2 → P1 
P2 → R3 → P3 → R2 → P2 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource 
R3, which is held by process P3. Process P3 is waiting for either process P1 or 
process P2 to release resource R2. In addition, process P1 is waiting for process 
P2 to release resource R1. 

Now consider the resource-allocation graph in Figure 7.3. In this 
example, we also have a cycle: 



R1 
P2 

P3 
P1 

R2 P4 

P1 →  R1 → P3 → R2 →  P1 
 
 

 

Figure 5.3 Resource-allocation graph with a cycle but no deadlock. 
 

However, there is no deadlock. Observe that process P4 may release its 
instance of resource type R2. That resource can then be allocated to P3 , breaking 
the cycle. 

In summary, if a resource-allocation graph does not have a cycle, then the 
system is not in a deadlocked state. If there is a cycle, then the system may or may 
not be in a deadlocked state. This observation is important when we deal with the 
deadlock problem. 
 Methods for Handling Deadlocks 
Generally speaking, we can deal with the deadlock problem in one of three ways: 

• We can use a protocol to prevent or avoid deadlocks, ensuring that the 
system will never enter a deadlocked state. 

• We can allow the system to enter a deadlocked state, detect it, and recover. 
• We can ignore the problem altogether and pretend that deadlocks never 

occur in the system. 
 

The third solution is the one used by most operating systems, including Linux and 
Windows. It is then up to the application developer to write programs that handle 
deadlocks. 

To ensure that deadlocks never occur, the system can use either a 
deadlock-prevention or a deadlock-avoidance scheme. Deadlock prevention 
provides a set of methods to ensure that at least one of the necessary conditions 
cannot hold. These methods prevent deadlocks by constraining how requests for 
resources can be made. 

Deadlock avoidance requires that the operating system be given 
additional information in advance concerning which resources a process will 
request and use during its lifetime. With this additional knowledge, the operating 
system can decide for each request whether or not the process should wait. To 
decide whether the current request can be satisfied or must be delayed, the system 



must consider the resources currently available, the resources currently allocated 
to each process, and the future requests and releases of each process. 

If a system does not employ either a deadlock-prevention or a deadlock- 
avoidance algorithm, then a deadlock situation may arise. In this environment, the 
system can provide an algorithm that examines the state of the system to 
determine whether a deadlock has occurred and an algorithm to recover from the 
deadlock (if a deadlock has indeed occurred). 

In the absence of algorithms to detect and recover from deadlocks, we may 
arrive at a situation in which the system is in a deadlocked state yet has no way of 
recognizing what has happened. In this case, the undetected deadlock will cause 
the system‘s performance to deteriorate, because resources are being held by 
processes that cannot run and because more and more processes, as they make 
requests for resources, will enter a deadlocked state. Eventually, the system will 
stop functioning and will need to be restarted manually. 

Although this method may not seem to be a viable approach to the 
deadlock problem, it is nevertheless used in most operating systems, as mentioned 
earlier. Expense is one important consideration. Ignoring the possibility of 
deadlocks is cheaper than the other approaches. Since in many systems, deadlocks 
occur infrequently (say, once per year), the extra expense of the other methods 
may not seem worthwhile. In addition, methods used to recover from other 
conditions may be put to use to recover from deadlock. In some circumstances, a 
system is in a frozen state but not in a deadlocked state. We see this situation, for 
example, with a real-time process running at the highest priority (or any process 
running on a nonpreemptive scheduler) and never returning control to the 
operating system. The system must have manual recovery methods for such 
conditions and may simply use those techniques for deadlock recovery. 
 Deadlock Prevention 
As we noted in Section 5.2.1, for a deadlock to occur, each of the four necessary 
conditions must hold. By ensuring that at least one of these conditions cannot 
hold, we can prevent the occurrence of a deadlock. We elaborate on this approach 
by examining each of the four necessary conditions separately. 
 Mutual Exclusion 

The mutual exclusion condition must hold. That is, at least one resource 
must be nonsharable. Sharable resources, in contrast, do not require mutually 
exclusive access and thus cannot be involved in a deadlock. Read-only files are a 
good example of a sharable resource. If several processes attempt to open a read- 
only file at the same time, they can be granted simultaneous access to the file. A 
process never needs to wait for a sharable resource. In general, however, we 
cannot prevent deadlocks by denying the mutual-exclusion condition, because 
some resources are intrinsically nonsharable. For example, a mutex lock cannot be 
simultaneously shared by several processes. 
 Hold and Wait 

To ensure that the hold-and-wait condition never occurs in the system, we 
must guarantee that, whenever a process requests a resource, it does not hold any 
other resources. One protocol that we can use requires each process to request and 
be allocated all its resources before it begins execution. We can implement this 



provision by requiring that system calls requesting resources for a process precede 
all other system calls. 

An alternative protocol allows a process to request resources only when it 
has none. A process may request some resources and use them. Before it can 
request any additional resources, it must release all the resources that it is 
currently allocated. 

To illustrate the difference between these two protocols, we consider a 
process that copies data from a DVD drive to a file on disk, sorts the file, and then 
prints the results to a printer. If all resources must be requested at the beginning of 
the process, then the process must initially request the DVD drive, disk file, and 
printer. It will hold the printer for its entire execution, even though it needs the 
printer only at the end. 

The second method allows the process to request initially only the DVD 
drive and disk file. It copies from the DVD drive to the disk and then releases both 
the DVD drive and the disk file. The process must then request the disk file and 
the printer. After copying the disk file to the printer, it releases these two 
resources and terminates. 

Both these protocols have two main disadvantages. First, resource 
utilization may be low, since resources may be allocated but unused for a long 
period. In the example given, for instance, we can release the DVD drive and disk 
file, and then request the disk file and printer, only if we can be sure that our data 
will remain on the disk file. Otherwise, we must request all resources at the 
beginning for both protocols. 

Second, starvation is possible. A process that needs several popular 
resources may have to wait indefinitely, because at least one of the resources that 
it needs is always allocated to some other process. 
 No Preemption 

The third necessary condition for deadlocks is that there be no preemption 
of resources that have already been allocated. To ensure that this condition does 
not hold, we can use the following protocol. If a process is holding some 
resources and requests another resource that cannot be immediately allocated to it 
(that is, the process must wait), then all resources the process is currently holding 
are preempted. In other words, these resources are implicitly released. The 
preempted resources are added to the list of resources for which the process is 
waiting. The process will be restarted only when it can regain its old resources, as 
well as the new ones that it is requesting. 

Alternatively, if a process requests some resources, we first check whether 
they are available. If they are, we allocate them. If they are not, we check whether 
they are allocated to some other process that is waiting for additional resources. If 
so, we preempt the desired resources from the waiting process and allocate them 
to the requesting process. If the resources are neither available nor held by a 
waiting process, the requesting process must wait. While it is waiting, some of its 
resources may be preempted, but only if another process requests them. A process 
can be restarted only when it is allocated the new resources it is requesting and 
recovers any resources that were preempted while it was waiting. 



This protocol is often applied to resources whose state can be easily saved 
and restored later, such as CPU registers and memory space. It cannot generally 
be applied to such resources as mutex locks and semaphores. 
 Circular Wait 
The fourth and final condition for deadlocks is the circular-wait condition. One 
way to ensure that this condition never holds is to impose a total ordering of all 
resource types and to require that each process requests resources in an increasing 
order of enumeration. 

To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We 
assign to each resource type a unique integer number, which allows us to compare 
two resources and to determine whether one precedes another in our ordering. 
Formally, we define a one-to-one function F: R → N, where N is the set of natural 
numbers. For example, if the set of resource types R includes tape drives, disk 
drives, and printers, then the function F might be defined as follows: 

 
F (tape drive) = 1 
F (disk drive) = 5 
F (printer) = 12 

 
We can now consider the following protocol to prevent deadlocks: Each 

process can request resources only in an increasing order of enumeration. That is, 
a process can initially request any number of instances of a resource type — say, 
Ri . After that, the process can request instances of resource type Rj if and only if 
F(Rj ) > F(Ri ). For example, using the function defined previously, a process that 
wants to use the tape drive and printer at the same time must first request the tape 
drive and then request the printer. Alternatively, we can require that a process 
requesting an instance of resource type Rj must have released any resources Ri 
such that F(Ri ) ≥ F(Rj ). Note also that if several instances of the same resource 
type are needed, a single request for all of them must be issued. 

If these two protocols are used, then the circular-wait condition cannot 
hold. We can demonstrate this fact by assuming that a circular wait exists (proof 
by contradiction). Let the set of processes involved in the circular wait be {P0, P1, 
..., Pn}, where Pi is waiting for a resource Ri , which is held by process Pi +1. 
(Modulo arithmetic is used on the indexes, so that Pn is waiting for a resource Rn 
held by P0.) Then, since process Pi +1 is holding resource Ri while requesting 
resource Ri +1, we must have F(Ri ) < F(Ri +1) for all i. But this condition means 
that F(R0) < F(R1) < ... < F(Rn) < F (R0). By transitivity, F(R0) < F(R0), which is 
impossible. Therefore, there can be no circular wait. 

We can accomplish this scheme in an application program by developing 
an ordering among all synchronization objects in the system. All requests for 
synchronization objects must be made in increasing order. For example, if the 
lock ordering in the Pthread program shown in Figure 5.4 was 

F (first mutex) = 1 
F (second mutex) = 5 

then thread two could not request the locks out of order. 



Keep in mind that developing an ordering, or hierarchy, does not in itself 
prevent deadlock. It is up to application developers to write programs that follow 
the ordering. Also note that the function F should be defined according to the 
normal order of usage of the resources in a system. For example, because the tape 
drive is usually needed before the printer, it would be reasonable to define F(tape 
drive) < F(printer). 

 

/* thread one runs in this function */ void 
*do work one(void *param) 
{ 

pthread mutex lock(&first mutex); 
pthread mutex lock(&second mutex); 
/** 
Do some 
work */ 

pthread mutex unlock(&second 
mutex); pthread mutex unlock(&first 
mutex); 
pthread exit(0); 

} 
/* thread two runs in this function */ void 
*do work two(void *param) 
{ 

pthread mutex lock(&second mutex); 
pthread mutex lock(&first mutex); 
/** 
Do some 
work */ 

pthread mutex unlock(&first mutex); 
pthread mutex unlock(&second 
mutex); 
pthread exit(0); 

} 

Figure 5.4 Deadlock example. 



Although ensuring that resources are acquired in the proper order is the 
responsibility of application developers, certain software can be used to verify 
that locks are acquired in the proper order and to give appropriate warnings when 
locks are acquired out of order and deadlock is possible. One lock-order verifier, 
which works on BSD versions of UNIX such as FreeBSD, is known as witness. It 
works by dynamically maintaining the relationship of lock orders in a system. 
Let‘s use the program shown in Figure 5.4 as an example. Assume that thread one 
is the first to acquire the locks and does so in the order (1) first mutex, (2) second 
mutex. Witness records the relationship that first mutex must be acquired before 
second mutex. If thread two later acquires the locks out of order, witness 
generates a warning message on the system console. 

It is also important to note that imposing a lock ordering does not 
guarantee deadlock prevention if locks can be acquired dynamically. For 
example, assume we have a function that transfers funds between two accounts. 
To prevent a race condition, each account has an associated mutex lock that is 
obtained from a get lock() function such as shown in Figure 5.5: 

void transaction(Account from, Account to, double amount) 
{ 

mutex lock1, lock2; 
lock1 = get lock(from); 
lock2 = get lock(to); 

acquire(lock1); 
acquire(lock2); 

withdraw(from, amount); 
deposit(to, amount); 

release(lock2); 
release(lock1); 

} 

Figure 5.5 Deadlock example with lock ordering. 
 Deadlock Avoidance 

Deadlock-prevention algorithms, as discussed in Section 5.4, prevent 
deadlocks by limiting how requests can be made. The limits ensure that at least 
one of the necessary conditions for deadlock cannot occur. Possible side effects 
of preventing deadlocks by this method, however, are low device utilization and 
reduced system throughput. 

An alternative method for avoiding deadlocks is to require additional 
information about how resources are to be requested. For example, in a system 
with one tape drive and one printer, the system might need to know that process P 
will request first the tape drive and then the printer before releasing both 
resources, whereas process Q will request first the printer and then the tape drive. 
With this knowledge of the complete sequence of requests and releases for each 
process, the system can decide for each request whether or not the process should 
wait in order to avoid a possible future deadlock. Each request requires that in 



making this decision the system consider the resources currently available, the 
resources currently allocated to each process, and the future requests and releases 
of each process. 

The various algorithms that use this approach differ in the amount and 
type of information required. The simplest and most useful model requires that 
each process declare the maximum number of resources of each type that it may 
need. Given this a priori information, it is possible to construct an algorithm that 
ensures that the system will never enter a deadlocked state. A deadlock-avoidance 
algorithm dynamically examines the resource-allocation state to ensure that a 
circular-wait condition can never exist. The resource-allocation state is defined 
by the number of available and allocated resources and the maximum demands of 
the processes. In the following sections, we explore two deadlock-avoidance 
algorithms. 
 Safe State 

A state is safe if the system can allocate resources to each process (up to 
its maximum) in some order and still avoid a deadlock. More formally, a system 
is in a safe state only if there exists a safe sequence. A sequence of processes < 
P1, P2, ..., Pn> is a safe sequence for the current allocation state if, for each Pi , 
the resource requests that Pi can still make can be satisfied by the currently 
available resources plus the resources held by all Pj , with j < i. In this situation, 
if the resources that Pi needs are not immediately available, then Pi can wait until 
all Pj have finished. When they have finished, Pi can obtain all of its needed 
resources, complete its designated task, return its allocated resources, and 
terminate. When Pi terminates, Pi +1 can obtain its needed resources, and so on. If 
no such sequence exists, then the system state is said to be unsafe. 

A safe state is not a deadlocked state. Conversely, a deadlocked state is an 
unsafe state. Not all unsafe states are deadlocks, however (Figure 5.6). An unsafe 
state may lead to a deadlock. As long as the state is safe, the operating system can 
avoid unsafe (and deadlocked) states. In an unsafe state, the operating system 
cannot prevent processes from requesting resources in such a way that a deadlock 
occurs. The behavior of the processes controls unsafe states. 

To illustrate, we consider a system with twelve magnetic tape drives and 
three processes: P0, P1, and P2. Process P0 requires ten tape drives, process P1 
may need as many as four tape drives, and process P2 may need up to nine tape 
drives. Suppose that, at time t0, process P0 is holding five tape drives, process P1 
is holding two tape drives, and process P2 is holding two tape drives. (Thus, there 
uarnesathferee free tape drives.) 

 

deadlock 
 

safe 
 
 
 

Figure 5.6 Safe, unsafe, and deadlocked state spaces. 



 Maximum Needs  Current Needs 
P0 10 5 
P1 4 2 
P2 9 2 

 

At time t0, the system is in a safe state. The sequence < P1, P0, P2> 
satisfies the safety condition. Process P1 can immediately be allocated all its 
tape drives and then return them (the system will then have five available tape 
drives); then process P0 can get all its tape drives and return them (the system 
will then have ten available tape drives); and finally process P2 can get all its 
tape drives and return them (the system will then have all twelve tape drives 
available). 

A system can go from a safe state to an unsafe state. Suppose that, at 
time t1, process P2 requests and is allocated one more tape drive. The system is 
no longer in a safe state. At this point, only process P1 can be allocated all its 
tape drives. When it returns them, the system will have only four available tape 
drives. Since process P0 is allocated five tape drives but has a maximum of ten, 
it may request five more tape drives. If it does so, it will have to wait, because 
they are unavailable. Similarly, process P2 may request six additional tape 
drives and have to wait, resulting in a deadlock. Our mistake was in granting the 
request from process P2 for one more tape drive. If we had made P2 wait until 
either of the other processes had finished and released its resources, then we 
could have avoided the deadlock. 

Given the concept of a safe state, we can define avoidance algorithms 
that ensure that the system will never deadlock. The idea is simply to ensure that 
the system will always remain in a safe state. Initially, the system is in a safe 
state. Whenever a process requests a resource that is currently available, the 
system must decide whether the resource can be allocated immediately or 
whether the process must wait. The request is granted only if the allocation 
leaves the system in a safe state. 

In this scheme, if a process requests a resource that is currently 
available, it may still have to wait. Thus, resource utilization may be lower than 
it would otherwise be. 
 Resource-Allocation-Graph Algorithm 

If we have a resource-allocation system with only one instance of each 
resource type, we can use a variant of the resource-allocation graph defined in 
Section 5.2.2 for deadlock avoidance. In addition to the request and assignment 
edges already described, we introduce a new type of edge, called a claim edge. 
A claim edge Pi → Rj indicates that process Pi may request resource Rj at some 
time in the future. This edge resembles a request edge in direction but is 
represented in the graph by a dashed line. When process Pi requests resource Rj 
, the claim edge Pi → Rj is converted to a request edge. Similarly, when a 
resource Rj is released by Pi , the assignment edge Rj → Pi is reconverted to a 
claim edge Pi → Rj . 

Note that the resources must be claimed a priori in the system. That is, 
before process Pi starts executing, all its claim edges must already appear in the 
resource-allocation graph. We can relax this condition by allowing a claim edge 
Pi → Rj to be added to the graph only if all the edges associated with process Pi 
are claim edges. 
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Figure 5.7 Resource-allocation graph for deadlock avoidance. 
 

Now suppose that process Pi requests resource Rj . The request can be 
granted only if converting the request edge Pi → Rj to an assignment edge Rj → Pi 
does not result in the formation of a cycle in the resource-allocation graph. We 
check for safety by using a cycle-detection algorithm. An algorithm for detecting 
a cycle in this graph requires an order of n2 operations, where n is the number of 
processes in the system. 

If no cycle exists, then the allocation of the resource will leave the system 
in a safe state. If a cycle is found, then the allocation will put the system in an 
unsafe state. In that case, process Pi will have to wait for its requests to be 
satisfied. 

To illustrate this algorithm, we consider the resource-allocation graph of 
Figure 5.7. Suppose that P2 requests R2. Although R2 is currently free, we cannot 
allocate it to P2, since this action will create a cycle in the graph (Figure 5.8). A 
cycle, as mentioned, indicates that the system is in an unsafe state. If P1 requests 
R2, and P2 requests R1, then a deadlock will occur. 

 Banker’s Algorithm 
The resource-allocation-graph algorithm is not applicable to a resource- 

allocation system with multiple instances of each resource type. The deadlock- 
avoidance algorithm that we describe next is applicable to such a system but is 
less efficient than the resource-allocation graph scheme. This algorithm is 
commonly known as the banker’s algorithm. The name was chosen because the 
algorithm could be used in a banking system to ensure that the bank never 
allocated its available cash in such a way that it could no longer satisfy the needs 
of all its customers. 

When a new process enters the system, it must declare the maximum 
number of instances of each resource type that it may need. This number may not 
exceed the total number of resources in the system. When a user requests a set of 
resources, the system must determine whether the allocation of these resources 
will leave the system in a safe state. If it will, the resources are allocated; 
otherwise, the process must wait until some other process releases enough 
resources. 
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Figure 5.8 An unsafe state in a resource-allocation graph. 

 
Several data structures must be maintained to implement the banker‘s 

algorithm. These data structures encode the state of the resource-allocation 
system. We need the following data structures, where n is the number of 
processes in the system and m is the number of resource types: 

Available. A vector of length m indicates the number of available 
resources of each type. If Available[j] equals k, then k instances of 
resource type Rj are available. 
Max. An n × m matrix defines the maximum demand of each process. If 
Max[i][j] equals k, then process Pi may request at most k instances of 
resource type Rj . 
Allocation. An n × m matrix defines the number of resources of each 
type currently allocated to each process. If Allocation[i][j] equals k, then 
process Pi is currently allocated k instances of resource type Rj . 
Need. An n × m matrix indicates the remaining resource need of each 
process. If Need[i][j] equals k, then process Pi may need k more 
instances of resource type Rj to complete its task. Note that Need[i][j] 
equals Max[i][j] – Allocation[i][j]. 

 
These data structures vary over time in both size and value. 

To simplify the presentation of the banker‘s algorithm, we next 
establish some notation. Let X and Y be vectors of length n. We say that X ≤ Y if 
and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = 
(0,3,2,1), then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X. 

We can treat each row in the matrices Allocation and Need as vectors 
and refer to them as Allocationi and Needi . The vector Allocationi specifies the 
resources currently allocated to process Pi ; the vector Needi specifies the 
additional resources that process Pi may still request to complete its task. 

 Safety Algorithm 
We can now present the algorithm for finding out whether or not a system is in 
a safe state. This algorithm can be described as follows: 

Let Work and Finish be vectors of length m and n, respectively. 
Initialize Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1. 



Find an index i such that both 
Finish[i] == false 
Needi ≤ Work 

If no such i exists, go to step 4. 
Work = Work + 
Allocationi Finish[i] = 
true 
Go to step 2. 
If Finish[i] == true for all i, then the system is in a safe state. 

This algorithm may require an order of m × n2 operations to determine whether 
a state is safe. 

 Resource-Request Algorithm 
Next, we describe the algorithm for determining whether requests can be safely 
granted. 

Let Requesti be the request vector for process Pi . If Requesti [ j ] == k, 
then process Pi wants k instances of resource type Rj . When a request for 
resources is made by process Pi , the following actions are taken: 

If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition, 
since the process has exceeded its maximum claim. 
If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since 
the resources are not available. 
Have the system pretend to have allocated the requested resources to 
process Pi by modifying the state as follows: 

 
Available = Available – Requesti ; 

Allocationi = Allocationi + Requesti ; 
Needi = Needi – Requesti ; 

 
If the resulting resource-allocation state is safe, the transaction is com-pleted, 
and process Pi is allocated its resources. However, if the new state is unsafe, 
then Pi must wait for Requesti , and the old resource-allocation state is restored. 

 
 An Illustrative Example 

To illustrate the use of the banker‘s algorithm, consider a system with five 
processes P0 through P4 and three resource types A, B, and C. Resource type A 
has ten instances, resource type B has five instances, and resource type C has 
seven instances. Suppose that, at time T0, the following snapshot of the system 
has been taken: 



 

 Allocation  Max   Available 
 A B C A B C A B C 
P0 0 1 0 7 5 3 3 3 2 
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2  
P3 2 1 1 2 2 2  

P4 0 0 2 4 3 3  
 

The content of the matrix Need is defined to be Max − Allocation and is as 
follows: 

 
 

  
Need 

 A B 
C 

P0 7 4 3 
P1 1 2 2 
P2 6 0 0 
P3 0 1 1 
P4 4 3 1 

 

We claim that the system is currently in a safe state. Indeed, the sequence P1, 
P3, P4, P2, P0> satisfies the safety criteria. Suppose now that process P1 requests 
one additional instance of resource type A and two instances of resource type C, 
so Req uest1 = (1,0,2). To decide whether this request can be immediately 
granted, we first check that Req uest1 ≤ Available — that is, that (1,0,2) ≤ 
(3,3,2), which is true. We then pretend that this request has been fulfilled, and 
we arrive at the following new state: 

 
 Allocation   Need Available 
  

A B C 
A B 
C 

 
A B C 

P0 0 1 0 7 4 3 2 3 0 
P1 3 0 2 0 2 0  
P2 3 0 2 6 0 0  
P3 2 1 1 0 1 1  
P4 0 0 2 4 3 1  

We must determine whether this new system state is safe. To do so, we 
execute our safety algorithm and find that the sequence < P1, P3, P4, P0, P2> 
satisfies the safety requirement. Hence, we can immediately grant the request of 
process P1. 
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You should be able to see, however, that when the system is in this state, 
a request for (3,3,0) by P4 cannot be granted, since the resources are not 
available. Furthermore, a request for (0,2,0) by P0 cannot be granted, even 
though the resources are available, since the resulting state is unsafe. 

 Deadlock Detection 
If a system does not employ either a deadlock-prevention or a deadlock- 

avoidance algorithm, then a deadlock situation may occur. In this environment, 
the system may provide: 
An algorithm that examines the state of the system to determine whether a 
deadlock has occurred 
An algorithm to recover from the deadlock 
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Figure 5.9(a) Resource-allocation graph. (b) Corresponding wait-for graph. 

 
In the following discussion, we elaborate on these two requirements as they 
pertain to systems with only a single instance of each resource type, as well as 
to systems with several instances of each resource type. At this point, however, 
we note that a detection-and-recovery scheme requires overhead that includes 
not only the run-time costs of maintaining the necessary information and 
executing the detection algorithm but also the potential losses inherent in 
recovering from a deadlock. 
7.6.1 Single Instance of Each Resource Type 

If all resources have only a single instance, then we can define a 
deadlock-detection algorithm that uses a variant of the resource-allocation 
graph, called a wait-for graph. We obtain this graph from the resource- 
allocation graph by removing the resource nodes and collapsing the 
appropriate edges. 

More precisely, an edge from Pi to Pj in a wait-for graph implies that 
process Pi is waiting for process Pj to release a resource that Pi needs. An edge 
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Pi → Pj exists in a wait-for graph if and only if the corresponding resource- 
allocation graph contains two edges Pi → Rq and Rq → Pj for some resource 
Rq. In Figure 7.9, we present a resource-allocation graph and the corresponding 
wait-for graph. 

As before, a deadlock exists in the system if and only if the wait-for 
graph contains a cycle. To detect deadlocks, the system needs to maintain the 
wait-for graph and periodically invoke an algorithm that searches for a cycle 
in the graph. An algorithm to detect a cycle in a graph requires an order of n2 
operations, where n is the number of vertices in the graph. 

 
 Several Instances of a Resource Type 

The wait-for graph scheme is not applicable to a resource-allocation system 
with multiple instances of each resource type. We turn now to a deadlock- 
detection algorithm that is applicable to such a system. The algorithm employs 
several time-varying data structures that are similar to those used in the 
banker‘s algorithm (Section 5.5.3): 

 
Available. A vector of length m indicates the number of available 
resources of each type. 
Allocation. An n × m matrix defines the number of resources of each 
type currently allocated to each process. 
Request. An n × m matrix indicates the current request of each process. 
If Request[i][j] equals k, then process Pi is requesting k more instances 
of resource type Rj . 

 
The ≤ relation between two vectors is defined as in Section 7.5.3. To 

simplify notation, we again treat the rows in the matrices Allocation and 
Request as vectors; we refer to them as Allocationi and Requesti . The 
detection algorithm described here simply investigates every possible 
allocation sequence for the processes that remain to be completed. Compare 
this algorithm with the banker‘s algorithm of Section 5.5.3. 

 
Let Work and Finish be vectors of length m and n, respectively. Initialize 
Work = Available. For i = 0, 1, ..., n – 1, if Allocationi = 0, then Finish[i] = 
false. Otherwise, Finish[i] = true. 

 
Find an index i such that both 

Finish[i] == false 
Requesti ≤ Work 

If no such i exists, go to step 4. 
Work = Work + Allocationi 
Finish[i] = true 
Go to step 2. 



If Finish[i] == false for some i, 0 ≤ i < n, then the system is in a deadlocked 
state. Moreover, if Finish[i] == false, then process Pi is deadlocked. 
This algorithm requires an order of m × n2 operations to detect whether the 
system is in a deadlocked state. 

You may wonder why we reclaim the resources of process Pi (in step 3) 
as soon as we determine that Requesti ≤ Work (in step 2b). We know that Pi is 
currently not involved in a deadlock (since Requesti ≤ Work). Thus, we take an 
optimistic attitude and assume that Pi will require no more resources to complete 
its task; it will thus soon return all currently allocated resources to the system. If 
our assumption is incorrect, a deadlock may occur later. That deadlock will be 
detected the next time the deadlock-detection algorithm is invoked. 

To illustrate this algorithm, we consider a system with five processes P0 
through P4 and three resource types A, B, and C. Resource type A has seven 
instances, resource type B has two instances, and resource type C has six 
instances. Suppose that, at time T0, we have the following resource-allocation 
state: 

 
 Allocation Request  Available 
 A B C A B C A B C 
P0 0 1 0 0 0 0 0 0 0 
P1 2 0 0 2 0 2  
P2 3 0 3 0 0 0  
P3 2 1 1 1 0 0  
P4 0 0 2 0 0 2  

We claim that the system is not in a deadlocked state. Indeed, if we 
execute our algorithm, we will find that the sequence < P0, P2, P3, P1, P4> 
results in Finish[i] == true for all i. 

Suppose now that process P2 makes one additional request for an 
instance of type C. The Request matrix is modified as follows: 

 Request 
 A B C 

P0 0 0 0 
P1 2 0 2 
P2 0 0 1 
P3 1 0 0 
P4 0 0 2 

We claim that the system is now deadlocked. Although we can reclaim 
the resources held by process P0, the number of available resources is not 
sufficient to fulfill the requests of the other processes. Thus, a deadlock exists, 
consisting of processes P1, P2, P3, and P4. 



 Detection-Algorithm Usage 

When should we invoke the detection algorithm? The answer depends on two 
factors: 

 

How often is a deadlock likely to occur? 
How many processes will be affected by deadlock when it happens? 

 
If deadlocks occur frequently, then the detection algorithm should be invoked 
frequently. Resources allocated to deadlocked processes will be idle until the 
deadlock can be broken. In addition, the number of processes involved in the 
deadlock cycle may grow. 

Deadlocks occur only when some process makes a request that cannot 
be granted immediately. This request may be the final request that completes a 
chain of waiting processes. In the extreme, then, we can invoke the deadlock- 
detection algorithm every time a request for allocation cannot be granted 
immediately. In this case, we can identify not only the deadlocked set of 
processes but also the specific process that ―caused‖ the deadlock. (In reality, 
each of the deadlocked processes is a link in the cycle in the resource graph, so 
all of them, jointly, caused the deadlock.) If there are many different resource 
types, one request may create many cycles in the resource graph, each cycle 
completed  by  the  most  recent  request  and  ―caused‖  by  the  one  identifiable 
process. 

Of course, invoking the deadlock-detection algorithm for every 
resource request will incur considerable overhead in computation time. A less 
expensive alternative is simply to invoke the algorithm at defined intervals — 
for example, once per hour or whenever CPU utilization drops below 40 
percent. (A deadlock eventually cripples system throughput and causes CPU 
utilization to drop.) If the detection algorithm is invoked at arbitrary points in 
time, the resource graph may contain many cycles. In this case, we generally 
cannot tell which of the many deadlocked processes ―caused‖ the deadlock. 

 
 Recovery from Deadlock 
When a detection algorithm determines that a deadlock exists, several alter- 
natives are available. One possibility is to inform the operator that a deadlock 
has occurred and to let the operator deal with the deadlock manually. Another 
possibility is to let the system recover from the deadlock automatically. There 
are two options for breaking a deadlock. One is simply to abort one or more 
processes to break the circular wait. The other is to preempt some resources 
from one or more of the deadlocked processes. 

 
 Process Termination 

To eliminate deadlocks by aborting a process, we use one of two 
methods. In both methods, the system reclaims all resources allocated to the 
terminated processes. 
Abort all deadlocked processes. This method clearly will break the deadlock 
cycle, but at great expense. The deadlocked processes may have computed for 



a long time, and the results of these partial computations must be discarded 
and probably will have to be recomputed later. 
Abort one process at a time until the deadlock cycle is eliminated. This 
method incurs considerable overhead, since after each process is aborted, a 
deadlock-detection algorithm must be invoked to determine whether any 
processes are still deadlocked. 

Aborting a process may not be easy. If the process was in the midst of 
updating a file, terminating it will leave that file in an incorrect state. 
Similarly, if the process was in the midst of printing data on a printer, the 
system must reset the printer to a correct state before printing the next job. 

If the partial termination method is used, then we must determine 
which deadlocked process (or processes) should be terminated. This 
determination is a policy decision, similar to CPU-scheduling decisions. The 
question is basically an economic one; we should abort those processes whose 
termination will incur the minimum cost. Unfortunately, the term minimum 
cost is not a precise one. Many factors may affect which process is chosen, 
including: 

 
What the priority of the process is 

How long the process has computed and how much longer the 
process will compute before completing its designated task 
How many and what types of resources the process has used (for 
example, whether the resources are simple to preempt) 
How many more resources the process needs in order to complete 
How many processes will need to be terminated 
Whether the process is interactive or batch 

 
 Resource Preemption 

To eliminate deadlocks using resource preemption, we successively preempt 
some resources from processes and give these resources to other processes 
until the deadlock cycle is broken. 

If preemption is required to deal with deadlocks, then three issues need 
to be addressed: 

 
Selecting a victim. Which resources and which processes are to be 
preempted? As in process termination, we must determine the order of 
preemption to minimize cost. Cost factors may include such parameters as the 
number of resources a deadlocked process is holding and the amount of time 
the process has thus far consumed. 
Rollback. If we preempt a resource from a process, what should be done with 
that process? Clearly, it cannot continue with its normal execution; it is 
missing some needed resource. We must roll back the process to some safe 
state and restart it from that state. 



Since, in general, it is difficult to determine what a safe state is, the simplest 
solution is a total rollback: abort the process and then restart it. Although it is 
more effective to roll back the process only as far as necessary to break the 
deadlock, this method requires the system to keep more information about the 
state of all running processes. 
Starvation. How do we ensure that starvation will not occur? That is, how can 
we guarantee that resources will not always be preempted from the same 
process? 
In a system where victim selection is based primarily on cost factors, it may 
happen that the same process is always picked as a victim. As a result, this 
process never completes its designated task, a starvation situation any practical 
system must address. Clearly, we must ensure that a process can be picked as a 
victim only a (small) finite number of times. The most common solution is to 
include the number of rollbacks in the cost factor. 

 
  



  



File -System Interface 

For most users, the file system is the most visible aspect of an operating system. 
It provides the mechanism for on-line storage of and access to both data and 
programs of the operating system and all the users of the computer system. The 
file system consists of two distinct parts: a collection of files, each storing 
related data, and a directory structure, which organizes and provides information 
about all the files in the system. In this unit, we consider the various aspects of 
files and the major directory structures. We also discuss the semantics of 
sharing files among multiple processes, users, and computers. Finally, we 
discuss ways to handle file protection, necessary when we have multiple users 
and we want to control who may access files and how files may be accessed. 
 File Concept 

Computers can store information on various storage media, such as 
magnetic disks, magnetic tapes, and optical disks. So that the computer system 
will be convenient to use, the operating system provides a uniform logical view 
of stored information. The operating system abstracts from the physical 
properties of its storage devices to define a logical storage unit, the file. Files are 
mapped by the operating system onto physical devices. These storage devices 
are usually nonvolatile, so the contents are persistent between system reboots. 

A file is a named collection of related information that is recorded on 
secondary storage. From a user’s perspective, a file is the smallest allotment of 
logical secondary storage; that is, data cannot be written to secondary storage 
unless they are within a file. Commonly, files represent programs (both source 
and object forms) and data. Data files may be numeric, alphabetic, 
alphanumeric, or binary. Files may be free form, such as text files, or may be 
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records, 
the meaning of which is defined by the file’s creator and user. The concept of a 
file is thus extremely general. 

The information in a file is defined by its creator. Many different types 
of information may be stored in a file — source or executable programs, 
numeric or text data, photos, music, video, and so on. A file has a certain 
defined structure, which depends on its type. A text file is a sequence of 
characters organized into lines (and possibly pages). A source file is a sequence 
of functions, each of which is further organized as declarations followed by 
executable statements. An executable file is a series of code sections that the 
loader can bring into memory and execute. 
 File Attributes 

A file is named, for the convenience of its human users, and is referred 
to by its name. A name is usually a string of characters, such as example.c. 
Some systems differentiate between uppercase and lowercase characters in 
names, whereas other systems do not. When a file is named, it becomes 
independent of the process, the user, and even the system that created it. For 
instance, one user might create the file example.c, and another user might edit 



that file by specifying its name. The file’s owner might write the file to a USB 
disk, send it as an e-mail attachment, or copy it across a network, and it could 
still be called example.c on the destination system. 

A file’s attributes vary from one operating system to another but 
typically consist of these: 
Name. The symbolic file name is the only information kept in human-readable 
form. 
Identifier. This unique tag, usually a number, identifies the file within the file 
system; it is the non-human-readable name for the file. 
Type. This information is needed for systems that support different types of 
files. 
Location. This information is a pointer to a device and to the location of the file 
on that device. 
Size. The current size of the file (in bytes, words, or blocks) and possibly the 
maximum allowed size are included in this attribute. 
Protection. Access-control information determines who can do reading, 
writing, executing, and so on. 
Time, date, and user identification. This information may be kept for creation, 
last modification, and last use. These data can be useful for protection, security, 
and usage monitoring. 

 

 
Figure 4.1 A file info window on Mac OS X. 



Some newer file systems also support extended file attributes, including 
character encoding of the file and security features such as a file checksum. 
Figure 4.1 illustrates a file info window on Mac OS X, which displays a file’s 
attributes. 
The information about all files is kept in the directory structure, which also 
resides on secondary storage. Typically, a directory entry consists of the file’s 
name and its unique identifier. The identifier in turn locates the other file 
attributes. It may take more than a kilobyte to record this information for each 
file. In a system with many files, the size of the directory itself may be megabytes. 
Because directories, like files, must be nonvolatile, they must be stored on the 
device and brought into memory piecemeal, as needed. 
 File Operations 
A file is an abstract data type. To define a file properly, we need to consider the 
operations that can be performed on files. The operating system can provide 
system calls to create, write, read, reposition, delete, and truncate files. Let’s 
examine what the operating system must do to perform each of these six basic file 
operations. It should then be easy to see how other similar operations, such as 
renaming a file, can be implemented. 

 
Creating a file. Two steps are necessary to create a file. First, space in the file 
system must be found for the file. We discuss how to allocate space for the file 
in Chapter 12. Second, an entry for the new file must be made in the directory. 
Writing a file. To write a file, we make a system call specifying both the name 
of the file and the information to be written to the file. Given the name of the 
file, the system searches the directory to find the file’s location. The system 
must keep a write pointer to the location in the file where the next write is to 
take place. The write pointer must be updated whenever a write occurs. 
Reading a file. To read from a file, we use a system call that specifies the 
name of the file and where (in memory) the next block of the file should be put. 
Again, the directory is searched for the associated entry, and the system needs 
to keep a read pointer to the location in the file where the next read is to take 
place. Once the read has taken place, the read pointer is updated. Because a 
process is usually either reading from or writing to a file, the current operation 
location can be kept as a per-process current-file-position pointer. Both the 
read and write operations use this same pointer, saving space and reducing 
system complexity. 
Repositioning within a file. The directory is searched for the appropriate 
entry, and the current-file-position pointer is repositioned to a given value. 
Repositioning within a file need not involve any actual I/O. This file operation 
is also known as a file seek. 
Deleting a file. To delete a file, we search the directory for the named file. 
Having found the associated directory entry, we release all file space, so that it 
can be reused by other files, and erase the directory entry. 



Truncating a file. The user may want to erase the contents of a file but keep 
its attributes. Rather than forcing the user to delete the file and then recreate 
it, this function allows all attributes to remain unchanged — except for file 
length — but lets the file be reset to length zero and its file space released. 

These six basic operations comprise the minimal set of required 
file operations. Other common operations include appending new information to 
the end of an existing file and renaming an existing file. These primitive 
operations can then be combined to perform other file operations. For instance, 
we can create a copy of a file — or copy the file to another I/O device, such as a 
printer or a display — by creating a new file and then reading from the old and 
writing to the new. We also want to have operations that allow a user to get and 
set the various attributes of a file. For example, we may want to have operations 
that allow a user to determine the status of a file, such as the file’s length, and to 
set file attributes, such as the file’s owner. 

Most of the file operations mentioned involve searching the directory for 
the entry associated with the named file. To avoid this constant searching, many 
systems require that an open() system call be made before a file is first used. 
The operating system keeps a table, called the open-file table, containing 
information about all open files. When a file operation is requested, the file is 
specified via an index into this table, so no searching is required. When the file 
is no longer being actively used, it is closed by the process, and the operating 
system removes its entry from the open-file table. create() and delete() are 
system calls that work with closed rather than open files. 

Some systems implicitly open a file when the first reference to it is made. 
The file is automatically closed when the job or program that opened the file 
terminates. Most systems, however, require that the programmer open a file 
explicitly with the open() system call before that file can be used. The open() 
operation takes a file name and searches the directory, copying the directory 
entry into the open-file table. The open() call can also accept access-mode 
information — create, read-only, read – write, append-only, and so on. This 
mode is checked against the file’s permissions. If the request mode is allowed, 
the file is opened for the process. The open() system call typically returns a 
pointer to the entry in the open-file table. This pointer, not the actual file name, 
is used in all I/O operations, avoiding any further searching and simplifying the 
system-call interface. 

The implementation of the open() and close() operations is more 
complicated in an environment where several processes may open the file 
simultaneously. This may occur in a system where several different applications 
open the same file at the same time. Typically, the operating system uses two 
levels of internal tables: a per-process table and a system-wide table. The per- 
process table tracks all files that a process has open. Stored in this table is 
information regarding the process’s use of the file. For instance, the current file 
pointer for each file is found here. Access rights to the file and accounting 
information can also be included. 



Each entry in the per-process table in turn points to a system-wide open-file table. 
The system-wide table contains process-independent information, such as the 
location of the file on disk, access dates, and file size. Once a file has been opened 
by one process, the system-wide table includes an entry for the file. When another 
process executes an open() call, a new entry is simply added to the process’s 
open-file table pointing to the appropriate entry in the system-wide table. 
Typically, the open-file table also has an open count associated with each file to 
indicate how many processes have the file open. Each close() decreases this open 
count, and when the open count reaches zero, the file is no longer in use, and the 
file’s entry is removed from the open-file table. 

In summary, several pieces of information are associated with an open file. 
File pointer. On systems that do not include a file offset as part of the read() and 
write() system calls, the system must track the last read – write location as a 
current-file-position pointer. This pointer is unique to each process operating on 
the file and therefore must be kept separate from the on-disk file attributes. 
File-open count. As files are closed, the operating system must reuse its open-file 
table entries, or it could run out of space in the table. Multiple processes may have 
opened a file, and the system must wait for the last file to close before removing 
the open-file table entry. The file-open count tracks the number of opens and 
closes and reaches zero on the last close. The system can then remove the entry. 
Disk location of the file. Most file operations require the system to modify data 
within the file. The information needed to locate the file on disk is kept in 
memory so that the system does not have to read it from disk for each operation. 
Access rights. Each process opens a file in an access mode. This information is 
stored on the per-process table so the operating system can allow or deny 
subsequent I/O requests. 

Some operating systems provide facilities for locking an open file (or 
sections of a file). File locks allow one process to lock a file and prevent other 
processes from gaining access to it. File locks are useful for files that are shared 
by several processes — for example, a system log file that can be accessed and 
modified by a number of processes in the system. 

A shared lock is akin to a reader lock in that several processes can 
acquire the lock concurrently. An exclusive lock behaves like a writer lock; only 
one process at a time can acquire such a lock. It is important to note that not all 
operating systems provide both types of locks: some systems only provide 
exclusive file locking. 

Furthermore, operating systems may provide either mandatory or 
advisory file-locking mechanisms. If a lock is mandatory, then once a process 
acquires an exclusive lock, the operating system will prevent any other process 
from accessing the locked file. For example, assume a process acquires an 
exclusive lock on the file system.log. If we attempt to open system.log from 
another process — for example, a text editor — the operating system will prevent 
access until the exclusive lock is released. This occurs even if the text editor is not 



written explicitly to acquire the lock. Alternatively, if the lock is advisory, then 
the operating system will not prevent the text editor from acquiring access to 
system.log. Rather, the text editor must be written so that it manually acquires the 
lock before accessing the file. In other words, if the locking scheme is mandatory, 
the operating system ensures locking integrity. For advisory locking, it is up to 
software developers to ensure that locks are appropriately acquired and released. 
As a general rule, Windows operating systems adopt mandatory locking, and 
UNIX systems employ advisory locks. 

The use of file locks requires the same precautions as ordinary process 
synchronization. For example, programmers developing on systems with 
mandatory locking must be careful to hold exclusive file locks only while they are 
accessing the file. Otherwise, they will prevent other processes from accessing the 
file as well. Furthermore, some measures must be taken to ensure that two or more 
processes do not become involved in a deadlock while trying to acquire file locks. 
 File Types 
When we design a file system — indeed, an entire operating system — we always 
consider whether the operating system should recognize and support file types. If 
an operating system recognizes the type of a file, it can then operate on the file in 
reasonable ways. For example, a common mistake occurs when a user tries to 
output the binary-object form of a program. This attempt normally produces 
garbage; however, the attempt can succeed if the operating system has been told 
that the file is a binary-object program. 
A common technique for implementing file types is to include the type as part of 
the file name. The name is split into two parts — a name and an extension, usually 
separated by a period (Figure 4.2). In this way, the user and the operating system 
can tell from the name alone what the type of a file is. Most operating systems 
allow users to specify a file name as a sequence of characters followed by a period 
and terminated by an extension made up of additional characters. Examples 
include resume.docx, server.c, and ReaderThread.cpp. 

The system uses the extension to indicate the type of the file and the 
type of operations that can be done on that file. Only a file with a .com, .exe, or 
.sh extension can be executed, for instance. The .com and .exe files are two forms 
of binary executable files, whereas the .sh file is a shell script containing, in 
ASCII format, commands to the operating system. Application programs also use 
extensions to indicate file types in which they are interested. For example, Java 
compilers expect source files to have a .java extension, and the Microsoft Word 
word processor expects its files to end with a .doc or .docx extension. These 
extensions are not always required, so a user may specify a file without the 
extension (to save typing), and the application will look for a file with the given 
name and the extension it expects. Because these extensions are not supported by 
the  operating  system,  they  can  be  considered  ―hints‖  to  the  applications  that 
operate on them. 



 
file type 

usual 
extension 

 
function 

executable exe, com, bin ready-to-run machine- 
or none language program 

Object obj, o compiled, machine 
language, not linked 

 
source code 

c, cc, java, 
perl, 

 
source code in various 

asm languages 
 
Batch 

 
bat, sh 

commands 
command 

to the 

interpreter 
 
markup 

 
xml, html, tex 

textual 
documents 

 data, 

word 
processor 

 
xml, rtf, 

 
various word-processor 

docx formats 
Library lib, a, so, dll libraries of routines for 

programmers 
 
print or view 

 
gif, pdf, jpg 

ASCII or binary file in 
a 
format for printing or 
viewing 

 
archive 

 
rar, zip, tar 

related files grouped 
into 
one file, sometimes 
com- 
pressed, for archiving 
or storage 

 
multimedia 

mpeg, mov, 
mp3, 

 
binary file containing 

 
mp4, avi 

audio or 
information 

 A/V 

Figure 4.2 Common file types. 
Consider, too, the Mac OS X operating system. In this system, each file 

has a type, such as .app (for application). Each file also has a creator attribute 
containing the name of the program that created it. This attribute is set by the 
operating system during the create() call, so its use is enforced and supported by 
the system. For instance, a file produced by a word processor has the word 
processor’s name as its creator. When the user opens that file, by double-clicking 
the mouse on the icon representing the file, the word processor is invoked 
automatically and the file is loaded, ready to be edited. 

The UNIX system uses a crude magic number stored at the beginning 
of some files to indicate roughly the type of the file — executable program, shell 



script, PDF file, and so on. Not all files have magic numbers, so system features 
cannot be based solely on this information. UNIX does not record the name of the 
creating program, either. UNIX does allow file-name-extension hints, but these 
extensions are neither enforced nor depended on by the operating system; they are 
meant mostly to aid users in determining what type of contents the file contains. 
Extensions can be used or ignored by a given application, but that is up to the 
application’s programmer. 

 File Structure 
File types also can be used to indicate the internal structure of the file. As 
mentioned in Section 4.1.3, source and object files have structures that match the 
expectations of the programs that read them. Further, certain files must conform to 
a required structure that is understood by the operating system. For example, the 
operating system requires that an executable file have a specific structure so that it 
can determine where in memory to load the file and what the location of the first 
instruction is. Some operating systems extend this idea into a set of system- 
supported file structures, with sets of special operations for manipulating files 
with those structures. 

This point brings us to one of the disadvantages of having the operating 
system support multiple file structures: the resulting size of the operating system 
is cumbersome. If the operating system defines five different file structures, it 
needs to contain the code to support these file structures. In addition, it may be 
necessary to define every file as one of the file types supported by the operating 
system. When new applications require information structured in ways not 
supported by the operating system, severe problems may result. 

For example, assume that a system supports two types of files: text files 
(composed of ASCII characters separated by a carriage return and line feed) and 
executable binary files. Now, if we (as users) want to define an encrypted file to 
protect the contents from being read by unauthorized people, we may find neither 
file type to be appropriate. The encrypted file is not ASCII text lines but rather is 
(apparently) random bits. Although it may appear to be a binary file, it is not 
executable. As a result, we may have to circumvent or misuse the operating 
system’s file-type mechanism or abandon our encryption scheme. 

Some operating systems impose (and support) a minimal number of file 
structures. This approach has been adopted in UNIX, Windows, and others. UNIX 
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits is 
made by the operating system. This scheme provides maximum flexibility but 
little support. Each application program must include its own code to interpret an 
input file as to the appropriate structure. However, all operating systems must 
support at least one structure — that of an executable file — so that the system is 
able to load and run programs. 



 Internal File Structure 

Internally, locating an offset within a file can be complicated for the operating 
system. Disk systems typically have a well-defined block size determined by the 
size of a sector. All disk I/O is performed in units of one block (physical 
record), and all blocks are the same size. It is unlikely that the physical record 
size will exactly match the length of the desired logical record. Logical records 
may even vary in length. Packing a number of logical records into physical 
blocks is a common solution to this problem. 

For example, the UNIX operating system defines all files to be simply 
streams of bytes. Each byte is individually addressable by its offset from the 
beginning (or end) of the file. In this case, the logical record size is 1 byte. The 
file system automatically packs and unpacks bytes into physical disk blocks — 
say, 512 bytes per block — as necessary. 

The logical record size, physical block size, and packing technique 
deter-mine how many logical records are in each physical block. The packing 
can be done either by the user’s application program or by the operating system. 
In either case, the file may be considered a sequence of blocks. All the basic I/O 
functions operate in terms of blocks. The conversion from logical records to 
physical blocks is a relatively simple software problem. 

 
current position 

 

Beginning end 
  
  

 

 
 

Figure 4.4 Sequential-access file. 
 

Because disk space is always allocated in blocks, some portion of the last block 
of each file is generally wasted. If each block were 512 bytes, for example, then 
a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last 99 
bytes would be wasted. The waste incurred to keep everything in units of blocks 
(instead of bytes) is internal fragmentation. All file systems suffer from internal 
fragmentation; the larger the block size, the greater the internal fragmentation. 
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 Access Methods 
Files store information. When it is used, this information must be accessed and 
read into computer memory. The information in the file can be accessed in 
several ways. Some systems provide only one access method for files. while 
others support many access methods, and choosing the right one for a particular 
application is a major design problem. 

 
 Sequential Access 

The simplest access method is sequential access. Information in the file is 
processed in order, one record after the other. This mode of access is by far the 
most common; for example, editors and compilers usually access files in this 
fashion. 

Reads and writes make up the bulk of the operations on a file. A read 
operation — read next()— reads the next portion of the file and automatically 
advances a file pointer, which tracks the I/O location. Similarly, the write 
operation — write next()— appends to the end of the file and advances to the end 
of the newly written material (the new end of file). Such a file can be reset to the 
beginning, and on some systems, a program may be able to skip forward or 
backward n records for some integer n — perhaps only for n = 1. Sequential 
access, which is depicted in Figure 4.4, is based on a tape model of a file and 
works as well on sequential-access devices as it does on random-access ones. 

 
 Direct Access 

Another method is direct access (or relative access). Here, a file is made up of 
fixed-length logical records that allow programs to read and write records rapidly 
in no particular order. The direct-access method is based on a disk model of a file, 
since disks allow random access to any file block. For direct access, the file is 
viewed as a numbered sequence of blocks or records. Thus, we may read block 
14, then read block 53, and then write block 7. There are no restrictions on the 
order of reading or writing for a direct-access file. 

Direct-access files are of great use for immediate access to large amounts 
of information. Databases are often of this type. When a query concerning a 
particular subject arrives, we compute which block contains the answer and then 
read that block directly to provide the desired information. 

As a simple example, on an airline-reservation system, we might store all 
the information about a particular flight (for example, flight 713) in the block 
identified by the flight number. Thus, the number of available seats for flight 713 
is stored in block 713 of the reservation file. To store information about a larger 
set, such as people, we might compute a hash function on the people’s names or 
search a small in-memory index to determine a block to read and search. 

For the direct-access method, the file operations must be modified to 
include the block number as a parameter. Thus, we have read(n), where n is the 
block number, rather than read next(), and write(n) rather than write next(). An 
alternative approach is to retain read next() and write next(), as with sequential 



access, and to add an operation posi-tion file(n) where n is the block number. 
Then, to effect a read(n), we would position file(n) and then read next(). 

The block number provided by the user to the operating system is 
normally a relative block number. A relative block number is an index relative 
to the beginning of the file. Thus, the first relative block of the file is 0, the next is 
1, and so on, even though the absolute disk address may be 14703 for the first 
block and 3192 for the second. The use of relative block numbers allows the 
operating system to decide where the file should be placed and helps to prevent 
the user from accessing portions of the file system that may not be part of her file. 
Some systems start their relative block numbers at 0; others start at 1. 

How, then, does the system satisfy a request for record N in a file? 
Assuming we have a logical record length L, the request for record N is turned 
into an I/O request for L bytes starting at location L (N) within the file (assuming 
the first record is N = 0). Since logical records are of a fixed size, it is also easy to 
read, write, or delete a record. 

Not all operating systems support both sequential and direct access for 
files. Some systems allow only sequential file access; others allow only direct 
access. Some systems require that a file be defined as sequential or direct when it 
is created. Such a file can be accessed only in a manner consistent with its 
declaration. We can easily simulate sequential access on a direct-access file by 
simply keeping a variable cp that defines our current position, as shown in Figure 
4.5. Simulating a direct-access file on a sequential-access file, however, is 
extremely inefficient and clumsy. 
 Other Access Methods 
Other access methods can be built on top of a direct-access method. These 
methods generally involve the construction of an index for the file. The index, 
like an index in the back of a book, contains pointers to the various blocks. To 
find a record in the file, we first search the index and then use the pointer to 
access the file directly and to find the desired record. 

For example, a retail-price file might list the universal product codes 
(UPCs) for items, with the associated prices. Each record consists of a 10-digit 
UPC and a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per 
block, we can store 64 records per block. A file of 120,000 records would occupy 
about 2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can 
define an index consisting of the first UPC in each block. This index would have 
2,000 entries of 10 digits each, or 20,000 bytes, and thus could be kept in 
memory. To find the price of a particular item, we can make a binary search of 
the index. From this search, we learn exactly which block contains the desired 
record and access that block. This structure allows us to search a large file doing 
little I/O. 
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Figure 4.5 Simulation of sequential access on a direct-access file. 
 

With large files, the index file itself may become too large to be kept in 
memory. One solution is to create an index for the index file. The primary index 
file contains pointers to secondary index files, which point to the actual data 
items. 

For example, IBM’s indexed sequential-access method (ISAM) uses a 
small master index that points to disk blocks of a secondary index. The secondary 
index blocks point to the actual file blocks. The file is kept sorted on a defined 
key. To find a particular item, we first make a binary search of the master index, 
which provides the block number of the secondary index. This block is read in, 
and again a binary search is used to find the block containing the desired record. 
Finally, this block is searched sequentially. In this way, any record can be located 
from its key by at most two direct-access reads. Figure 4.6 shows a similar 
situation as implemented by VMS index and relative files. 

 Directory and Disk Structure 
Next, we consider how to store files. Certainly, no general-purpose computer 
stores just one file. There are typically thousands, millions, even billions of files 
within a computer. Files are stored on random-access storage devices, including 
hard disks, optical disks, and solid-state (memory-based) disks. 

A storage device can be used in its entirety for a file system. It can also be 
subdivided for finer-grained control. For example, a disk can be partitioned into 
quarters, and each quarter can hold a separate file system. Storage devices can 
also be collected together into RAID sets that provide protection from the failure 
of a single disk. Sometimes, disks are subdivided and also collected into RAID 
sets. 
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Figure 4.6 Example of index and relative files. 

Partitioning is useful for limiting the sizes of individual file systems, 
putting multiple file-system types on the same device, or leaving part of the 
device available for other uses, such as swap space or unformatted (raw) disk 
space. A file system can be created on each of these parts of the disk. Any 
entity containing a file system is generally known as a volume. The volume 
may be a subset of a device, a whole device, or multiple devices linked 
together into a RAID set. Each volume can be thought of as a virtual disk. 
Volumes can also store multiple operating systems, allowing a system to boot 
and run more than one operating system. 

Each volume that contains a file system must also contain information 
about the files in the system. This information is kept in entries in a device 
directory or volume table of contents. The device directory (more commonly 
known simply as the directory) records information — such as name, 
location, size, and type — for all files on that volume. Figure 4.7 shows a 
typical file-system organization. 
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Figure 4.7 A typical file-system organization. 
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Figure 4.8 Solaris file systems. 
 

 Storage Structure 
As we have just seen, a general-purpose computer system has multiple storage 
devices, and those devices can be sliced up into volumes that hold file systems. 
Computer systems may have zero or more file systems, and the file systems may 
be of varying types. For example, a typical Solaris system may have dozens of 
file systems of a dozen different types, as shown in the file system list in Figure 
4.8. 

Consider the types of file systems in the Solaris example mentioned above: 
tmpfs  —  a  ―temporary‖  file  system  that  is  created  in  volatile  main 
memory and has its contents erased if the system reboots or crashes 
objfs — a ―virtual‖ file system (essentially an interface to the kernel 
that looks like a file system) that gives debuggers access to kernel 
symbols 
ctfs — a virtual file system that maintains  ―contract‖ information to 
manage which processes start when the system boots and must 
continue to run during operation 
lofs  —  a  ―loop  back‖  file  system  that  allows  one  file  system  to  be 
accessed in place of another one 
procfs — a virtual file system that presents information on all 
processes as a file system 
ufs, zfs — general-purpose file systems 



The file systems of computers, then, can be extensive. Even within a file 
system, it is useful to segregate files into groups and manage and act on those 
groups. This organization involves the use of directories. In the remainder of this 
section, we explore the topic of directory structure. 
 Directory Overview 
The directory can be viewed as a symbol table that translates file names into 
their directory entries. If we take such a view, we see that the directory itself can 
be organized in many ways. The organization must allow us to insert entries, to 
delete entries, to search for a named entry, and to list all the entries in the 
directory. In this section, we examine several schemes for defining the logical 
structure of the directory system. 

When considering a particular directory structure, we need to keep in mind 
the operations that are to be performed on a directory: 

Search for a file. We need to be able to search a directory structure to find the 
entry for a particular file. Since files have symbolic names, and similar names 
may indicate a relationship among files, we may want to be able to find all files 
whose names match a particular pattern. 
Create a file. New files need to be created and added to the directory. 
Delete a file. When a file is no longer needed, we want to be able to remove it 
from the directory. 
List a directory. We need to be able to list the files in a directory and the 
contents of the directory entry for each file in the list. 
Rename a file. Because the name of a file represents its contents to its users, 
we must be able to change the name when the contents or use of the file 
changes. Renaming a file may also allow its position within the directory 
structure to be changed. 
Traverse the file system. We may wish to access every directory and every 
file within a directory structure. For reliability, it is a good idea to save the 
contents and structure of the entire file system at regular intervals. Often, we do 
this by copying all files to magnetic tape. This technique provides a backup 
copy in case of system failure. In addition, if a file is no longer in use, the file 
can be copied to tape and the disk space of that file released for reuse by 
another file. 

In the following sections, we describe the most common schemes for defining 
the logical structure of a directory. 

 
 Single-Level Directory 

The simplest directory structure is the single-level directory. All files are 
contained in the same directory, which is easy to support and understand (Figure 
4.9). 
A single-level directory has significant limitations, however, when the number 
of files increases or when the system has more than one user. Since all files are 
in the same directory, they must have unique names. If two users call their data 
file test.txt, then the unique-name rule is violated. For example, in one 
programming class, 23 students called the program for their second assignment 
prog2.c; another 11 called it assign2.c. Fortunately, most file systems support 



master file 
user 1 user 2 user 3 user 4 

directory 

file names of up to 255 characters, so it is relatively easy to select unique file 
names. 

 
 
 

 
files                                                  

Figure 4.9 Single-level directory. 
 

Even a single user on a single-level directory may find it difficult to remember 
the names of all the files as the number of files increases. It is not uncommon for 
a user to have hundreds of files on one computer system and an equal number of 
additional files on another system. Keeping track of so many files is a daunting 
task. 
 Two-Level Directory 

As we have seen, a single-level directory often leads to confusion of file names 
among different users. The standard solution is to create a separate directory for 
each user. 

In the two-level directory structure, each user has his own user file 
directory (UFD). The UFDs have similar structures, but each lists only the files 
of a single user. When a user job starts or a user logs in, the system’s master file 
directory (MFD) is searched. The MFD is indexed by user name or account 
number, and each entry points to the UFD for that user (Figure 4.10). 

When a user refers to a particular file, only his own UFD is searched. Thus, 
different users may have files with the same name, as long as all the file names 
within each UFD are unique. To create a file for a user, the operating system 
searches only that user’s UFD to ascertain whether another file of that name 
exists. To delete a file, the operating system confines its search to the local UFD; 
thus, it cannot accidentally delete another user’s file that has the same name. 
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Figure 11.10 Two-level directory structure 
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The user directories themselves must be created and deleted as 
necessary. A special system program is run with the appropriate user name and 
account information. The program creates a new UFD and adds an entry for it to 
the MFD. The execution of this program might be restricted to system 
administrators. The allocation of disk space for user directories can be handled 
with the techniques for files themselves. 

Although the two-level directory structure solves the name-collision 
problem, it still has disadvantages. This structure effectively isolates one user 
from another. Isolation is an advantage when the users are completely 
independent but is a disadvantage when the users want to cooperate on some 
task and to access one another’s files. Some systems simply do not allow local 
user files to be accessed by other users. 

If access is to be permitted, one user must have the ability to name a file 
in another user’s directory. To name a particular file uniquely in a two-level 
directory, we must give both the user name and the file name. A two-level 
directory can be thought of as a tree, or an inverted tree, of height 2. The root of 
the tree is the MFD. Its direct descendants are the UFDs. The descendants of the 
UFDs are the files themselves. The files are the leaves of the tree. Specifying a 
user name and a file name defines a path in the tree from the root (the MFD) to a 
leaf (the specified file). Thus, a user name and a file name define a path name. 
Every file in the system has a path name. To name a file uniquely, a user must 
know the path name of the file desired. 

For example, if user A wishes to access her own test file named test.txt, 
she can simply refer to test.txt. To access the file named test.txt of user B (with 
directory-entry name userb), however, she might have to refer to /userb/test.txt. 
Every system has its own syntax for naming files in directories other than the 
user’s own. 

Additional syntax is needed to specify the volume of a file. For 
instance, in Windows a volume is specified by a letter followed by a colon. 
Thus, file specification might be C:\userb\test. Some systems go even further 
and separate the volume, directory name, and file name parts of the 
specification. In VMS, for instance, the file login.com might be specified as: 
u:[sst.jdeck]login.com;1, where u is the name of the volume, sst is the name of 
the directory, jdeck is the name of the subdirectory, and 1 is the version number. 
Other systems — such as UNIX and Linux — simply treat the volume name as 
part of the directory name. The first name given is that of the volume, and the 
rest is the directory and file. For instance, /u/pbg/test might specify volume u, 
directory pbg, and file test. 

A special instance of this situation occurs with the system files. 
Programs provided as part of the system — loaders, assemblers, compilers, 
utility routines, libraries, and so on — are generally defined as files. When the 
appropriate commands are given to the operating system, these files are read by 
the loader and executed. Many command interpreters simply treat such a 
command as the name of a file to load and execute. In the directory system as we 
defined it above, this file name would be searched for in the current UFD. One 
solution would be to copy the system files into each UFD. However, copying all 



the system files would waste an enormous amount of space. (If the system files 
require 5 MB, then supporting 12 users would require 5 × 12 = 60 MB just for 
copies of the system files.) 

The standard solution is to complicate the search procedure slightly. A 
special user directory is defined to contain the system files (for example, user 0). 
Whenever a file name is given to be loaded, the operating system first searches 
the local UFD. If the file is found, it is used. If it is not found, the system 
automatically searches the special user directory that contains the system files. 
The sequence of directories searched when a file is named is called the search 
path. The search path can be extended to contain an unlimited list of directories 
to search when a command name is given. This method is the one most used in 
UNIX and Windows. Systems can also be designed so that each user has his own 
search path. 
 Tree-Structured Directories 
Once we have seen how to view a two-level directory as a two-level tree, the 
natural generalization is to extend the directory structure to a tree of arbitrary 
height (Figure 4.11). This generalization allows users to create their own 
subdirectories and to organize their files accordingly. A tree is the most common 
directory structure. The tree has a root directory, and every file in the system has 
a unique path name. 

A directory (or subdirectory) contains a set of files or subdirectories. A 
directory is simply another file, but it is treated in a special way. All directories 
have the same internal format. One bit in each directory entry defines the entry 
as a file (0) or as a subdirectory (1). Special system calls are used to create and 
delete directories. 

In normal use, each process has a current directory. The current 
directory should contain most of the files that are of current interest to the 
process. When reference is made to a file, the current directory is searched. If a 
file is needed that is not in the current directory, then the user usually must either 
specify a path name or change the current directory to be the directory holding 
that file. To change directories, a system call is provided that takes a directory 
name as a parameter and uses it to redefine the current directory. Thus, the user 
can change her current directory whenever she wants. From one change 
directory() system call to the next, all open() system calls search the current 
directory for the specified file. Note that the search path may or may not contain 
a special entry that stands for ―the current directory.‖ 
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Figure 4.11 Tree-structured directory structure. 
 

The initial current directory of a user’s login shell is designated when 
the user job starts or the user logs in. The operating system searches the 
accounting file (or some other predefined location) to find an entry for this user 
(for accounting purposes). In the accounting file is a pointer to (or the name of) 
the user’s initial directory. This pointer is copied to a local variable for this user 
that specifies the user’s initial current directory. From that shell, other processes 
can be spawned. The current directory of any subprocess is usually the current 
directory of the parent when it was spawned. 
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Path names can be of two types: absolute and relative. An absolute 
path name begins at the root and follows a path down to the specified file, 
giving the directory names on the path. A relative path name defines a path 
from the current directory. For example, in the tree-structured file system of 
Figure 4.11, if the current directory is root/spell/mail, then the relative path 
name prt/first refers to the same file as does the absolute path name 
root/spell/mail/prt/first. 

Allowing a user to define her own subdirectories permits her to 
impose a structure on her files. This structure might result in separate 
directories for files associated with different topics (for example, a 
subdirectory was created to hold the text of this book) or different forms of 
information (for example, the directory programs may contain source 
programs; the directory bin may store all the binaries). 

An interesting policy decision in a tree-structured directory concerns 
how to handle the deletion of a directory. If a directory is empty, its entry in 
the directory that contains it can simply be deleted. However, suppose the 
directory to be deleted is not empty but contains several files or subdirectories. 
One of two approaches can be taken. Some systems will not delete a directory 
unless it is empty. Thus, to delete a directory, the user must first delete all the 
files in that directory. If any subdirectories exist, this procedure must be 
applied recursively to them, so that they can be deleted also. This approach can 
result in a substantial amount of work. An alternative approach, such as that 
taken by the UNIX rm command, is to provide an option: when a request is 
made to delete a directory, all that directory’s files and subdirectories are also 
to be deleted. Either approach is fairly easy to implement; the choice is one of 
policy. The latter policy is more convenient, but it is also more dangerous, 
because an entire directory structure can be removed with one command. If 
that command is issued in error, a large number of files and directories will 
need to be restored (assuming a backup exists). 

With a tree-structured directory system, users can be allowed to 
access, in addition to their files, the files of other users. For example, user B 
can access a file of user A by specifying its path names. User B can specify 
either an absolute or a relative path name. Alternatively, user B can change her 
current directory to be user A’s directory and access the file by its file names. 

 
 Acyclic-Graph Directories 
Consider two programmers  who are working on a joint project.  The files 
associated with that project can be stored in a subdirectory, separating them 
from other projects and files of the two programmers. But since both 
programmers are equally responsible for the project, both want the 
subdirectory to be in their own directories. In this situation, the common 
subdirectory should be shared. A shared directory or file exists in the file 
system in two (or more) places at once. 

A tree structure prohibits the sharing of files or directories. An acyclic 
graph that is, a graph with no cycles — allows directories to share 
subdirectories and files (Figure 4.12). The same file or subdirectory may be in 



two different directories. The acyclic graph is a natural generalization of the 
tree-structured directory scheme. 

It is important to note that a shared file (or directory) is not the same as 
two copies of the file. With two copies, each programmer can view the copy 
rather than the original, but if one programmer changes the file, the changes 
will not appear in the other’s copy. With a shared file, only one actual file 
exists, so any changes made by one person are immediately visible to the 
other. Sharing is particularly important for subdirectories; a new file created by 
one person will automatically appear in all the shared subdirectories. 

When people are working as a team, all the files they want to share can 
be put into one directory. The UFD of each team member will contain this 
directory of shared files as a subdirectory. Even in the case of a single user, the 
user’s file organization may require that some file be placed in different 
subdirectories. For example, a program written for a particular project should 
be both in the directory of all programs and in the directory for that project. 

Shared files and subdirectories can be implemented in several ways. A 
common way, exemplified by many of the UNIX systems, is to create a new 
directory entry called a link. A link is effectively a pointer to another file or 
subdirectory. For example, a link may be implemented as an absolute or a 
relative path name. When a reference to a file is made, we search the directory. 
If the directory entry is marked as a link, then the name of the real file is 
included in the link information. We resolve the link by using that path name 
to locate the real file. Links are easily identified by their format in the directory 
entry (or by having a special type on systems that support types) and are 
effectively indirect pointers. The operating system ignores these links when 
traversing directory trees to preserve the acyclic structure of the system. 

Another common approach to implementing shared files is simply to 
duplicate all information about them in both sharing directories. Thus, both 
entries are identical and equal. Consider the difference between this approach 
and the creation of a link. The link is clearly different from the original 
directory entry; thus, the two are not equal. Duplicate directory entries, 
however, make the original and the copy indistinguishable. A major problem 
with duplicate directory entries is maintaining consistency when a file is 
modified. 

An acyclic-graph directory structure is more flexible than a simple tree 
structure, but it is also more complex. Several problems must be considered 
carefully. A file may now have multiple absolute path names. Consequently, 
distinct file names may refer to the same file. This situation is similar to the 
aliasing problem for programming languages. If we are trying to traverse the 
entire file system — to find a file, to accumulate statistics on all files, or to 
copy all files to backup storage — this problem becomes significant, since we 
do not want to traverse shared structures more than once. 
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Figure 4.12 Acyclic-graph directory structure. 
 

Another problem involves deletion. When can the space allocated to a shared file 
be deallocated and reused? One possibility is to remove the file whenever 
anyone deletes it, but this action may leave dangling pointers to the now- 
nonexistent file. Worse, if the remaining file pointers contain actual disk 
addresses, and the space is subsequently reused for other files, these dangling 
pointers may point into the middle of other files. 

In a system where sharing is implemented by symbolic links, this 
situation is somewhat easier to handle. The deletion of a link need not affect the 
original file; only the link is removed. If the file entry itself is deleted, the space 
for the file is deallocated, leaving the links dangling. We can search for these 
links and remove them as well, but unless a list of the associated links is kept 
with each file, this search can be expensive. Alternatively, we can leave the links 
until an attempt is made to use them. At that time, we can determine that the file 
of the name given by the link does not exist and can fail to resolve the link 
name; the access is treated just as with any other illegal file name. (In this case, 
the system designer should consider carefully what to do when a file is deleted 
and another file of the same name is created, before a symbolic link to the 
original file is used.) In the case of UNIX, symbolic links are left when a file is 
deleted, and it is up to the user to realize that the original file is gone or has been 
replaced. Microsoft Windows uses the same approach. 

Another approach to deletion is to preserve the file until all references 
to it are deleted. To implement this approach, we must have some mechanism 
for determining that the last reference to the file has been deleted. We could 
keep a list of all references to a file (directory entries or symbolic links). When a 
link or a copy of the directory entry is established, a new entry is added to the 
file-reference list. When a link or directory entry is deleted, we remove its entry 
on the list. The file is deleted when its file-reference list is empty. 



The trouble with this approach is the variable and potentially large size of the 
file-reference list. However, we really do not need to keep the entire list — we 
need to keep only a count of the number of references. Adding a new link or 
directory entry increments the reference count. Deleting a link or entry 
decrements the count. When the count is 0, the file can be deleted; there are no 
remaining references to it. The UNIX operating system uses this approach for 
nonsymbolic links (or hard links), keeping a reference count in the file 
information block. By effectively prohibiting multiple references to 
directories, we maintain an acyclic-graph structure. 

To avoid problems such as the ones just discussed, some systems 
simply do not allow shared directories or links. 

 
 General Graph Directory 

A serious problem with using an acyclic-graph structure is ensuring that there 
are no cycles. If we start with a two-level directory and allow users to create 
subdirectories, a tree-structured directory results. It should be fairly easy to see 
that simply adding new files and subdirectories to an existing tree-structured 
directory preserves the tree-structured nature. However, when we add links, 
the tree structure is destroyed, resulting in a simple graph structure (Figure 
4.13). 

The primary advantage of an acyclic graph is the relative simplicity of 
the algorithms to traverse the graph and to determine when there are no more 
references to a file. We want to avoid traversing shared sections of an acyclic 
graph twice, mainly for performance reasons. If we have just searched a major 
shared subdirectory for a particular file without finding it, we want to avoid 
searching that subdirectory again; the second search would be a waste of time. 

If cycles are allowed to exist in the directory, we likewise want to 
avoid searching any component twice, for reasons of correctness as well as 
performance. A poorly designed algorithm might result in an infinite loop 
continually searching through the cycle and never terminating. One solution is 
to limit arbitrarily the number of directories that will be accessed during a 
search. A similar problem exists when we are trying to determine when a file 
can be deleted. With acyclic-graph directory structures, a value of 0 in the 
reference count means that there are no more references to the file or directory, 
and the file can be deleted. However, when cycles exist, the reference count 
may not be 0 even when it is no longer possible to refer to a directory or file. 
This anomaly results from the possibility of self-referencing (or a cycle) in the 
directory structure. In this case, we generally need to use a garbage collection 
scheme to determine when the last reference has been deleted and the disk 
space can be reallocated. Garbage collection involves traversing the entire file 
system, marking everything that can be accessed. Then, a second pass collects 
everything that is not marked onto a list of free space. (A similar marking 
procedure can be used to ensure that a traversal or search will cover everything 
in the file system once and only once.) Garbage collection for a disk-based file 
system, however, is extremely time consuming and is thus seldom attempted. 
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Figure 4.13 General graph directory. 
 
 

Garbage collection is necessary only because of possible cycles in the graph. 
Thus, an acyclic-graph structure is much easier to work with. The difficulty is to 
avoid cycles as new links are added to the structure. How do we know when a 
new link will complete a cycle? There are algorithms to detect cycles in graphs; 
however, they are computationally expensive, especially when the graph is on 
disk storage. A simpler algorithm in the special case of directories and links is to 
bypass links during directory traversal. Cycles are avoided, and no extra 
overhead is incurred. 

 
 File-System Mounting 

Just as a file must be opened before it is used, a file system must be mounted 
before it can be available to processes on the system. More specifically, the 
directory structure may be built out of multiple volumes, which must be 
mounted to make them available within the file-system name space. 

The mount procedure is straightforward. The operating system is given 
the name of the device and the mount point — the location within the file 
structure where the file system is to be attached. Some operating systems require 
that a file system type be provided, while others inspect the structures of the 
device and determine the type of file system. Typically, a mount point is an 
empty directory. For instance, on a UNIX system, a file system containing a 
user’s home directories might be mounted as /home; then, to access the directory 
structure within that file system, we could precede the directory names with 
/home, as in /home/jane. Mounting that file system under /users would result in 
the path name /users/jane, which we could use to reach the same directory. 
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Next, the operating system verifies that the device contains a valid 
file system. It does so by asking the device driver to read the device directory 
and verifying that the directory has the expected format. Finally, the operating 
system notes in its directory structure that a file system is mounted at the 
specified mount point. This scheme enables the operating system to traverse its 
directory structure, switching among file systems, and even file systems of 
varying types, as appropriate. 
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Figure 4.14 File system. (a) Existing system. (b) Unmounted volume. 
 

To illustrate file mounting, consider the file system depicted in Figure 
4.14, where the triangles represent subtrees of directories that are of interest. 
Figure 4.14(a) shows an existing file system, while Figure 4.14(b) shows an 
unmounted volume residing on /device/dsk. At this point, only the files on the 
existing file system can be accessed. Figure 4.15 shows the effects of 
mounting the volume residing on /device/dsk over /users. If the volume is 
unmounted, the file system is restored to the situation depicted in Figure 4.14. 

Systems impose semantics to clarify functionality. For example, a 
system may disallow a mount over a directory that contains files; or it may 
make the mounted file system available at that directory and obscure the 
directory’s existing files until the file system is unmounted, terminating the 
use of the file system and allowing access to the original files in that directory. 
As another example, a system may allow the same file system to be mounted 
repeatedly, at different mount points; or it may only allow one mount per file 
system. 
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Figure 4.15 Mount point. 
 

Consider the actions of the Mac OS X operating system. Whenever the 
system encounters a disk for the first time (either at boot time or while the 
system is running), the Mac OS X operating system searches for a file system on 
the device. If it finds one, it automatically mounts the file system under the 
/Volumes directory, adding a folder icon labeled with  the name of the file 
system (as stored in the device directory). The user is then able to click on the 
icon and thus display the newly mounted file system. 

The Microsoft Windows family of operating systems maintains an 
extended two-level directory structure, with devices and volumes assigned drive 
letters. Volumes have a general graph directory structure associated with the 
drive letter. The path to a specific file takes the form of drive-letter:\path\to\file. 
The more recent versions of Windows allow a file system to be mounted 
anywhere in the directory tree, just as UNIX does. Windows operating systems 
automatically discover all devices and mount all located file systems at boot 
time. In some systems, like UNIX, the mount commands are explicit. A system 
configuration file contains a list of devices and mount points for automatic 
mounting at boot time, but other mounts may be executed manually. 

 
 File Sharing 

In the previous sections, we explored the motivation for file sharing and some of 
the difficulties involved in allowing users to share files. Such file sharing is very 
desirable for users who want to collaborate and to reduce the effort required to 
achieve a computing goal. Therefore, user-oriented operating systems must 
accommodate the need to share files in spite of the inherent difficulties. 

In this section, we examine more aspects of file sharing. We begin by 
discussing general issues that arise when multiple users share files. Once 
multiple users are allowed to share files, the challenge is to extend sharing to 
multiple file systems, including remote file systems; we discuss that challenge as 
well. Finally, we consider what to do about conflicting actions occurring on 



shared files. For instance, if multiple users are writing to a file, should all the 
writes be allowed to occur, or should the operating system protect the users’ 
actions from one another? 

 
 Multiple Users 

When an operating system accommodates multiple users, the issues of file 
sharing, file naming, and file protection become preeminent. Given a directory 
structure that allows files to be shared by users, the system must mediate the file 
sharing. The system can either allow a user to access the files of other users by 
default or require that a user specifically grant access to the files. 

To implement sharing and protection, the system must maintain more 
file and directory attributes than are needed on a single-user system. Although 
many approaches have been taken to meet this requirement, most systems have 
evolved to use the concepts of file (or directory) owner (or user) and group. 
The owner is the user who can change attributes and grant access and who has 
the most control over the file. The group attribute defines a subset of users who 
can share access to the file. For example, the owner of a file on a UNIX system 
can issue all operations on a file, while members of the file’s group can execute 
one subset of those operations, and all other users can execute another subset of 
operations. Exactly which operations can be executed by group members and 
other users is definable by the file’s owner. More details on permission attributes 
are included in the next section. 

The owner and group IDs of a given file (or directory) are stored with 
the other file attributes. When a user requests an operation on a file, the user ID 
can be compared with the owner attribute to determine if the requesting user is 
the owner of the file. Likewise, the group IDs can be compared. The result 
indicates which permissions are applicable. The system then applies those 
permissions to the requested operation and allows or denies it. 

Many systems have multiple local file systems, including volumes of a 
single disk or multiple volumes on multiple attached disks. In these cases, the ID 
checking and permission matching are straightforward, once the file systems are 
mounted. 

 
 Remote File Systems 

With the advent of networks, communication among remote computers became 
possible. Networking allows the sharing of resources spread across a campus or 
even around the world. One obvious resource to share is data in the form of files. 

Through the evolution of network and file technology, remote file- 
sharing methods have changed. The first implemented method involves 
manually transferring files between machines via programs like ftp. The second 
major method uses a distributed file system (DFS) in which remote directories 
are visible from a local machine. In some ways, the third method, the World 
Wide Web, is a reversion to the first. A browser is needed to gain access to the 
remote files, and separate operations (essentially a wrapper for ftp) are used to 
transfer files. Increasingly, cloud computing is being used for file sharing as 
well. 



ftp is used for both anonymous and authenticated access. Anonymous 
access allows a user to transfer files without having an account on the remote 
system. The World Wide Web uses anonymous file exchange almost 
exclusively. DFS involves a much tighter integration between the machine that is 
accessing the remote files and the machine providing the files. This integration 
adds complexity, as we describe in this section. 

 
 The Client – Server Model 

Remote file systems allow a computer to mount one or more file 
systems from one or more remote machines. In this case, the machine containing 
the files is the server, and the machine seeking access to the files is the client. 
The client – server relationship is common with networked machines. Generally, 
the server declares that a resource is available to clients and specifies exactly 
which resource (in this case, which files) and exactly which clients. A server can 
serve multiple clients, and a client can use multiple servers, depending on the 
implementation details of a given client – server facility. 

The server usually specifies the available files on a volume or directory 
level. Client identification is more difficult. A client can be specified by a 
network name or other identifier, such as an IP address, but these can be 
spoofed, or imitated. As a result of spoofing, an unauthorized client could be 
allowed access to the server. More secure solutions include secure authentication 
of the client via encrypted keys. Unfortunately, with security come many 
challenges, including ensuring compatibility of the client and server (they must 
use the same encryption algorithms) and security of key exchanges (intercepted 
keys could again allow unauthorized access). Because of the difficulty of solving 
these problems, unsecure authentication methods are most commonly used. 

In the case of UNIX and its network file system (NFS), authentication 
takes place via the client networking information, by default. In this scheme, the 
user’s IDs on the client and server must match. If they do not, the server will be 
unable to determine access rights to files. Consider the example of a user who 
has an ID of 1000 on the client and 2000 on the server. A request from the client 
to the server for a specific file will not be handled appropriately, as the server 
will determine if user 1000 has access to the file rather than basing the 
determination on the real user ID of 2000. Access is thus granted or denied 
based on incorrect authentication information. The server must trust the client to 
present the correct user ID. Note that the NFS protocols allow many-to-many 
relationships. That is, many servers can provide files to many clients. In fact, a 
given machine can be both a server to some NFS clients and a client of other 
NFS servers. 

Once the remote file system is mounted, file operation requests are sent 
on behalf of the user across the network to the server via the DFS protocol. 
Typically, a file-open request is sent along with the ID of the requesting user. 
The server then applies the standard access checks to determine if the user has 
credentials to access the file in the mode requested. The request is either allowed 
or denied. If it is allowed, a file handle is returned to the client application, and 
the application then can perform read, write, and other operations on the file. 



The client closes the file when access is completed. The operating system may 
apply semantics similar to those for a local file-system mount or may use 
different semantics. 

 
 Distributed Information Systems 

To make client – server systems easier to manage, distributed information 
systems, also known as distributed naming services, provide unified access to 
the information needed for remote computing. The domain name system (DNS) 
provides host-name-to-network-address translations for the entire Inter-net. 
Before DNS became widespread, files containing the same information were 
sent via e-mail or ftp between all networked hosts. Obviously, this methodology 
was not scalable! 

Other distributed information systems provide user 
name/password/user ID/group ID space for a distributed facility. UNIX systems 
have employed a wide variety of distributed information methods. Sun 
Microsystems (now part of Oracle Corporation) introduced yellow pages (since 
renamed network information service, or NIS), and most of the industry 
adopted its use. It centralizes storage of user names, host names, printer 
information, and the like. 

Unfortunately, it uses unsecure authentication methods, including 
sending user passwords unencrypted (in clear text) and identifying hosts by IP 
address. Sun’s NIS+ was a much more secure replacement for NIS but was much 
more complicated and was not widely adopted. 

In the case of Microsoft’s common Internet file system (CIFS), 
network information is used in conjunction with user authentication (user name 
and password) to create a network login that the server uses to decide whether to 
allow or deny access to a requested file system. For this authentication to be 
valid, the user names must match from machine to machine (as with NFS). 
Microsoft uses active directory as a distributed naming structure to provide a 
single name space for users. Once established, the distributed naming facility is 
used by all clients and servers to authenticate users. 

The industry is moving toward use of the lightweight directory-access 
protocol (LDAP) as a secure distributed naming mechanism. In fact, active 
directory is based on LDAP. Oracle Solaris and most other major operating 
systems include LDAP and allow it to be employed for user authentication as 
well as system-wide retrieval of information, such as availability of printers. 
Conceivably, one distributed LDAP directory could be used by an organization 
to store all user and resource information for all the organization’s computers. 
The result would be secure single sign-on for users, who would enter their 
authentication information once for access to all computers within the 
organization. It would also ease system-administration efforts by combining, in 
one location, information that is currently scattered in various files on each 
system or in different distributed information services. 



 Failure Modes 
Local file systems can fail for a variety of reasons, including failure of the disk 
containing the file system, corruption of the directory structure or other disk- 
management information (collectively called metadata), disk-controller failure, 
cable failure, and host-adapter failure. User or system-administrator failure can 
also cause files to be lost or entire directories or volumes to be deleted. Many of 
these failures will cause a host to crash and an error condition to be displayed, 
and human intervention will be required to repair the damage. 

Remote file systems have even more failure modes. Because of the 
complexity of network systems and the required interactions between remote 
machines, many more problems can interfere with the proper operation of 
remote file systems. In the case of networks, the network can be interrupted 
between two hosts. Such interruptions can result from hardware failure, poor 
hardware configuration, or networking implementation issues. Although some 
networks have built-in resiliency, including multiple paths between hosts, many 
do not. Any single failure can thus interrupt the flow of DFS commands. 

Consider a client in the midst of using a remote file system. It has files 
open from the remote host; among other activities, it may be performing 
directory lookups to open files, reading or writing data to files, and closing files. 
Now consider a partitioning of the network, a crash of the server, or even a 
scheduled shutdown of the server. Suddenly, the remote file system is no longer 
reachable. This scenario is rather common, so it would not be appropriate for the 
client system to act as it would if a local file system were lost. Rather, the system 
can either terminate all operations to the lost server or delay operations until the 
server is again reachable. These failure semantics are defined and implemented 
as part of the remote-file-system protocol. Termination of all operations can 
result in users’ losing data — and patience. Thus, most DFS protocols either 
enforce or allow delaying of file-system operations to remote hosts, with the 
hope that the remote host will become available again. 

To implement this kind of recovery from failure, some kind of state 
information may be maintained on both the client and the server. If both server 
and client maintain knowledge of their current activities and open files, then they 
can seamlessly recover from a failure. In the situation where the server crashes 
but must recognize that it has remotely mounted exported file systems and 
opened files, NFS takes a simple approach, implementing a stateless DFS. In 
essence, it assumes that a client request for a file read or write would not have 
occurred unless the file system had been remotely mounted and the file had been 
previously open. The NFS protocol carries all the information needed to locate 
the appropriate file and perform the requested operation. Similarly, it does not 
track which clients have the exported volumes mounted, again assuming that if a 
request comes in, it must be legitimate. While this stateless approach makes NFS 
resilient and rather easy to implement, it also makes it unsecure. For example, 
forged read or write requests could be allowed by an NFS server. These issues 
are addressed in the industry standard NFS Version 4, in which NFS is made 
stateful to improve its security, performance, and functionality. 



 Consistency Semantics 

Consistency semantics represent an important criterion for evaluating any file 
system that supports file sharing. These semantics specify how multiple users 
of a system are to access a shared file simultaneously. In particular, they 
specify when modifications of data by one user will be observable by other 
users. These semantics are typically implemented as code with the file system. 

Consistency semantics are directly related to the process 
synchronization algorithms. However, the complex algorithms tend not to be 
implemented in the case of file I/O because of the great latencies and slow 
transfer rates of disks and networks. For example, performing an atomic 
transaction to a remote disk could involve several network communications, 
several disk reads and writes, or both. Systems that attempt such a full set of 
functionalities tend to perform poorly. A successful implementation of 
complex sharing semantics can be found in the Andrew file system. 

For the following discussion, we assume that a series of file accesses 
(that is, reads and writes) attempted by a user to the same file is always 
enclosed between the open() and close() operations. The series of accesses 
between the open() and close() operations makes up a file session. To illustrate 
the concept, we sketch several prominent examples of consistency semantics. 

 UNIX Semantics 
The UNIX file system uses the following consistency semantics: 

Writes to an open file by a user are visible immediately to other users 
who have this file open. 

One mode of sharing allows users to share the pointer of current location into 
the file. Thus, the advancing of the pointer by one user affects all sharing 
users. Here, a file has a single image that interleaves all accesses, regardless of 
their origin. 

In the UNIX semantics, a file is associated with a single physical 
image that is accessed as an exclusive resource. Contention for this single 
image causes delays in user processes. 
 Session Semantics 
The Andrew file system (OpenAFS) uses the following consistency semantics: 

 
Writes to an open file by a user are not visible immediately to other 
users that have the same file open. 

Once a file is closed, the changes made to it are visible only in sessions 
starting later. Already open instances of the file do not reflect these changes. 

According to these semantics, a file may be associated temporarily 
with several (possibly different) images at the same time. Consequently, 
multiple users are allowed to perform both read and write accesses 
concurrently on their images of the file, without delay. Almost no constraints 
are enforced on scheduling accesses. 



 Immutable-Shared-Files Semantics 
A unique approach is that of immutable shared files. Once a file is declared as 
shared by its creator, it cannot be modified. An immutable file has two key 
properties: its name may not be reused, and its contents may not be altered. 
Thus, the name of an immutable file signifies that the contents of the file are 
fixed. The implementation of these semantics in a distributed system is simple, 
because the sharing is disciplined (read-only). 

 Protection 
When information is stored in a computer system, we want to keep it safe from 
physical damage (the issue of reliability) and improper access (the issue of 
protection). 

Reliability is generally provided by duplicate copies of files. Many 
computers have systems programs that automatically (or through computer- 
operator intervention) copy disk files to tape at regular intervals (once per day or 
week or month) to maintain a copy should a file system be accidentally 
destroyed. File systems can be damaged by hardware problems (such as errors 
in reading or writing), power surges or failures, head crashes, dirt, temperature 
extremes, and vandalism. Files may be deleted accidentally. Bugs in the file- 
system soft-ware can also cause file contents to be lost. 

Protection can be provided in many ways. For a single-user laptop 
system, we might provide protection by locking the computer in a desk drawer 
or file cabinet. In a larger multiuser system, however, other mechanisms are 
needed. 
 Types of Access 
The need to protect files is a direct result of the ability to access files. Systems 
that do not permit access to the files of other users do not need protection. Thus, 
we could provide complete protection by prohibiting access. Alternatively, we 
could provide free access with no protection. Both approaches are too extreme 
for general use. What is needed is controlled access. 

Protection mechanisms provide controlled access by limiting the types 
of file access that can be made. Access is permitted or denied depending on 
several factors, one of which is the type of access requested. Several different 
types of operations may be controlled: 

Read. Read from the file. 
Write. Write or rewrite the file. 
Execute. Load the file into memory and execute it. 
Append. Write new information at the end of the file. 
Delete. Delete the file and free its space for possible reuse. 
List. List the name and attributes of the file. 

 
Other operations, such as renaming, copying, and editing the file, may 

also be controlled. For many systems, however, these higher-level functions 



may be implemented by a system program that makes lower-level system calls. 
Protection is provided at only the lower level. For instance, copying a file may 
be implemented simply by a sequence of read requests. In this case, a user with 
read access can also cause the file to be copied, printed, and so on. 

Many protection mechanisms have been proposed. Each has 
advantages and disadvantages and must be appropriate for its intended 
application. A small computer system that is used by only a few members of a 
research group, for example, may not need the same types of protection as a 
large corporate computer that is used for research, finance, and personnel 
operations. We discuss some approaches to protection in the following. 

 
 Access Control 
The most common approach to the protection problem is to make access 
dependent on the identity of the user. Different users may need different types of 
access to a file or directory. The most general scheme to implement identity- 
dependent access is to associate with each file and directory an access-control 
list (ACL) specifying user names and the types of access allowed for each user. 
When a user requests access to a particular file, the operating system checks the 
access list associated with that file. If that user is listed for the requested access, 
the access is allowed. Otherwise, a protection violation occurs, and the user job 
is denied access to the file. 

This approach has the advantage of enabling complex access 
methodologies. The main problem with access lists is their length. If we want to 
allow everyone to read a file, we must list all users with read access. This 
technique has two undesirable consequences: 

Constructing such a list may be a tedious and unrewarding task, 
especially if we do not know in advance the list of users in the system. 

The directory entry, previously of fixed size, now must be of variable 
size, resulting in more complicated space management. 
These problems can be resolved by use of a condensed version of the access list. 

To condense the length of the access-control list, many systems 
recognize three classifications of users in connection with each file: 

 
Owner. The user who created the file is the owner. 
Group. A set of users who are sharing the file and need similar access is 
a group, or work group. 
Universe. All other users in the system constitute the universe. 

The most common recent approach is to combine access-control lists with the 
more general (and easier to implement) owner, group, and universe access- 
control scheme just described. For example, Solaris uses the three categories of 
access by default but allows access-control lists to be added to specific files and 
directories when more fine-grained access control is desired. 

To illustrate, consider a person, Sara, who is writing a new book. She 
has hired three graduate students (Jim, Dawn, and Jill) to help with the project. 



The text of the book is kept in a file named book.tex. The protection associated 
with this file is as follows: 

Sara should be able to invoke all operations on the file. 
Jim, Dawn, and Jill should be able only to read and write the file; they 
should not be allowed to delete the file. 
All other users should be able to read, but not write, the file. (Sara is 
interested in letting as many people as possible read the text so that she 
can obtain feedback.) 

 
To achieve such protection, we must create a new group — say, text— 

with members Jim, Dawn, and Jill. The name of the group, text, must then be 
associated with the file book.tex, and the access rights must be set in accordance 
with the policy we have outlined. 
Now consider a visitor to whom Sara would like to grant temporary access to 
Chapter 1. The visitor cannot be added to the text group because that would give 
him access to all chapters. Because a file can be in only one group, Sara cannot 
add another group to Chapter 1. With the addition of access-control-list 
functionality, though, the visitor can be added to the access control list of 
Chapter 1. 
The first field describes the protection of the file or directory. A d as the first 
character indicates a subdirectory. Also shown are the number of links to the 
file, the owner’s name, the group’s name, the size of the file in bytes, the date of 
last modification, and finally the file’s name (with optional extension). 

For this scheme to work properly, permissions and access lists must be 
controlled tightly. This control can be accomplished in several ways. For 
example, in the UNIX system, groups can be created and modified only by the 
manager of the facility (or by any superuser). Thus, control is achieved through 
human interaction. With the more limited protection classification, only three 
fields are needed to define protection. Often, each field is a collection of bits, 
and each bit either allows or prevents the access associated with it. For example, 
the UNIX system defines three fields of 3 bits each — rwx, where r controls 
read access, w controls write access, and x controls execution. A separate field 
is kept for the file owner, for the file’s group, and for all other users. In this 
scheme, 9 bits per file are needed to record protection information. Thus, for our 
example, the protection fields for the file book.tex are as follows: for the owner 
Sara, all bits are set; for the group text, the r and w bits are set; and for the 
universe, only the r bit is set. 

With the more limited protection classification, only three fields are 
needed to define protection. Often, each field is a collection of bits, and each bit 
either allows or prevents the access associated with it. For example, the UNIX 
system defines three fields of 3 bits each — rwx, where r controls read access, w 
controls write access, and x controls execution. A separate field is kept for the 
file owner, for the file’s group, and for all other users. In this scheme, 9 bits per 
file are needed to record protection information. Thus, for our example, the 



protection fields for the file book.tex are as follows: for the owner Sara, all bits 
are set; for the group text, the r and w bits are set; and for the universe, only the 
r bit is set. 

One difficulty in combining approaches comes in the user interface. 
Users must be able to tell when the optional ACL permissions are set on a file. 
In the Solaris example, a ―+‖ is appended to the regular permissions, as in: 

19 -rw-r--r--+ 1 jim staff 130 May 25 22:13 file1 
A separate set of commands, setfacl and getfacl, is used to manage the ACLs. 

 

 

Figure 4.16 Windows 7 access-control list management 



Windows users typically manage access-control lists via the GUI. Figure 4.16 
shows a file-permission window on Windows 7 NTFS file system. In this 
example, user ―guest‖ is specifically denied access to the file ListPanel.java. 

Another difficulty is assigning precedence when permission and ACLs 
conflict. For example, if Joe is in a file’s group, which has read permission, but 
the file has an ACL granting Joe read and write permission, should a write by 
Joe be granted or denied? Solaris gives ACLs precedence (as they are more fine- 
grained and are not assigned by default). This follows the general rule that 
specificity should have priority. 

 
 Other Protection Approaches 
Another approach to the protection problem is to associate a password with each 
file. Just as access to the computer system is often controlled by a password, 
access to each file can be controlled in the same way. If the passwords are 
chosen randomly and changed often, this scheme may be effective in limiting 
access to a file. The use of passwords has a few disadvantages, however. First, 
the number of passwords that a user needs to remember may become large, 
making the scheme impractical. Second, if only one password is used for all the 
files, then once it is discovered, all files are accessible; protection is on an all-or- 
none basis. Some systems allow a user to associate a password with a 
subdirectory, rather than with an individual file, to address this problem. 

In a multilevel directory structure, we need to protect not only 
individual files but also collections of files in subdirectories; that is, we need to 
provide a mechanism for directory protection. The directory operations that must 
be protected are somewhat different from the file operations. We want to control 
the creation and deletion of files in a directory. In addition, we probably want to 
control whether a user can determine the existence of a file in a directory. 
Sometimes, knowledge of the existence and name of a file is significant in itself. 
Thus, listing the contents of a directory must be a protected operation. Similarly, 
if a path name refers to a file in a directory, the user must be allowed access to 
both the directory and the file. In systems where files may have numerous path 
names (such as acyclic and general graphs), a given user may have different 
access rights to a particular file, depending on the path name used. 



File -System Implementation 
As we saw that, the file system provides the mechanism for on-line storage and 
access to file contents, including data and programs. The file system resides 
permanently on secondary storage, which is designed to hold a large amount of 
data permanently. This chapter is primarily concerned with issues surrounding 
file storage and access on the most common secondary-storage medium, the 
disk. We explore ways to structure file use, to allocate disk space, to recover 
freed space, to track the locations of data, and to interface other parts of the 
operating system to secondary storage. Performance issues are considered 
throughout the chapter. 

 File-System Structure 
Disks provide most of the secondary storage on which file systems are 
maintained. Two characteristics make them convenient for this purpose: 

A disk can be rewritten in place; it is possible to read a block from the 
disk, modify the block, and write it back into the same place. 
A disk can access directly any block of information it contains. Thus, it is 
simple to access any file either sequentially or randomly, and switching 
from one file to another requires only moving the read – write heads and 
waiting for the disk to rotate. 

To improve I/O efficiency, I/O transfers between memory and disk are 
performed in units of blocks. Each block has one or more sectors. Depending on 
the disk drive, sector size varies from 32 bytes to 4,096 bytes; the usual size is 
512 bytes. 

File systems provide efficient and convenient access to the disk by 
allowing data to be stored, located, and retrieved easily. A file system poses two 
quite different design problems. The first problem is defining how the file 
system should look to the user. This task involves defining a file and its 
attributes, the operations allowed on a file, and the directory structure for 
organizing files. The second problem is creating algorithms and data structures 
to map the logical file system onto the physical secondary-storage devices. 

The file system itself is generally composed of many different levels. 
The structure shown in Figure 4.17 is an example of a layered design. Each level 
in the design uses the features of lower levels to create new features for use by 
higher levels. 

The I/O control level consists of device drivers and interrupt handlers 
to transfer information between the main memory and the disk system. A device 
driver can be thought of as a translator. Its input consists of high-level 
commands  such  as  ―retrieve  block  123.‖  Its  output  consists  of  low-level, 
hardware-specific instructions that are used by the hardware controller, which 
interfaces the I/O device to the rest of the system. The device driver usually 
writes specific bit patterns to special locations in the I/O controller’s memory to 
tell the controller which device location to act on and what actions to take. 



The basic file system needs only to issue generic commands to the 
appropriate device driver to read and write physical blocks on the disk. Each 
physical block is identified by its numeric disk address (for example, drive 1, 
cylinder 73, track 2, sector 10). This layer also manages the memory buffers 
and caches that hold various file-system, directory, and data blocks. A block in 
the buffer is allocated before the transfer of a disk block can occur. When the 
buffer is full, the buffer manager must find more buffer memory or free up 
buffer space to allow a requested I/O to complete. Caches are used to hold 
frequently used file-system metadata to improve performance, so managing 
their contents is critical for optimum system performance. 
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Figure 4.17 Layered file system 
 

The file-organization module knows about files and their logical blocks, as 
well as physical blocks. By knowing the type of file allocation used and the 
location of the file, the file-organization module can translate logical block 
addresses to physical block addresses for the basic file system to transfer. Each 
file’s logical blocks are numbered from 0 (or 1) through N. Since the physical 
blocks containing the data usually do not match the logical numbers, a 
translation is needed to locate each block. The file-organization module also 
includes the free-space manager, which tracks unallocated blocks and provides 
these blocks to the file-organization module when requested. 

Finally, the logical file system manages metadata information. 
Metadata includes all of the file-system structure except the actual data (or 
contents of the files). The logical file system manages the directory structure to 
provide the file-organization module with the information the latter needs, 
given a symbolic file name. It maintains file structure via file-control blocks. 
A file-control block (FCB) (an inode in UNIX file systems) contains 
information about the file, including ownership, permissions, and location of 
the file contents. 



When a layered structure is used for file-system implementation, 
duplication of code is minimized. The I/O control and sometimes the basic file- 
system code can be used by multiple file systems. Each file system can then 
have its own logical file-system and file-organization modules. Unfortunately, 
layering can introduce more operating-system overhead, which may result in 
decreased performance. The use of layering, including the decision about how 
many layers to use and what each layer should do, is a major challenge in 
designing new systems. 

Many file systems are in use today, and most operating systems support 
more than one. For example, most CD-ROMs are written in the ISO 9660 
format, a standard format agreed on by CD-ROM manufacturers. In addition to 
removable-media file systems, each operating system has one or more disk- 
based file systems. UNIX uses the UNIX file system (UFS), which is based on 
the Berkeley Fast File System (FFS). Windows supports disk file-system formats 
of FAT, FAT32, and NTFS (or Windows NT File System), as well as CD-ROM 
and DVD file-system formats. Although Linux supports over forty different file 
systems, the standard Linux file system is known as the extended file system, 
with the most common versions being ext3 and ext4. There are also distributed 
file systems in which a file system on a server is mounted by one or more client 
computers across a network. 

File-system research continues to be an active area of operating-system 
design and implementation. Google created its own file system to meet the 
company’s specific storage and retrieval needs, which include high-performance 
access from many clients across a very large number of disks. Another 
interesting project is the FUSE file system, which provides flexibility in file- 
system development and use by implementing and executing file systems as 
user-level rather than kernel-level code. Using FUSE, a user can add a new file 
system to a variety of operating systems and can use that file system to manage 
her files. 

 
 File-System Implementation 
In this section, we delve into the structures and operations used to implement 
file-system operations. 

 
 Overview 
Several on-disk and in-memory structures are used to implement a file system. 
These structures vary depending on the operating system and the file system, but 
some general principles apply. 

On disk, the file system may contain information about how to boot an 
operating system stored there, the total number of blocks, the number and 
location of free blocks, the directory structure, and individual files. Many of 
these structures are detailed throughout the remainder of this chapter. Here, we 
describe them briefly: 



file permissions 
 

file dates (create, access, write) 

file owner, group, ACL 

file size 
 

file data blocks or pointers to file data blocks 

A boot control block (per volume) can contain information needed by the 
system to boot an operating system from that volume. If the disk does not 
contain an operating system, this block can be empty. It is typically the first 
block of a volume. In UFS, it is called the boot block. In NTFS, it is the 
partition boot sector. 
A volume control block (per volume) contains volume (or partition) details, 
such as the number of blocks in the partition, the size of the blocks, a free- 
block count and free-block pointers, and a free-FCB count and FCB pointers. 
In UFS, this is called a superblock. In NTFS, it is stored in the master file 
table. 
A directory structure (per file system) is used to organize the files. In UFS, this 
includes file names and associated inode numbers. In NTFS, it is stored in the 
master file table. 
A per-file FCB contains many details about the file. It has a unique identifier 
number to allow association with a directory entry. In NTFS, this information 
is actually stored within the master file table, which uses a relational database 
structure, with a row per file. 
The in-memory information is used for both file-system management and 
performance improvement via caching. The data are loaded at mount time, 
updated during file-system operations, and discarded at dismount. Several 
types of structures may be included. 
An in-memory mount table contains information about each mounted volume. 

An in-memory directory-structure cache holds the directory 
information of recently accessed directories. (For directories at which volumes 
are mounted, it can contain a pointer to the volume table.) 

The system-wide open-file table contains a copy of the FCB of each 
open file, as well as other information. 

 
 

 

Figure 4.18 A typical file-control block 



The per-process open-file table contains a pointer to the appropriate entry in 
the system-wide open-file table, as well as other information. 
Buffers hold file-system blocks when they are being read from disk or written to 
disk. 

To create a new file, an application program calls the logical file system. 
The logical file system knows the format of the directory structures. To create a 
new file, it allocates a new FCB. (Alternatively, if the file-system 
implementation creates all FCBs at file-system creation time, an FCB is 
allocated from the set of free FCBs.) The system then reads the appropriate 
directory into memory, updates it with the new file name and FCB, and writes it 
back to the disk. A typical FCB is shown in Figure 4.18. 

Some operating systems, including UNIX, treat a directory exactly the 
same as a file — one with a ―type‖ field indicating that it is a directory. Other 
operating systems, including Windows, implement separate system calls for files 
and directories and treat directories as entities separate from files. Whatever the 
larger structural issues, the logical file system can call the file-organization 
module to map the directory I/O into disk-block numbers, which are passed on to 
the basic file system and I/O control system. 

Now that a file has been created, it can be used for I/O. First, though, it 
must be opened. The open() call passes a file name to the logical file system. 
The open() system call first searches the system-wide open-file table to see if the 
file is already in use by another process. If it is, a per-process open-file table 
entry is created pointing to the existing system-wide open-file table. This 
algorithm can save substantial overhead. If the file is not already open, the 
directory structure is searched for the given file name. Parts of the directory 
structure are usually cached in memory to speed directory operations. Once the 
file is found, the FCB is copied into a system-wide open-file table in memory. 
This table not only stores the FCB but also tracks the number of processes that 
have the file open. 

Next, an entry is made in the per-process open-file table, with a pointer to 
the entry in the system-wide open-file table and some other fields. These other 
fields may include a pointer to the current location in the file (for the next read() 
or write() operation) and the access mode in which the file is open. The open() 
call returns a pointer to the appropriate entry in the per-process.file-system table. 
All file operations are then performed via this pointer. The file name may not be 
part of the open-file table, as the system has no use for it once the appropriate 
FCB is located on disk. It could be cached, though, to save time on subsequent 
opens of the same file. The name given to the entry varies. UNIX systems refer 
to it as a file descriptor; Windows refers to it as a file handle. 

When a process closes the file, the per-process table entry is removed, 
and the system-wide entry’s open count is decremented. When all users that 
have opened the file close it, any updated metadata is copied back to the disk- 
based directory structure, and the system-wide open-file table entry is removed. 
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Figure 4.19 In-memory file-system structures. (a) File open. (b) File read. 

 
Some systems complicate this scheme further by using the file system 

as an interface to other system aspects, such as networking. For example, in 
UFS, the system-wide open-file table holds the inodes and other information 
for files and directories. It also holds similar information for network 
connections and devices. In this way, one mechanism can be used for multiple 
purposes. 

The caching aspects of file-system structures should not be 
overlooked. Most systems keep all information about an open file, except for 
its actual data blocks, in memory. The BSD UNIX system is typical in its use 



of caches wherever disk I/O can be saved. Its average cache hit rate of 85 
percent shows that these techniques are well worth implementing. 
 Partitions and Mounting 
The layout of a disk can have many variations, depending on the operating 
system. A disk can be sliced into multiple partitions, or a volume can span 
multiple partitions on multiple disks. 

Each  partition  can  be  either  ―raw,‖  containing  no  file  system,  or 
―cooked,‖ containing a file system. Raw disk is used where no file system is 
appropriate. UNIX swap space can use a raw partition, for example, since it 
uses its own format on disk and does not use a file system. Likewise, some 
databases use raw disk and format the data to suit their needs. Raw disk can 

also hold information needed by disk RAID systems, such as bit maps 
indicating which blocks are mirrored and which have changed and need to be 
mirrored. Similarly, raw disk can contain a miniature database holding RAID 
configuration information, such as which disks are members of each RAID set. 

Boot information can be stored in a separate partition. Again, it has its 
own format, because at boot time the system does not have the file-system 
code loaded and therefore cannot interpret the file-system format. Rather, boot 
information is usually a sequential series of blocks, loaded as an image into 
memory. Execution of the image starts at a predefined location, such as the 
first byte. This boot loader in turn knows enough about the file-system 
structure to be able to find and load the kernel and start it executing. It can 
contain more than the instructions for how to boot specific operating system. 
For instance, many systems can be dual-booted, allowing us to install 
multiple operating systems on a single system. How does the system know 
which one to boot? A boot loader that understands multiple file systems and 
multiple operating systems can occupy the boot space. Once loaded, it can 
boot one of the operating systems available on the disk. The disk can have 
multiple partitions, each containing a different type of file system and different 
operating system. 

The root partition, which contains the operating-system kernel and 
some-times other system files, is mounted at boot time. Other volumes can be 
automatically mounted at boot or manually mounted later, depending on the 
operating system. As part of a successful mount operation, the operating 
system verifies that the device contains a valid file system. It does so by asking 
the device driver to read the device directory and verifying that the directory 
has the expected format. If the format is invalid, the partition must have its 
consistency checked and possibly corrected, either with or without user 
intervention. Finally, the operating system notes in its in-memory mount table 
that a file system is mounted, along with the type of the file system. The 
details of this function depend on the operating system. 



Microsoft Windows – based systems mount each volume in a separate 
name space, denoted by a letter and a colon. To record that a file system is 
mounted at F:, for example, the operating system places a pointer to the file 
system in a field of the device structure corresponding to F:. When a process 
specifies the driver letter, the operating system finds the appropriate file- 
system pointer and traverses the directory structures on that device to find the 
specified file or directory. Later versions of Windows can mount a file system 
at any point within the existing directory structure. 

On UNIX, file systems can be mounted at any directory. Mounting is 
implemented by setting a flag in the in-memory copy of the inode for that 
directory. The flag indicates that the directory is a mount point. A field then 
points to an entry in the mount table, indicating which device is mounted there. 
The mount table entry contains a pointer to the superblock of the file system on 
that device. This scheme enables the operating system to traverse its directory 
structure, switching seamlessly among file systems of varying types. 
 Virtual File Systems 

The previous section makes it clear that modern operating systems 
must concurrently support multiple types of file systems. But how does an 
operating system allow multiple types of file systems to be integrated into a 
directory structure? And how can users seamlessly move between file-system 
types as they navigate the file-system space? We now discuss some of these 
implementation details. 

An obvious but suboptimal method of implementing multiple types of 
file systems is to write directory and file routines for each type. Instead, 
however, most operating systems, including UNIX, use object-oriented 
techniques to simplify, organize, and modularize the implementation. The use 
of these methods allows very dissimilar file-system types to be implemented 
within the same structure, including network file systems, such as NFS. Users 
can access files contained within multiple file systems on the local disk or even 
on file systems available across the network. 

Data structures and procedures are used to isolate the basic system-call 
functionality from the implementation details. Thus, the file-system 
implementation consists of three major layers, as depicted schematically in 
Figure 4.20. The first layer is the file-system interface, based on the open(), 
read(), write(), and close() calls and on file descriptors. 

The second layer is called the virtual file system (VFS) layer. The 
VFS layer serves two important functions: 

It separates file-system-generic operations from their implementation 
by defining a clean VFS interface. Several implementations for the VFS 
interface may coexist on the same machine, allowing transparent access to 
different types of file systems mounted locally. 

It provides a mechanism for uniquely representing a file throughout a 
network. The VFS is based on a file-representation structure, called a vnode, 
that contains a numerical designator for a network-wide unique file. (UNIX 
inodes are unique within only a single file system.) This network-wide 
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uniqueness is required for support of network file systems. The kernel 
maintains one vnode structure for each active node (file or directory). 

Thus, the VFS distinguishes local files from remote ones, and local 
files are further distinguished according to their file-system types. 

The VFS activates file-system-specific operations to handle local 
requests according to their file-system types and calls the NFS protocol 
procedures for remote requests. File handles are constructed from the relevant 
vnodes and are passed as arguments to these procedures. The layer 
implementing the file-system type or the remote-file-system protocol is the 
third layer of the architecture. 
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Figure 4.20 Schematic view of a virtual file system. 
 

Let’s briefly examine the VFS architecture in Linux. The four main object 
types defined by the Linux VFS are: 

The inode object, which represents an individual file 
The file object, which represents an open file 
The superblock object, which represents an entire file system 
The dentry object, which represents an individual directory entry 



For each of these four object types, the VFS defines a set of 
operations that may be implemented. Every object of one of these types 
contains a pointer to a function table. The function table lists the addresses of 
the actual functions that implement the defined operations for that particular 
object. For example, an abbreviated API for some of the operations for the file 
object includes: 

int open(. . .)— Open a file. 
int close(...)— Close an already-open file. 
ssize t read(. . .)— Read from a file. 
ssize t write(. . .)— Write to a file. 
int mmap(. . .)— Memory-map a file. 

 
An implementation of the file object for a specific file type is required 

to implement each function specified in the definition of the file object. (The 
complete definition of the file object is specified in the struct file operations, 
which is located in the file /usr/include/linux/fs.h.) 

Thus, the VFS software layer can perform an operation on one of 
these objects by calling the appropriate function from the object’s function 
table, without having to know in advance exactly what kind of object it is 
dealing with. The VFS does not know, or care, whether an inode represents a 
disk file, a directory file, or a remote file. The appropriate function for that 
file’s read() operation will always be at the same place in its function table, 
and the VFS software layer will call that function without caring how the data 
are actually read. 
 Directory Implementation 
The selection of directory-allocation and directory-management algorithms 
significantly affects the efficiency, performance, and reliability of the file 
system. In this section, we discuss the trade-offs involved in choosing one of 
these algorithms. 
 Linear List 
The simplest method of implementing a directory is to use a linear list of file 
names with pointers to the data blocks. This method is simple to program but 
time-consuming to execute. To create a new file, we must first search the 
directory to be sure that no existing file has the same name. Then, we add a 
new entry at the end of the directory. To delete a file, we search the directory 
for the named file and then release the space allocated to it. To reuse the 
directory entry, we can do one of several things. We can mark the entry as 
unused (by assigning it a special name, such as an all-blank name, or by 
including a used – unused bit in each entry), or we can attach it to a list of free 
directory entries. A third alternative is to copy the last entry in the directory 
into the freed location and to decrease the length of the directory. A linked list 
can also be used to decrease the time required to delete a file. 

The real disadvantage of a linear list of directory entries is that finding 
a file requires a linear search. Directory information is used frequently, and 
users will notice if access to it is slow. In fact, many operating systems 



implement a software cache to store the most recently used directory 
information. A cache hit avoids the need to constantly reread the information 
from disk. A sorted list allows a binary search and decreases the average 
search time. However, the requirement that the list be kept sorted may 
complicate creating and deleting files, since we may have to move substantial 
amounts of directory information to maintain a sorted directory. A more 
sophisticated tree data structure, such as a balanced tree, might help here. An 
advantage of the sorted list is that a sorted directory listing can be produced 
without a separate sort step. 
 Hash Table 
Another data structure used for a file directory is a hash table. Here, a linear 
list stores the directory entries, but a hash data structure is also used. The hash 
table takes a value computed from the file name and returns a pointer to the 
file name in the linear list. Therefore, it can greatly decrease the directory 
search time. Insertion and deletion are also fairly straightforward, although 
some provision must be made for collisions — situations in which two file 
names hash to the same location. 

The major difficulties with a hash table are its generally fixed size and 
the dependence of the hash function on that size. For example, assume that we 
make a linear-probing hash table that holds 64 entries. The hash function 
converts file names into integers from 0 to 63 (for instance, by using the 
remainder of a division by 64). If we later try to create a 65th file, we must 
enlarge the directory hash table — say, to 128 entries. As a result, we need a 
new hash function that must map file names to the range 0 to 127, and we must 
reorganize the existing directory entries to reflect their new hash-function 
values. 

Alternatively, we can use a chained-overflow hash table. Each hash 
entry can be a linked list instead of an individual value, and we can resolve 
collisions by adding the new entry to the linked list. Lookups may be 
somewhat slowed, because searching for a name might require stepping 
through a linked list of colliding table entries. Still, this method is likely to be 
much faster than a linear search through the entire directory. 
 Allocation Methods 
The direct-access nature of disks gives us flexibility in the implementation of 
files. In almost every case, many files are stored on the same disk. The main 
problem is how to allocate space to these files so that disk space is utilized 
effectively and files can be accessed quickly. Three major methods of 
allocating disk space are in wide use: contiguous, linked, and indexed. Each 
method has advantages and disadvantages. Although some systems support all 
three, it is more common for a system to use one method for all files within a 
file-system type. 
 Contiguous Allocation 
Contiguous allocation requires that each file occupy a set of contiguous 
blocks on the disk. Disk addresses define a linear ordering on the disk. With 
this ordering, assuming that only one job is accessing the disk, accessing block 
b + 1 after block b normally requires no head movement. When head 



movement is needed (from the last sector of one cylinder to the first sector of 
the next cylinder), the head need only move from one track to the next. Thus, 
the number of disk seeks required for accessing contiguously allocated files is 
minimal, as is seek time when a seek is finally needed. 

Contiguous allocation of a file is defined by the disk address and length 
(in block units) of the first block. If the file is n blocks long and starts at 
location b, then it occupies blocks b, b + 1, b + 2, ..., b + n − 1. The directory 
entry for each file indicates the address of the starting block and the length of 
the area allocated for this file (Figure 4.21). 

Accessing a file that has been allocated contiguously is easy. For 
sequential access, the file system remembers the disk address of the last block 
referenced and, when necessary, reads the next block. For direct access to 
block i of a file that starts at block b, we can immediately access block b + i. 
Thus, both sequential and direct access can be supported by contiguous 
allocation. 

Contiguous allocation has some problems, however. One difficulty is 
finding space for a new file. The system chosen to manage free space 
determines how this task is accomplished. Any management system can be 
used, but some are slower than others. 

The contiguous-allocation problem can be seen as a particular 
application of the general dynamic storage-allocation problem discussed in 
Section 8.3, which involves how to satisfy a request of size n from a list of free 
holes. First fit and best fit are the most common strategies used to select a free 
hole from the set of available holes. Simulations have shown that both first fit 
and best fit are more efficient than worst fit in terms of both time and storage 
utilization. Neither first fit nor best fit is clearly best in terms of storage 
utilization, but first fit is generally faster. 

All these algorithms suffer from the problem of external 
fragmentation. As files are allocated and deleted, the free disk space is broken 
into little pieces. External fragmentation exists whenever free space is broken 
into chunks. It becomes a problem when the largest contiguous chunk is 
insufficient for a request; storage is fragmented into a number of holes, none of 
which is large enough to store the data. Depending on the total amount of disk 
storage and the average file size, external fragmentation may be a minor or a 
major problem. 

One strategy for preventing loss of significant amounts of disk space to 
external fragmentation is to copy an entire file system onto another disk. The 
original disk is then freed completely, creating one large contiguous free space. 
We then copy the files back onto the original disk by allocating contiguous 
space from this one large hole. This scheme effectively compacts all free 
space into one contiguous space, solving the fragmentation problem. The cost 
of this compaction is time, however, and the cost can be particularly high for 
large hard disks. Compacting these disks may take hours and may be necessary 
on a weekly basis. Some systems require that this function be done off-line, 
with the file system unmounted. During this down time, normal system 
operation generally cannot be permitted, so such compaction is avoided at all 
costs on production machines. Most modern systems that need 



defragmentation can perform it on-line during normal system operations, but 
the performance penalty can be substantial. 
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Figure 4.21 Contiguous allocation of disk space. 

Another problem with contiguous allocation is determining how much 
space is needed for a file. When the file is created, the total amount of space it 
will need must be found and allocated. How does the creator (program or 
person) know the size of the file to be created? In some cases, this 
determination may be fairly simple (copying an existing file, for example). In 
general, however, the size of an output file may be difficult to estimate. 

If we allocate too little space to a file, we may find that the file cannot 
be extended. Especially with a best-fit allocation strategy, the space on both 
sides of the file may be in use. Hence, we cannot make the file larger in place. 
Two possibilities then exist. First, the user program can be terminated, with an 
appropriate error message. The user must then allocate more space and run the 
program again. These repeated runs may be costly. To prevent them, the user 
will normally overestimate the amount of space needed, resulting in 
considerable wasted space. The other possibility is to find a larger hole, copy 
the contents of the file to the new space, and release the previous space. This 



series of actions can be repeated as long as space exists, although it can be time 
consuming. The user need never be informed explicitly about what is 
happening, however; the system continues despite the problem, although more 
and more slowly. 

Even if the total amount of space needed for a file is known in advance, 
preallocation may be inefficient. A file that will grow slowly over a long 
period (months or years) must be allocated enough space for its final size, even 
though much of that space will be unused for a long time. The file therefore 
has a large amount of internal fragmentation. 

To minimize these drawbacks, some operating systems use a modified 
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated 
initially. Then, if that amount proves not to be large enough, another chunk of 
contiguous space, known as an extent, is added. The location of a file’s blocks 
is then recorded as a location and a block count, plus a link to the first block of 
the next extent. On some systems, the owner of the file can set the extent size, 
but this setting results in inefficiencies if the owner is incorrect. Internal 
fragmentation can still be a problem if the extents are too large, and external 
fragmentation can become a problem as extents of varying sizes are allocated 
and deallocated. The commercial Veritas file system uses extents to optimize 
performance. Veritas is a high-performance replacement for the standard 
UNIX UFS. 
 Linked Allocation 
Linked allocation solves all problems of contiguous allocation. With linked 
allocation, each file is a linked list of disk blocks; the disk blocks may be 
scattered anywhere on the disk. The directory contains a pointer to the first and 
last blocks of the file. For example, a file of five blocks might start at block 9 
and continue at block 16, then block 1, then block 10, and finally block 25 
(Figure 4.22). Each block contains a pointer to the next block. These pointers 
are not made available to the user. Thus, if each block is 512 bytes in size, and 
a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 
bytes. 

To create a new file, we simply create a new entry in the directory. 
With linked allocation, each directory entry has a pointer to the first disk block 
of the file. This pointer is initialized to null (the end-of-list pointer value) to 
signify an empty file. The size field is also set to 0. A write to the file causes 
the free-space management system to find a free block, and this new block is 
written to and is linked to the end of the file. To read a file, we simply read 
blocks by following the pointers from block to block. There is no external 
fragmentation with linked allocation, and any free block on the free-space list 
can be used to satisfy a request. The size of a file need not be declared when 
the file is created. A file can continue to grow as long as free blocks are 
available. Consequently, it is never necessary to compact disk space. 
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Figure 4.22 Linked allocation of disk space. 

Linked allocation does have disadvantages, however. The major 
problem is that it can be used effectively only for sequential-access files. To 
find the ith block of a file, we must start at the beginning of that file and 
follow the pointers until we get to the ith block. Each access to a pointer 
requires a disk read, and some require a disk seek. Consequently, it is 
inefficient to support a direct-access capability for linked-allocation files. 

Another disadvantage is the space required for the pointers. If a pointer 
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being 
used for pointers, rather than for information. Each file requires slightly more 
space than it would otherwise. 

The usual solution to this problem is to collect blocks into multiples, 
called clusters, and to allocate clusters rather than blocks. For instance, the file 
system may define a cluster as four blocks and operate on the disk only in 
cluster units. Pointers then use a much smaller percentage of the file’s disk 
space. This method allows the logical-to-physical block mapping to remain 
simple but improves disk throughput (because fewer disk-head seeks are 
required) and decreases the space needed for block allocation and free-list 
management. The cost of this approach is an increase in internal 
fragmentation, because more space is wasted when a cluster is partially full 
than when a block is partially full. Clusters can be used to improve the disk- 
access time for many other algorithms as well, so they are used in most file 
systems. 



Yet another problem of linked allocation is reliability. Recall that the 
files are linked together by pointers scattered all over the disk, and consider what 
would happen if a pointer were lost or damaged. A bug in the operating-system 
software or a disk hardware failure might result in picking up the wrong pointer. 
This error could in turn result in linking into the free-space list or into another 
file. One partial solution is to use doubly linked lists, and another is to store the 
file name and relative block number in each block. However, these schemes 
require even more overhead for each file. 

An important variation on linked allocation is the use of a file-allocation 
table (FAT). This simple but efficient method of disk-space allocation was used 
by the MS-DOS operating system. A section of disk at the beginning of each 
volume is set aside to contain the table. The table has one entry for each disk 
block and is indexed by block number. The FAT is used in much the same way 
as a linked list. The directory entry contains the block number of the first block 
of the file. The table entry indexed by that block number contains the block 
number of the next block in the file. This chain continues until it reaches the last 
block, which has a special end-of-file value as the table entry. An unused block 
is indicated by a table value of 0. Allocating a new block to a file is a simple 
matter of finding the first 0-valued table entry and replacing the previous end-of- 
file value with the address of the new block. The 0 is then replaced with the end- 
of-file value. An illustrative example is the FAT structure shown in Figure 4.22 
for a file consisting of disk blocks 217, 618, and 339. 

The FAT allocation scheme can result in a significant number of disk 
head seeks, unless the FAT is cached. The disk head must move to the start of 
the volume to read the FAT and find the location of the block in question, then 
move to the location of the block itself. In the worst case, both moves occur for 
each of the blocks. A benefit is that random-access time is improved, because 
the disk head can find the location of any block by reading the information in the 
FAT. 

 Indexed Allocation 
Linked allocation solves the external-fragmentation and size-declaration 
problems of contiguous allocation. However, in the absence of a FAT, linked 
allocation cannot support efficient direct access, since the pointers to the blocks 
are scattered with the blocks themselves all over the disk and must be retrieved 
in order. Indexed allocation solves this problem by bringing all the pointers 
together into one location: the index block. 

Each file has its own index block, which is an array of disk-block 
addresses. The i th entry in the index block points to the i th block of the file. The 
directory contains the address of the index block (Figure 12.8). To find and read 
the i th block, we use the pointer in the i th index-block entry. This scheme is 
similar to the paging scheme. 
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Figure 4.23 File-allocation table. 
 

When the file is created, all pointers in the index block are set to null. 
When the i th block is first written, a block is obtained from the free-space 
manager, and its address is put in the ith index-block entry. 

Indexed allocation supports direct access, without suffering from 
external fragmentation, because any free block on the disk can satisfy a request 
for more space. Indexed allocation does suffer from wasted space, however. 
The pointer overhead of the index block is generally greater than the pointer 
overhead of linked allocation. Consider a common case in which we have a 
file of only one or two blocks. With linked allocation, we lose the space of 
only one pointer per block. With indexed allocation, an entire index block 
must be allocated, even if only one or two pointers will be non-null. 

This point raises the question of how large the index block should be. 
Every file must have an index block, so we want the index block to be as small 
as possible. If the index block is too small, however, it will not be able to hold 
enough pointers for a large file, and a mechanism will have to be available to 
deal with this issue. Mechanisms for this purpose include the following: 



 
 

 
 

 
 

 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 Indexed allocation of disk space. 
 

Linked scheme. An index block is normally one disk block. Thus, it can be 
read and written directly by itself. To allow for large files, we can link together 
several index blocks. For example, an index block might contain a small 
header giving the name of the file and a set of the first 100 disk-block 
addresses. The next address (the last word in the index block) is null (for a 
small file) or is a pointer to another index block (for a large file). 
Multilevel index. A variant of linked representation uses a first-level index 
block to point to a set of second-level index blocks, which in turn point to the 
file blocks. To access a block, the operating system uses the first-level index to 
find a second-level index block and then uses that block to find the desired 
data block. This approach could be continued to a third or fourth level, 
depending on the desired maximum file size. With 4,096-byte blocks, we 
could store 1,024 four-byte pointers in an index block. Two levels of indexes 
allow 1,048,576 data blocks and a file size of up to 4 GB. 
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Combined scheme. Another alternative, used in UNIX-based file systems, is to 
keep the first, say, 15 pointers of the index block in the file’s inode. The first 12 
of these pointers point to direct blocks; that is, they contain addresses of blocks 
that contain data of the file. Thus, the data for small files (of no more than 12 
blocks) do not need a separate index block. If the block size is 4 KB, then up to 
48 KB of data can be accessed directly. The next three pointers point to indirect 
blocks. The first points to a single indirect block, which is an index block 
containing not data but the addresses of blocks that do contain data. The second 
points to a double indirect block, which contains the address of a block that 
contains the addresses of blocks that contain pointers to the actual data blocks. 
The last pointer contains the address of a triple indirect block. (A UNIX inode 
is shown in Figure 4.25). 

Under this method, the number of blocks that can be allocated to a file 
exceeds the amount of space addressable by the 4-byte file pointers used by 
many operating systems. A 32-bit file pointer reaches only 232 bytes, or 4 GB. 
Many UNIX and Linux implementations now support 64-bit file pointers, which 
allows files and file systems to be several exbibytes in size. The ZFS file system 
supports 128-bit file pointers. 

Indexed-allocation schemes suffer from some of the same performance 
problems as does linked allocation. Specifically, the index blocks can be cached 
in memory, but the data blocks may be spread all over a volume. 

 Performance 

The allocation methods that we have discussed vary in their storage efficiency 
and data-block access times. Both are important criteria in selecting the proper 
method or methods for an operating system to implement. 

Before selecting an allocation method, we need to determine how the 
systems will be used. A system with mostly sequential access should not use the 
same method as a system with mostly random access. 

For any type of access, contiguous allocation requires only one access to 
get a disk block. Since we can easily keep the initial address of the file in 
memory, we can calculate immediately the disk address of the i th block (or the 
next block) and read it directly. 

For linked allocation, we can also keep the address of the next block in 
memory and read it directly. This method is fine for sequential access; for direct 
access, however, an access to the i th block might require i disk reads. This 
problem indicates why linked allocation should not be used for an application 
requiring direct access. 
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As a result, some systems support direct-access files by using 
contiguous allocation and sequential-access files by using linked allocation. 
For these systems, the type of access to be made must be declared when the 
file is created. A file created for sequential access will be linked and cannot be 
used for direct access. A file created for direct access will be contiguous and 
can support both direct access and sequential access, but its maximum length 



must be declared when it is created. In this case, the operating system must 
have appropriate data structures and algorithms to support both allocation 
methods. Files can be converted from one type to another by the creation of a 
new file of the desired type, into which the contents of the old file are copied. 
The old file may then be deleted and the new file renamed. 

Indexed allocation is more complex. If the index block is already in 
memory, then the access can be made directly. However, keeping the index 

block in memory requires considerable space. If this memory space is not 
available, then we may have to read first the index block and then the desired 
data block. For a two-level index, two index-block reads might be necessary. 
For an extremely large file, accessing a block near the end of the file would 
require reading in all the index blocks before the needed data block finally 
could be read. Thus, the performance of indexed allocation depends on the 
index structure, on the size of the file, and on the position of the block desired. 

Some systems combine contiguous allocation with indexed allocation 
by using contiguous allocation for small files (up to three or four blocks) and 
automatically switching to an indexed allocation if the file grows large. Since 
most files are small, and contiguous allocation is efficient for small files, 
average performance can be quite good. 

Many other optimizations are in use. Given the disparity between CPU 
speed and disk speed, it is not unreasonable to add thousands of extra 
instructions to the operating system to save just a few disk-head movements. 
Furthermore, this disparity is increasing over time, to the point where hundreds 
of thousands of instructions could reasonably be used to optimize head 
movements. 
 Free-Space Management 
Since disk space is limited, we need to reuse the space from deleted files for 
new files, if possible. (Write-once optical disks allow only one write to any 
given sector, and thus reuse is not physically possible.) To keep track of free 
disk space, the system maintains a free-space list. The free-space list records 
all free disk blocks — those not allocated to some file or directory. To create a 
file, we search the free-space list for the required amount of space and allocate 
that space to the new file. This space is then removed from the free-space list. 
When file is deleted, its disk space is added to the free-space list. The free- 
space list, despite its name, may not be implemented as a list, as we discuss 
next. 

 
 Bit Vector 

Frequently, the free-space list is implemented as a bit map or bit vector. Each 
block is represented by 1 bit. If the block is free, the bit is 1; if the block is 
allocated, the bit is 0. 

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 
13, 17, 18, 25, 26, and 27 are free and the rest of the blocks are allocated. The 
free-space bit map would be 

001111001111110001100000011100000 



The main advantage of this approach is its relative simplicity and its efficiency 
in finding the first free block or n consecutive free blocks on the disk. Indeed, 
many computers supply bit-manipulation instructions that can be used 
effectively for that purpose. One technique for finding the first free block on a 
system that uses a bit-vector to allocate disk space is to sequentially check each 
word in the bit map to see whether that value is not 0, since a 0-valued word 
contains only 0 bits and represents a set of allocated blocks. The first non-0 
word is scanned for the first 1 bit, which is the location of the first free block. 
The calculation of the block number is 

 
(number of bits per word) × (number of 0-value words) + offset of first 1 bit. 

 
Again, we see hardware features driving software functionality. 

Unfortunately, bit vectors are inefficient unless the entire vector is kept in main 
memory (and is written to disk occasionally for recovery needs). Keeping it in 
main memory is possible for smaller disks but not necessarily for larger ones. A 
1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to track 
its free blocks, although clustering the blocks in groups of four reduces this 
number to around 83 KB per disk. A 1-TB disk with 4-KB blocks requires 256 
MB to store its bit map. Given that disk size constantly increases, the problem 
with bit vectors will continue to escalate as well. 
 Linked List 
Another approach to free-space management is to link together all the free disk 
blocks, keeping a pointer to the first free block in a special location on the disk 
and caching it in memory. This first block contains a pointer to the next free 
disk block, and so on. Recall our earlier example, in which blocks 2, 3, 4, 5, 8, 
9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free and the rest of the blocks were 
allocated. In this situation, we would keep a pointer to block 2 as the first free 
block. Block 2 would contain a pointer to block 3, which would point to block 
4, which would point to block 5, which would point to block 8, and so on 
(Figure 4.26). This scheme is not efficient; to traverse the list, we must read 
each block, which requires substantial I/O time. Fortunately, however, 
traversing the free list is not a frequent action. Usually, the operating system 
simply needs a free block so that it can allocate that block to a file, so the first 
block in the free list is used. The FAT method incorporates free-block 
accounting into the allocation data structure. No separate method is needed. 
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Figure 4.26 Linked free-space list on disk. 
 

 Grouping 
A modification of the free-list approach stores the addresses of n free blocks in 
the first free block. The first n−1 of these blocks are actually free. The last 
block contains the addresses of another n free blocks, and so on. The addresses 
of a large number of free blocks can now be found quickly, unlike the situation 
when the standard linked-list approach is used. 
 Counting 
Another approach takes advantage of the fact that, generally, several 
contiguous blocks may be allocated or freed simultaneously, particularly when 
space is allocated with the contiguous-allocation algorithm or through 
clustering. Thus, rather than keeping a list of n free disk addresses, we can 
keep the address of the first free block and the number (n) of free contiguous 
blocks that follow the first block. Each entry in the free-space list then consists 
of a disk address and a count. Although each entry requires more space than 
would a simple disk address, the overall list is shorter, as long as the count is 
generally greater than 1. Note that this method of tracking free space is similar 
to the extent method of allocating blocks. These entries can be stored in a 
balanced tree, rather than a linked list, for efficient lookup, insertion, and 
deletion. 



 Space Maps 
Oracle’s ZFS file system (found in Solaris and other operating systems) was 
designed to encompass huge numbers of files, directories, and even file systems 
(in ZFS, we can create file-system hierarchies). On these scales, metadata I/O 
can have a large performance impact. Consider, for example, that if the free- 
space list is implemented as a bit map, bit maps must be modified both when 
blocks are allocated and when they are freed. Freeing 1 GB of data on a 1-TB 
disk could cause thousands of blocks of bit maps to be updated, because those 
data blocks could be scattered over the entire disk. Clearly, the data structures 
for such a system could be large and inefficient. 

In its management of free space, ZFS uses a combination of techniques to 
control the size of data structures and minimize the I/O needed to manage those 
structures. First, ZFS creates metaslabs to divide the space on the device into 
chunks of manageable size. A given volume may contain hundreds of metaslabs. 
Each metaslab has an associated space map. ZFS uses the counting algorithm to 
store information about free blocks. Rather than write counting structures to 
disk, it uses log-structured file-system techniques to record them. The space map 
is a log of all block activity (allocating and freeing), in time order, in counting 
format. When ZFS decides to allocate or free space from a metaslab, it loads the 
associated space map into memory in a balanced-tree structure (for very efficient 
operation), indexed by offset, and replays the log into that structure. The in- 
memory space map is then an accurate representation of the allocated and free 
space in the metaslab. ZFS also condenses the map as much as possible by 
combining contiguous free blocks into a single entry. Finally, the free-space list 
is updated on disk as part of the transaction-oriented operations of ZFS. During 
the collection and sorting phase, block requests can still occur, and ZFS satisfies 
these requests from the log. In essence, the log plus the balanced tree is the free 
list. 
 Efficiency and Performance 
Now that we have discussed various block-allocation and directory-management 
options, we can further consider their effect on performance and efficient disk 
use. Disks tend to represent a major bottleneck in system performance, since 
they are the slowest main computer component. In this section, we discuss a 
variety of techniques used to improve the efficiency and performance of 
secondary storage. 

 Efficiency 
The efficient use of disk space depends heavily on the disk-allocation and 
directory algorithms in use. For instance, UNIX inodes are preallocated on a 
volume. Even an empty disk has a percentage of its space lost to inodes. 
However, by preallocating the inodes and spreading them across the volume, we 
improve the file system’s performance. This improved performance results from 
the UNIX allocation and free-space algorithms, which try to keep a file’s data 
blocks near that file’s inode block to reduce seek time. 



As another example, let’s reconsider the clustering scheme, which 
improves file-seek and file-transfer performance at the cost of internal 
fragmentation. To reduce this fragmentation, BSD UNIX varies the cluster 
size as a file grows. Large clusters are used where they can be filled, and 
small clusters are used for small files and the last cluster of a file. The types 
of data normally kept in a file’s directory (or inode) entry also require 
consideration.   Commonly,   a   ―last   write   date‖   is   recorded   to   supply 
information to the user and to determine whether the file needs to be backed 
up. Some systems also keep a ―last access date,‖ so that a user can determine 
when the file was last read. The result of keeping this information is that, 
whenever the file is read, a field in the directory structure must be written to. 
That means the block must be read into memory, a section changed, and the 
block written back out to disk, because operations on disks occur only in 
block (or cluster) chunks. So any time a file is opened for reading, its 
directory entry must be read and written as well. This requirement can be 
inefficient for frequently accessed files, so we must weigh its benefit against 
its performance cost when designing a file system. Generally, every data item 
associated with a file needs to be considered for its effect on efficiency and 
performance. 

Consider, for instance, how efficiency is affected by the size of the 
pointers used to access data. Most systems use either 32-bit or 64-bit pointers 
throughout the operating system. Using 32-bit pointers limits the size of a file 
to 232, or 4 GB. Using 64-bit pointers allows very large file sizes, but 64-bit 
pointers require more space to store. As a result, the allocation and free- 
space-management methods (linked lists, indexes, and so on) use more disk 
space. 

One of the difficulties in choosing a pointer size — or, indeed, any 
fixed allocation size within an operating system — is planning for the effects 
of changing technology. Consider that the IBM PC XT had a 10-MB hard 
drive and an MS-DOS file system that could support only 32 MB. (Each 
FAT entry was 12 bits, pointing to an 8-KB cluster.) As disk capacities 
increased, larger disks had to be split into 32-MB partitions, because the file 
system could not track blocks beyond 32 MB. As hard disks with capacities 
of over 100 MB became common, the disk data structures and algorithms in 
MS-DOS had to be modified to allow larger file systems. (Each FAT entry 
was expanded to 16 bits and later to 32 bits.) The initial file-system decisions 
were made for efficiency reasons; however, with the advent of MS-DOS 
Version 4, millions of computer users were inconvenienced when they had to 
switch to the new, larger file system. Solaris’ ZFS file system uses 128-bit 
pointers, which theoretically should never need to be extended. 

As another example, consider the evolution of the Solaris operating 
system. Originally, many data structures were of fixed length, allocated at 
system startup. These structures included the process table and the open-file 
table. When the process table became full, no more processes could be 
created. When the file table became full, no more files could be opened. The 
system would fail to provide services to users. Table sizes could be increased 
only by recompiling the kernel and rebooting the system. With later releases 



of Solaris, almost all kernel structures were allocated dynamically, 
eliminating these artificial limits on system performance. Of course, the 
algorithms that manipulate these tables are more complicated, and the 
operating system is a little slower because it must dynamically allocate and 
deallocate table entries; but that price is the usual one for more general 
functionality. 
 Performance 
Even after the basic file-system algorithms have been selected, we can still 
improve performance in several ways. As will be discussed, most disk 
controllers include local memory to form an on-board cache that is large 
enough to store entire tracks at a time. Once a seek is performed, the track is 
read into the disk cache starting at the sector under the disk head (reducing 
latency time). The disk controller then transfers any sector requests to the 
operating system. Once blocks make it from the disk controller into main 
memory, the operating system may cache the blocks there. 

Some systems maintain a separate section of main memory for a 
buffer cache, where blocks are kept under the assumption that they will be 
used again shortly. Other systems cache file data using a page cache. The 
page cache uses virtual memory techniques to cache file data as pages rather 
than as file-system-oriented blocks. Caching file data using virtual addresses 
is far more efficient than caching through physical disk blocks, as accesses 
interface with virtual memory rather than the file system. Several systems — 
including Solaris, Linux, and Windows — use page caching to cache both 
process pages and file data. This is known as unified virtual memory. 

Some versions of UNIX and Linux provide a unified buffer cache. 
To illustrate the benefits of the unified buffer cache, consider the two 
alternatives for opening and accessing a file. One approach is to use memory 
mapping; the second is to use the standard system calls read() and write(). 
Without a unified buffer cache, we have a situation similar to Figure 4.27. 
Here, the read() and write() system calls go through the buffer cache. The 
memory-mapping call, however, requires using two caches — the page cache 
and the buffer cache. A memory mapping proceeds by reading in disk blocks 
from the file system and storing them in the buffer cache. Because the virtual 
memory system does not interface with the buffer cache, the contents of the 
file in the buffer cache must be copied into the page cache. This situation, 
known as double caching, requires caching file-system data twice. Not only 
does it waste memory but it also wastes significant CPU and I/O cycles due 
to the extra data movement within system memory. In addition, 
inconsistencies between the two caches can result in corrupt files. In contrast, 
when a unified buffer cache is provided, both memory mapping and the 
read() and write() system calls use the same page cache. This has the benefit 
of avoiding double caching, and it allows the virtual memory system to 
manage file-system data. The unified buffer cache is shown in Figure 4.28. 
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Figure 4.27 I/O without a unified buffer cache. 
 

Regardless of whether we are caching disk blocks or pages (or both), 
LRU seems a reasonable general-purpose algorithm for block or page 
replacement. However, the evolution of the Solaris page-caching algorithms 
reveals the difficulty in choosing an algorithm. Solaris allows processes and 
the page cache to share unused memory. Versions earlier than Solaris 2.5.1 
made no distinction between allocating pages to a process and allocating them 
to the page cache. As a result, a system performing many I/O operations used 
most of the available memory for caching pages. Because of the high rates of 
I/O, the page scanner (Section 9.10.2) reclaimed pages from processes — 
rather than from the page cache — when free memory ran low. Solaris 2.6 and 
Solaris 7 optionally implemented priority paging, in which the page scanner 
gives priority to process pages over the page cache. Solaris 8 applied a fixed 
limit to process pages and the file-system page cache, preventing either from 
forcing the other out of memory. Solaris 9 and 10 again changed the 
algorithms to maximize memory use and minimize thrashing. 

Another issue that can affect the performance of I/O is whether writes 
to the file system occur synchronously or asynchronously. Synchronous 
writes occur in the order in which the disk subsystem receives them, and the 
writes are not buffered. Thus, the calling routine must wait for the data to 
reach the disk drive before it can proceed. In an asynchronous write, the data 
are stored in the cache, and control returns to the caller. Most writes are 
asynchronous. However, metadata writes, among others, can be synchronous. 
Operating systems frequently include a flag in the open system call to allow a 
process to request that writes be performed synchronously. For example, 
databases use this feature for atomic transactions, to assure that data reach 
stable storage in the required order. 



 
 

Figure 4.28 I/O using a unified buffer cache. 

Some systems optimize their page cache by using different replacement 
algorithms, depending on the access type of the file. A file being read or written 
sequentially should not have its pages replaced in LRU order, because the most 
recently used page will be used last, or perhaps never again. Instead, sequential 
access can be optimized by techniques known as free-behind and read-ahead. 
Free-behind removes a page from the buffer as soon as the next page is 
requested. The previous pages are not likely to be used again and waste buffer 
space. With read-ahead, a requested page and several subsequent pages are read 
and cached. These pages are likely to be requested after the current page is 
processed. Retrieving these data from the disk in one transfer and caching them 
saves a considerable amount of time. One might think that a track cache on the 
controller would eliminate the need for read-ahead on a multiprogrammed 
system. However, because of the high latency and overhead involved in making 
many small transfers from the track cache to main memory, performing a read- 
ahead remains beneficial. 

The page cache, the file system, and the disk drivers have some 
interesting interactions. When data are written to a disk file, the pages are 
buffered in the cache, and the disk driver sorts its output queue according to disk 
address. These two actions allow the disk driver to minimize disk-head seeks 
and to write data at times optimized for disk rotation. Unless synchronous writes 
are required, a process writing to disk simply writes into the cache, and the 
system asynchronously writes the data to disk when convenient. The user 
process sees very fast writes. When data are read from a disk file, the block I/O 
system does some read-ahead; however, writes are much more nearly 
asynchronous than are reads. Thus, output to the disk through the file system is 
often faster than is input for large transfers, counter to intuition. 
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Mass -Storage Structure 
 Overview of Mass-Storage Structure 

In this section, we present a general overview of the physical structure of 
secondary and tertiary storage devices. 

 Magnetic Disks 
Magnetic disks provide the bulk of secondary storage for modern computer 
systems. Conceptually, disks are relatively simple (Figure 4.29). Each disk 
platter has a flat circular shape, like a CD. Common platter diameters range 
from 1.8 to 3.5 inches. The two surfaces of a platter are covered with a magnetic 
material. We store information by recording it magnetically on the platters. 
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Figure 4.29 Moving-head disk mechanism. 
 

A read – write head ―flies‖ just above each surface of every platter. The heads are 
attached to a disk arm that moves all the heads as a unit. The surface of a platter 
is logically divided into circular tracks, which are subdivided into sectors. The 
set of tracks that are at one arm position makes up a cylinder. There may be 
thousands of concentric cylinders in a disk drive, and each track may contain 
hundreds of sectors. The storage capacity of common disk drives is measured in 
gigabytes. 

When the disk is in use, a drive motor spins it at high speed. Most drives 
rotate 60 to 250 times per second, specified in terms of rotations per minute 
(RPM). Common drives spin at 5,400, 7,200, 10,000, and 15,000 RPM. Disk 
speed has two parts. The transfer rate is the rate at which data flow between the 



drive and the computer. The positioning time, or random-access time, consists 
of two 

parts: the time necessary to move the disk arm to the desired cylinder, 
called the seek time, and the time necessary for the desired sector to rotate to the 
disk head, called the rotational latency. Typical disks can transfer several 
megabytes of data per second, and they have seek times and rotational latencies of 
several milliseconds. 

Because the disk head flies on an extremely thin cushion of air (measured 
in microns), there is a danger that the head will make contact with the disk 
surface. Although the disk platters are coated with a thin protective layer, the head 
will sometimes damage the magnetic surface. This accident is called a head 
crash. A head crash normally cannot be repaired; the entire disk must be replaced. 

A disk can be removable,  allowing different disks to be  mounted  as 
needed. Removable magnetic disks generally consist of one platter, held in a 

plastic case to prevent damage while not in the disk drive. Other forms of 
removable disks include CDs, DVDs, and Blu-ray discs as well as removable 
flash-memory devices known as flash drives (which are a type of solid-state 
drive). 

A disk drive is attached to a computer by a set of wires called an I/O bus. 
Several kinds of buses are available, including advanced technology attachment 
(ATA), serial ATA (SATA), eSATA, universal serial bus (USB), and fibre 
channel (FC). The data transfers on a bus are carried out by special electronic 
processors called controllers. The host controller is the controller at the 
computer end of the bus. A disk controller is built into each disk drive. To 
perform a disk I/O operation, the computer places a command into the host 
controller, typically using memory-mapped I/O ports, as described in Section 
9.7.3. The host controller then sends the command via messages to the disk 
controller, and the disk controller operates the disk-drive hardware to carry out the 
command. Disk controllers usually have a built-in cache. Data transfer at the disk 
drive happens between the cache and the disk surface, and data transfer to the 
host, at fast electronic speeds, occurs between the cache and the host controller. 

 
 Solid-State Disks 

Sometimes old technologies are used in new ways as economics change or 
the technologies evolve. An example is the growing importance of solid-state 
disks, or SSDs. Simply described, an SSD is nonvolatile memory that is used like 
a hard drive. There are many variations of this technology, from DRAM with a 
battery to allow it to maintain its state in a power failure through flash-memory 
technologies like single-level cell (SLC) and multilevel cell (MLC) chips. 

SSDs have the same characteristics as traditional hard disks but can be 
more reliable because they have no moving parts and faster because they have no 
seek time or latency. In addition, they consume less power. However, they are 
more expensive per megabyte than traditional hard disks, have less capacity than 
the larger hard disks, and may have shorter life spans than hard disks, so their uses 
are somewhat limited. One use for SSDs is in storage arrays, where they hold file- 
system metadata that require high performance. SSDs are also used in some laptop 
computers to make them smaller, faster, and more energy-efficient. 



Because SSDs can be much faster than magnetic disk drives, standard bus 
interfaces can cause a major limit on throughput. Some SSDs are designed to 
connect directly to the system bus (PCI, for example). SSDs are changing other 
traditional aspects of computer design as well. Some systems use them as a direct 
replacement for disk drives, while others use them as a new cache tier, moving 
data between magnetic disks, SSDs, and memory to optimize performance. 
 Magnetic Tapes 
Magnetic tape was used as an early secondary-storage medium. Although it is 
relatively permanent and can hold large quantities of data, its access time is slow 
compared with that of main memory and magnetic disk. In addition, random 
access to magnetic tape is about a thousand times slower than random access to 
magnetic disk, so tapes are not very useful for secondary storage. 

Tapes are used mainly for backup, for storage of infrequently used 
information, and as a medium for transferring information from one system to 
another. 

A tape is kept in a spool and is wound or rewound past a read – write 
head. Moving to the correct spot on a tape can take minutes, but once positioned, 
tape drives can write data at speeds comparable to disk drives. Tape capacities 
vary greatly, depending on the particular kind of tape drive, with current 
capacities exceeding several terabytes. Some tapes have built-in compression that 
can more than double the effective storage. Tapes and their drivers are usually 
categorized by width, including 4, 8, and 19 millimeters and 1/4 and 1/2 inch. 
Some are named according to technology, such as LTO-5 and SDLT. 

 
 Disk Structure 

Modern magnetic disk drives are addressed as large one-dimensional 
arrays of logical blocks, where the logical block is the smallest unit of transfer. 
The size of a logical block is usually 512 bytes, although some disks can be low- 
level formatted to have a different logical block size, such as 1,024 bytes. The 
one-dimensional array of logical blocks is mapped onto the sectors of the disk 
sequentially. Sector 0 is the first sector of the first track on the outermost cylinder. 
The mapping proceeds in order through that track, then through the rest of the 
tracks in that cylinder, and then through the rest of the cylinders from outermost to 
innermost. 

By using this mapping, we can — at least in theory — convert a logical 
block number into an old-style disk address that consists of a cylinder number, a 
track number within that cylinder, and a sector number within that track. In 
practice, it is difficult to perform this translation, for two reasons. First, most disks 
have some defective sectors, but the mapping hides this by substituting spare 
sectors from elsewhere on the disk. Second, the number of sectors per track is not 
a constant on some drives. 

Let’s look more closely at the second reason. On media that use 
constant linear velocity (CLV), the density of bits per track is uniform. The 
farther a track is from the center of the disk, the greater its length, so the more 
sectors it can hold. As we move from outer zones to inner zones, the number of 



sectors per track decreases. Tracks in the outermost zone typically hold 40 percent 
more sectors than do tracks in the innermost zone. The drive increases its rotation 
speed as the head moves from the outer to the inner tracks to keep the same rate of 
data moving under the head. This method is used in CD-ROM and DVD-ROM 
drives. Alternatively, the disk rotation speed can stay constant; in this case, the 
density of bits decreases from inner tracks to outer tracks to keep the data rate 
constant. This method is used in hard disks and is known as constant angular 
velocity (CAV). 

The number of sectors per track has been increasing as disk technology 
improves, and the outer zone of a disk usually has several hundred sectors per 
track. Similarly, the number of cylinders per disk has been increasing; large disks 
have tens of thousands of cylinders. 

 
 Disk Attachment 

Computers access disk storage in two ways. One way is via I/O ports (or host- 
attached storage); this is common on small systems. The other way is via a 
remote host in a distributed file system; this is referred to as network-attached 
storage. 

 Host-Attached Storage 

Host-attached storage is storage accessed through local I/O ports. These 
ports use several technologies. The typical desktop PC uses an I/O bus 

architecture called IDE or ATA. This architecture supports a maximum of two 
drives per I/O bus. A newer, similar protocol that has simplified cabling is SATA. 

High-end workstations and servers generally use more sophisticated I/O 
architectures such as fibre channel (FC), a high-speed serial architecture that can 

operate over optical fiber or over a four-conductor copper cable. It has two 
variants. One is a large switched fabric having a 24-bit address space. This variant 
is expected to dominate in the future and is the basis of storage-area networks 

(SANs). Because of the large address space and the switched nature of the 
communication, multiple hosts and storage devices can attach to the fabric, 
allowing great flexibility in I/O communication. The other FC variant is an 

arbitrated loop (FC-AL) that can address 126 devices (drives and controllers). 
A wide variety of storage devices are suitable for use as host-attached 

storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and tape 
drives. The I/O commands that initiate data transfers to a host-attached storage 
device are reads and writes of logical data blocks directed to specifically identified 
storage units (such as bus ID or target logical unit). 

 Network-Attached Storage 
Network-attached storage (NAS) device is a special-purpose storage 

system that is accessed remotely over a data network (Figure 4.30). Clients access 
network-attached storage via a remote-procedure-call interface such as NFS for 
UNIX systems or CIFS for Windows machines. The remote procedure calls 
(RPCs) are carried via TCP or UDP over an IP network — usually the same local- 
area network (LAN) that carries all data traffic to the clients. Thus, it may be 



easiest to think of NAS as simply another storage-access protocol. The network- 
attached storage unit is usually implemented as a RAID array with software that 
implements the RPC interface. 
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Figure 4.30 Network-attached storage. 
 

Network-attached storage provides a convenient way for all the computers on a 
LAN to share a pool of storage with the same ease of naming and access enjoyed 
with local host-attached storage. However, it tends to be less efficient and have 
lower performance than some direct-attached storage options. 

iSCSI is the latest network-attached storage protocol. In essence, it uses the IP 
network protocol to carry the SCSI protocol. Thus, networks — rather than SCSI 
cables — can be used as the interconnects between hosts and their storage. As a 
result, hosts can treat their storage as if it were directly attached, even if the 
storage is distant from the host. 

 Storage-Area Network 

One drawback of network-attached storage systems is that the storage 
I/O operations consume bandwidth on the data network, thereby increasing the 
latency of network communication. This problem can be particularly acute in 
large client – server installations — the communication between servers and 
clients competes for bandwidth with the communication among servers and 
storage devices. 

A storage-area network (SAN) is a private network (using storage 
protocols rather than networking protocols) connecting servers and storage units, 
as shown in Figure 4.31. The power of a SAN lies in its flexibility. Multiple hosts 
and multiple storage arrays can attach to the same SAN, and storage can be 
dynamically allocated to hosts. A SAN switch allows or prohibits access between 
the hosts and the storage. As one example, if a host is running low on disk space, 
the SAN can be configured to allocate more storage to that host. SANs make it 
possible for clusters of servers to share the same storage and for storage arrays to 
include multiple direct host connections. SANs typically have more ports — as 
well as more expensive ports — than storage arrays. 

FC is the most common SAN interconnect, although the simplicity of 
iSCSI is increasing its use. Another SAN interconnect is InfiniBand — a special- 



purpose bus architecture that provides hardware and software support for high- 
speed interconnection networks for servers and storage units. 
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Figure 4.31 Storage-area network. 

 
 Disk Scheduling 

One of the responsibilities of the operating system is to use the hardware 
efficiently. For the disk drives, meeting this responsibility entails having fast 
access time and large disk bandwidth. For magnetic disks, the access time has 
two major components. The seek time is the time for the disk arm to move the 
heads to the cylinder containing the desired sector. The rotational latency is the 
additional time for the disk to rotate the desired sector to the disk head. The disk 
bandwidth is the total number of bytes transferred, divided by the total time 
between the first request for service and the completion of the last transfer. We 
can improve both the access time and the bandwidth by managing the order in 
which disk I/O requests are serviced. 

Whenever a process needs I/O to or from the disk, it issues a system call 
to the operating system. The request specifies several pieces of information: 

Whether this operation is input or output 
What the disk address for the transfer is 
What the memory address for the transfer is 
What the number of sectors to be transferred is 

If the desired disk drive and controller are available, the request can be serviced 
immediately. If the drive or controller is busy, any new requests for service will 
be placed in the queue of pending requests for that drive. For a 
multiprogramming system with many processes, the disk queue may often have 
several pending requests. Thus, when one request is completed, the operating 
system chooses which pending request to service next. How does the operating 



system make this choice? Any one of several disk-scheduling algorithms can be 
used, and we discuss them next. 
 FCFS Scheduling 
The simplest form of disk scheduling is, of course, the first-come, first-served 
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not 
provide the fastest service. Consider, for example, a disk queue with requests 
for I/O to blocks on cylinders 

98, 183, 37, 122, 14, 124, 65, 67, 
Queue :98, 183, 37, 122, 14, 124, 65, 67 

head starts at 53 in that order. If the disk head is initially at cylinder 53, it will 
first move from 53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for 
a total head movement of 640 cylinders. This schedule is diagrammed in Figure 
10.4. 

0 14 37 5365 67 98 122124 183 199 

 
Figure 4.32 FCFS disk scheduling. 

The wild swing from 122 to 14 and then back to 124 illustrates the problem 
with this schedule. If the requests for cylinders 37 and 14 could be serviced 
together, before or after the requests for 122 and 124, the total head movement 
could be decreased substantially, and performance could be thereby improved. 

 
 SSTF Scheduling 

It seems reasonable to service all the requests close to the current head 
position before moving the head far away to service other requests. This 
assumption is the basis for the shortest-seek-time-first (SSTF) algorithm. The 
SSTF algorithm selects the request with the least seek time from the current 
head position. In other words, SSTF chooses the pending request closest to the 
current head position. 

For our example request queue, the closest request to the initial head 
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest 
request is at cylinder 67. From there, the request at cylinder 37 is closer than the 
one at 98, so 37 is served next. Continuing, we service the request at cylinder 
14, then 98, 122, 124, and finally 183 (Figure 4.33). This scheduling method 
results in a total head movement of only 236 cylinders — little more than one- 
third of the distance needed for FCFS scheduling of this request queue. Clearly, 
this algorithm gives a substantial improvement in performance. 



* 

1 
SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling; 

and like SJF scheduling, it may cause starvation of some requests. Remember that 
requests may arrive at any time. Suppose that we have two requests in the queue, 
for cylinders 14 and 186, and while the request from 14 is being serviced, a new 
request near 14 arrives. This new request will be serviced next, making the 
request at 186 wait. While this request is being serviced, another request close to 
14 could arrive. In theory, a continual stream of requests near one another could 
cause the request for cylinder 186 to wait indefinitely. 

queue98, 183, 37, 122, 14, 124, 65, 67 
head starts at   
53   

53  12212 
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Figure 4.33 SSTF disk scheduling. 
 

This scenario becomes increasingly likely as the pending-request queue grows 
longer. 

Although the SSTF algorithm is a substantial improvement over the FCFS 
algorithm, it is not optimal. In the example, we can do better by moving the head 
from 53 to 37, even though the latter is not closest, and then to 14, before turning 
around to service 65, 67, 98, 122, 124, and 183. This strategy reduces the total 
head movement to 208 cylinders. 

 SCAN Scheduling 
In the SCAN algorithm, the disk arm starts at one end of the disk and 

moves toward the other end, servicing requests as it reaches each cylinder, until it 
gets to the other end of the disk. At the other end, the direction of head movement 
is reversed, and servicing continues. The head continuously scans back and forth 
across the disk. The SCAN algorithm is sometimes called the elevator algorithm, 
since the disk arm behaves just like an elevator in a building, first servicing all the 
requests going up and then reversing to service requests the other way. 

Let’s return to our example to illustrate. Before applying SCAN to schedule 
the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know 
the direction of head movement in addition to the head’s current position. 
Assuming that the disk arm is moving toward 0 and that the initial head position is 



again 53, the head will next service 37 and then 14. At cylinder 0, the arm will 
reverse and will move toward the other end of the disk, servicing the requests at 
65, 67, 98, 122, 124, and 183 (Figure 4.34). If a request arrives in the queue just in 
front of the head, it will be serviced almost immediately; a request arriving just 
behind the head will have to wait until the arm moves to the end of the disk, 
reverses direction, and comes back. 

Assuming a uniform distribution of requests for cylinders, consider the 
density of requests when the head reaches one end and reverses direction. At this 
point, relatively few requests are immediately in front of the head, since these 
cylinders have recently been serviced. The heaviest density of requests is at the 
other end of the disk. These requests have also waited the longest, so why not go 
there first? That is the idea of the next algorithm. 

 
queue 98, 183, 37, 122, 14, 124, 65, 67 
head starts at 53 

0 14 37 53 65 67  98 122124 183 199 

Figure 4.34 SCAN disk scheduling. 
 

 C-SCAN Scheduling 
Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide 
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of 
the disk to the other, servicing requests along the way. When the head reaches the 
other end, however, it immediately returns to the beginning of the disk without 
servicing any requests on the return trip (Figure 4.35). The C-SCAN scheduling 
algorithm essentially treats the cylinders as a circular list that wraps around from 
the final cylinder to the first one. 

queue = 98, 183, 37, 122, 14, 124, 65, 67 
head starts at 53 
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Figure 4.35 C-SCAN disk scheduling. 
 LOOK Scheduling 
As we described them, both SCAN and C-SCAN move the disk arm across the 
full width of the disk. In practice, neither algorithm is often implemented this 
way. More commonly, the arm goes only as far as the final request in each 
direction. Then, it reverses direction immediately, without going all the way to 
the end of the disk. Versions of SCAN and C-SCAN that follow this pattern are 
called LOOK and C-LOOK scheduling, because they look for a request before 
continuing to move in a given direction (Figure 4.36). 
 Selection of a Disk-Scheduling Algorithm 
Given so many disk-scheduling algorithms, how do we choose the best one? 
SSTF is common and has a natural appeal because it increases performance over 
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load 
on the disk, because they are less likely to cause a starvation problem. For any 
particular list of requests, we can define an optimal order of retrieval, but the 
computation needed to find an optimal schedule may not justify the savings over 
SSTF or SCAN. With any scheduling algorithm, however, performance depends 
heavily on the number and types of requests. For instance, suppose that the 
queue usually has just one outstanding request. Then, all scheduling algorithms 
behave the same, because they have only one choice of where to move the disk 
head: they all behave like FCFS scheduling. 

Requests for disk service can be greatly influenced by the file-allocation 
method. A program reading a contiguously allocated file will generate several 
requests that are close together on the disk, resulting in limited head movement. 
A linked or indexed file, in contrast, may include blocks that are widely 
scattered on the disk, resulting in greater head movement. 

The location of directories and index blocks is also important. Since every 
file must be opened to be used, and opening a file requires searching the 
directory structure, the directories will be accessed frequently. Suppose that a 
directory entry is on the first cylinder and a file’s data are on the final cylinder. 
In this case, the disk head has to move the entire width of the disk. If the 
directory entry were on the middle cylinder, the head would have to move only 
one-half the width. Caching the directories and index blocks in main memory 
can also help to reduce disk-arm movement, particularly for read requests. 



queue = 98, 183, 37, 122, 14, 124, 65, 67 
head starts at 53 
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Figure 4.36 C-LOOK disk scheduling. 
Because of these complexities, the disk-scheduling algorithm should be written as 
a separate module of the operating system, so that it can be replaced with a 
different algorithm if necessary. Either SSTF or LOOK is a reasonable choice for 
the default algorithm. 

The scheduling algorithms described here consider only the seek distances. 
For modern disks, the rotational latency can be nearly as large as the average seek 
time. It is difficult for the operating system to schedule for improved rotational 
latency, though, because modern disks do not disclose the physical location of 
logical blocks. Disk manufacturers have been alleviating this problem by 
implementing disk-scheduling algorithms in the controller hardware built into the 
disk drive. If the operating system sends a batch of requests to the controller, the 
controller can queue them and then schedule them to improve both the seek time 
and the rotational latency. 

If I/O performance were the only consideration, the operating system would 
gladly turn over the responsibility of disk scheduling to the disk hard-ware. In 
practice, however, the operating system may have other constraints on the service 
order for requests. For instance, demand paging may take priority over application 
I/O, and writes are more urgent than reads if the cache is running out of free 
pages. Also, it may be desirable to guarantee the order of a set of disk writes to 
make the file system robust in the face of system crashes. Consider what could 
happen if the operating system allocated a disk page to a file and the application 
wrote data into that page before the operating system had a chance to flush the file 
system metadata back to disk. To accommodate such requirements, an operating 
system may choose to do its own disk scheduling and to spoon-feed the requests 
to the disk controller, one by one, for some types of I/O. 



 Disk Management 
The operating system is responsible for several other aspects of disk 
management, too. Here we discuss disk initialization, booting from disk, and 
bad-block recovery. 

 
 Disk Formatting 

A new magnetic disk is a blank slate: it is just a platter of a magnetic 
recording material. Before a disk can store data, it must be divided into sectors 
that the disk controller can read and write. This process is called low-level 
formatting, or physical formatting. Low-level formatting fills the disk with a 
special data structure for each sector. The data structure for a sector typically 
consists of a header, a data area (usually 512 bytes in size), and a trailer. The 
header and trailer contain information used by the disk controller, such as a 
sector number and an error-correcting code (ECC). When the controller writes 
a sector of data during normal I/O, the ECC is updated with a value calculated 
from all the bytes in the data area. When the sector is read, the ECC is 
recalculated and compared with the stored value. If the stored and calculated 
numbers are different, this mismatch indicates that the data area of the sector 
has become corrupted and that the disk sector may be bad (Section 10.5.3). The 
ECC is an error-correcting code because it contains enough information, if only 
a few bits of data have been corrupted, to enable the controller to identify which 
bits have changed and calculate what their correct values should be. It then 
reports a recoverable soft error. The controller automatically does the ECC 
processing whenever a sector is read or written. 

Most hard disks are low-level-formatted at the factory as a part of the 
manufacturing process. This formatting enables the manufacturer to test the disk 
and to initialize the mapping from logical block numbers to defect-free sectors 
on the disk. For many hard disks, when the disk controller is instructed to low- 
level-format the disk, it can also be told how many bytes of data space to leave 
between the header and trailer of all sectors. It is usually possible to choose 
among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk with a 
larger sector size means that fewer sectors can fit on each track; but it also 
means that fewer headers and trailers are written on each track and more space 
is available for user data. Some operating systems can handle only a sector size 
of 512 bytes. 

Before it can use a disk to hold files, the operating system still needs to 
record its own data structures on the disk. It does so in two steps. The first step 
is to partition the disk into one or more groups of cylinders. The operating 
system can treat each partition as though it were a separate disk. For instance, 
one partition can hold a copy of the operating system’s executable code, while 
another holds user files. The second step is logical formatting, or creation of a 
file system. In this step, the operating system stores the initial file-system data 
structures onto the disk. These data structures may include maps of free and 
allocated space and an initial empty directory. 



To increase efficiency,  most file systems  group blocks together into 
larger chunks, frequently called clusters. Disk I/O is done via blocks, but file 
system I/O is done via clusters, effectively assuring that I/O has more 
sequential-access and fewer random-access characteristics. 

Some operating systems give special programs the ability to use a disk 
partition as a large sequential array of logical blocks, without any file-system 
data structures. This array is sometimes called the raw disk, and I/O to this 
array is termed raw I/O. For example, some database systems prefer raw I/O 
because it enables them to control the exact disk location where each database 
record is stored. Raw I/O bypasses all the file-system services, such as the 
buffer cache, file locking, prefetching, space allocation, file names, and 
directories. We can make certain applications more efficient by allowing them 
to implement their own special-purpose storage services on a raw partition, but 
most applications perform better when they use the regular file-system services. 
 Boot Block 

For a computer to start running — for instance, when it is powered up or 
rebooted — it must have an initial program to run. This initial bootstrap 
program tends to be simple. It initializes all aspects of the system, from CPU 
registers to device controllers and the contents of main memory, and then starts 
the operating system. To do its job, the bootstrap program finds the operating- 
system kernel on disk, loads that kernel into memory, and jumps to an initial 
address to begin the operating-system execution. 

For most computers, the bootstrap is stored in read-only memory 
(ROM). This location is convenient, because ROM needs no initialization and 
is at a fixed location that the processor can start executing when powered up or 
reset. And, since ROM is read only, it cannot be infected by a computer virus. 
The problem is that changing this bootstrap code requires changing the ROM 
hardware chips. For this reason, most systems store a tiny bootstrap loader 
program in the boot ROM whose only job is to bring in a full bootstrap program 
from disk. The full bootstrap program can be changed easily: a new version is 
simply written onto the disk. The full bootstrap program is stored in the ―boot 
blocks‖ at a fixed location on the disk. A disk that has a boot partition is called a 
boot disk or system disk. 

The code in the boot ROM instructs the disk controller to read the boot 
blocks into memory (no device drivers are loaded at this point) and then starts 
executing that code. The full bootstrap program is more sophisticated than the 
bootstrap loader in the boot ROM. It is able to load the entire operating system 
from a non-fixed location on disk and to start the operating system running. 
Even so, the full bootstrap code may be small. 

Let’s consider as an example the boot process in Windows. First, note 
that Windows allows a hard disk to be divided into partitions, and one partition 
identified as the boot partition — contains the operating system and device 
drivers. The Windows system places its boot code in the first sector on the hard 
disk, which it terms the master boot record, or MBR. Booting begins by 
running code that is resident in the system’s ROM memory. This code directs 
the system to read the boot code from the MBR. In addition to containing boot 



code, the MBR contains a table listing the partitions for the hard disk and a flag 
indicating which partition the system is to be booted from, as illustrated in 
Figure 10.9. Once the system identifies the boot partition, it reads the first sector 
from that partition (which is called the boot sector) and continues with the 
remainder of the boot process, which includes loading the various subsystems 
and system services. 
 Bad Blocks 

Because disks have moving parts and small tolerances (recall that the 
disk head flies just above the disk surface), they are prone to failure. Sometimes 
the failure is complete; in this case, the disk  needs to be replaced and its 
contents restored from backup media to the new disk. More frequently, one or 
more sectors become defective. Most disks even come from the factory with 
bad blocks. Depending on the disk and controller in use, these blocks are 
handled in a variety of ways. 

On simple disks, such as some disks with IDE controllers, bad blocks are 
handled manually. One strategy is to scan the disk to find bad blocks while the 
disk is being formatted. Any bad blocks that are discovered are flagged as 
unusable so that the file system does not allocate them. If blocks go bad during 
normal operation, a special program (such as the Linux badblocks command) 
must be run manually to search for the bad blocks and to lock them away. Data 
that resided on the bad blocks usually are lost. 

More sophisticated disks are smarter about bad-block recovery. The 
controller maintains a list of bad blocks on the disk. The list is initialized during 
the low-level formatting at the factory and is updated over the life of the disk. 
Low-level formatting also sets aside spare sectors not visible to the operating 
system. The controller can be told to replace each bad sector logically with one 
of the spare sectors. This scheme is known as sector sparing or forwarding. 
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Figure 4.37 Booting from disk in Windows 



A typical bad-sector transaction might be as follows: 
 

The operating system tries to read logical block 87. 
The controller calculates the ECC and finds that the sector is bad. It reports this 
finding to the operating system. 
The next time the system is rebooted, a special command is run to tell the 
controller to replace the bad sector with a spare. 
After that, whenever the system requests logical block 87, the request is translated 
into the replacement sector’s address by the controller. 

Note that such a redirection by the controller could invalidate any 
optimization by the operating system’s disk-scheduling algorithm! For this reason, 
most disks are formatted to provide a few spare sectors in each cylinder and a 
spare cylinder as well. When a bad block is remapped, the controller uses a spare 
sector from the same cylinder, if possible. 

As an alternative to sector sparing, some controllers can be instructed to 
replace a bad block by sector slipping. Here is an example: Suppose that logical 
block 17 becomes defective and the first available spare follows sector 202. Sector 
slipping then remaps all the sectors from 17 to 202, moving them all down one 
spot. That is, sector 202 is copied into the spare, then sector 201 into 202, then 
200 into 201, and so on, until sector 18 is copied into sector 19. Slipping the 
sectors in this way frees up the space of sector 18 so that sector 17 can be mapped 
to it. 

The replacement of a bad block generally is not totally automatic, because 
the data in the bad block are usually lost. Soft errors may trigger a process in 
which a copy of the block data is made and the block is spared or slipped. An 
unrecoverable hard error, however, results in lost data. Whatever file was using 
that block must be repaired (for instance, by restoration from a backup tape), and 
that requires manual intervention. 
 Swap-Space Management 

Swapping is moving entire processes between disk and main memory. 
Swapping in that setting occurs when the amount of physical memory reaches a 
critically low point and processes are moved from memory to swap space to free 
available memory. In practice, very few modern operating systems implement 
swapping in this fashion. Rather, systems now combine swapping with virtual 
memory techniques and swap pages, not necessarily entire processes. In fact, 
some  systems  now  use  the  terms  ―swapping‖  and  ―paging‖  interchangeably, 
reflecting the merging of these two concepts. 

Swap-space management is another low-level task of the operating 
system. Virtual memory uses disk space as an extension of main memory. Since 
disk access is much slower than memory access, using swap space significantly 
decreases system performance. The main goal for the design and implementation 
of swap space is to provide the best throughput for the virtual memory system. In 
this section, we discuss how swap space is used, where swap space is located on 
disk, and how swap space is managed. 



 Swap-Space Use 
Swap space is used in various ways by different operating systems, 

depending on the memory-management algorithms in use. For instance, systems 
that implement swapping may use swap space to hold an entire process image, 
including the code and data segments. Paging systems may simply store pages 
that have been pushed out of main memory. The amount of swap space needed 
on a system can therefore vary from a few megabytes of disk space to gigabytes, 
depending on the amount of physical memory, the amount of virtual memory it 
is backing, and the way in which the virtual memory is used. 

Note that it may be safer to overestimate than to underestimate the amount 
of swap space required, because if a system runs out of swap space it may be 
forced to abort processes or may crash entirely. Overestimation wastes disk 
space that could otherwise be used for files, but it does no other harm. Some 
systems recommend the amount to be set aside for swap space. Solaris, for 
example, suggests setting swap space equal to the amount by which virtual 
memory exceeds pageable physical memory. In the past, Linux has suggested 
setting swap space to double the amount of physical memory. Today, that 
limitation is gone, and most Linux systems use considerably less swap space. 

Some operating systems — including Linux — allow the use of multiple 
swap spaces, including both files and dedicated swap partitions. These swap 
spaces are usually placed on separate disks so that the load placed on the I/O 
system by paging and swapping can be spread over the system’s I/O bandwidth. 
 Swap-Space Location 
A swap space can reside in one of two places: it can be carved out of the normal 
file system, or it can be in a separate disk partition. If the swap space is simply a 
large file within the file system, normal file-system routines can be used to 
create it, name it, and allocate its space. This approach, though easy to 
implement, is inefficient. Navigating the directory structure and the disk- 
allocation data structures takes time and (possibly) extra disk accesses. External 
fragmentation can greatly increase swapping times by forcing multiple seeks 
during reading or writing of a process image. We can improve performance by 
caching the block location information in physical memory and by using special 
tools to allocate physically contiguous blocks for the swap file, but the cost of 
traversing the file-system data structures remains. 

Alternatively, swap space can be created in a separate raw partition. No 
file system or directory structure is placed in this space. Rather, a separate swap-
space storage manager is used to allocate and deallocate the blocks from the raw 
partition. This manager uses algorithms optimized for speed rather than for 
storage efficiency, because swap space is accessed much more frequently than 
file systems (when it is used). Internal fragmentation may increase, but this 
trade-off is acceptable because the life of data in the swap space generally is 
much shorter than that of files in the file system. Since swap space is 
reinitialized at boot time, any fragmentation is short-lived. The raw-partition 
approach creates a fixed amount of swap space during disk partitioning. Adding 
more swap space requires either repartitioning the disk (which involves moving 



the other file-system partitions or destroying them and restoring them from 
backup) or adding another swap space elsewhere. 

Some operating systems are flexible and can swap both in raw partitions 
and in file-system space. Linux is an example: the policy and implementation 
are separate, allowing the machine’s administrator to decide which type of 
swapping to use. The trade-off is between the convenience of allocation and 
management in the file system and the performance of swapping in raw 
partitions. 
 Swap-Space Management: An Example 
We can illustrate how swap space is used by following the evolution of 
swapping and paging in various UNIX systems. The traditional UNIX kernel 
started with an implementation of swapping that copied entire processes 
between contiguous disk regions and memory. UNIX later evolved to a 
combination of swapping and paging as paging hardware became available. 

In Solaris 1 (SunOS), the designers changed standard UNIX methods to 
improve efficiency and reflect technological developments. When a process 
executes, text-segment pages containing code are brought in from the file 
system, accessed in main memory, and thrown away if selected for pageout. It is 
more efficient to reread a page from the file system than to write it to swap 
space and then reread it from there. Swap space is only used as a backing store 
for pages of anonymous memory, which includes memory allocated for the 
stack, heap, and uninitialized data of a process. 
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Figure 4.38 The data structures for swapping on Linux systems. 
 

More changes were made in later versions of Solaris. The biggest change is that 
Solaris now allocates swap space only when a page is forced out of physical 
memory, rather than when the virtual memory page is first created. This scheme 
gives better performance on modern computers, which have more physical 
memory than older systems and tend to page less. 



Linux is similar to Solaris in that swap space is used only for anonymous 
memory — that is, memory not backed by any file. Linux allows one or more 
swap areas to be established. A swap area may be in either a swap file on a regular 
file system or a dedicated swap partition. Each swap area consists of a series of 4- 
KB page slots, which are used to hold swapped pages. Associated with each swap 
area is a swap map — an array of integer counters, each corresponding to a page 
slot in the swap area. If the value of a counter is 0, the corresponding page slot is 
available. Values greater than 0 indicate that the page slot is occupied by a 
swapped page. The value of the counter indicates the number of mappings to the 
swapped page. For example, a value of 3 indicates that the swapped page is 
mapped to three different processes (which can occur if the swapped page is 
storing a region of memory shared by three processes). The data structures for 
swapping on Linux systems are shown in Figure 4.38. 



UNIT 5 
Protection and Security 

Protection mechanisms control access to a system by limiting the types of file 
access permitted to users. In addition, protection must ensure that only processes 
that have gained proper authorization from the operating system can operate on 
memory segments, the CPU, and other resources. 

Protection is provided by a mechanism that controls the access of 
programs, processes, or users to the resources defined by a computer system. 
This mechanism must provide a means for specifying the controls to be 
imposed, together with a means of enforcing them. 

Security ensures the authentication of system users to protect the 
integrity of the information stored in the system (both data and code), as well as 
the physical resources of the computer system. The security system prevents 
unauthorized access, malicious destruction or alteration of data, and accidental 
introduction of inconsistency. 



Protection 

The processes in an operating system must be protected from one another‘s 
activities. To provide such protection, we can use various mechanisms to ensure 
that only processes that have gained proper authorization from the operating 
system can operate on the files, memory segments, CPU, and other resources of 
a system. 

Protection refers to a mechanism for controlling the access of programs, 
processes, or users to the resources defined by a computer system. This 
mechanism must provide a means for specifying the controls to be imposed, 
together with a means of enforcement. We distinguish between protection and 
security, which is a measure of confidence that the integrity of a system and its 
data will be preserved. In this chapter, we focus on protection. 
 Goals of Protection 

As computer systems have become more sophisticated and 
pervasive in their applications, the need to protect their integrity has also grown. 
Protection was originally conceived as an adjunct to multiprogramming 
operating systems, so that untrustworthy users might safely share a common 
logical name space, such as a directory of files, or share a common physical 
name space, such as memory. Modern protection concepts have evolved to 
increase the reliability of any complex system that makes use of shared 
resources. 

We need to provide protection for several reasons. The most obvious is 
the need to prevent the mischievous, intentional violation of an access restriction 
by a user. Of more general importance, however, is the need to ensure that each 
program component active in a system uses system resources only in ways 
consistent with stated policies. This requirement is an absolute one for a reliable 
system. 

Protection can improve reliability by detecting latent errors at the 
interfaces between component subsystems. Early detection of interface errors 
can often prevent contamination of a healthy subsystem by a malfunctioning 
subsystem. Also, an unprotected resource cannot defend against use (or misuse) 
by an unauthorized or incompetent user. A protection-oriented system provides 
means to distinguish between authorized and unauthorized usage. 

The role of protection in a computer system is to provide a mechanism 
for the enforcement of the policies governing resource use. These policies can 
be established in a variety of ways. Some are fixed in the design of the system, 
while others are formulated by the management of a system. Still others are 
defined by the individual users to protect their own files and programs. A 
protection system must have the flexibility to enforce a variety of policies. 

Policies for resource use may vary by application, and they may change 
over time. For these reasons, protection is no longer the concern solely of the 
designer of an operating system. The application programmer needs to use 
protection mechanisms as well, to guard resources created and supported by an 
application subsystem against misuse. In this chapter, we describe the protection 



mechanisms the operating system should provide, but application designers can 
use them as well in designing their own protection software. 

Note that mechanisms are distinct from policies. Mechanisms determine 
how something will be done; policies decide what will be done. The separation 
of policy and mechanism is important for flexibility. Policies are likely to 
change from place to place or time to time. In the worst case, every change in 
policy would require a change in the underlying mechanism. Using general 
mechanisms enables us to avoid such a situation. 

 
 Principles of Protection 

Frequently, a guiding principle can be used throughout a project, such as 
the design of an operating system. Following this principle simplifies design 
decisions and keeps the system consistent and easy to understand. A key, time- 
tested guiding principle for protection is the principle of least privilege. It 
dictates that programs, users, and even systems be given just enough privileges 
to perform their tasks. 

Consider the analogy of a security guard with a passkey. If this key 
allows the guard into just the public areas that she guards, then misuse of the 
key will result in minimal damage. If, however, the passkey allows access to all 
areas, then damage from its being lost, stolen, misused, copied, or otherwise 
compromised will be much greater. 

An operating system following the principle of least privilege 
implements its features, programs, system calls, and data structures so that 
failure or compromise of a component does the minimum damage and allows 
the minimum damage to be done. The overflow of a buffer in a system daemon 
might cause the daemon process to fail, for example, but should not allow the 
execution of code from the daemon process‘s stack that would enable a remote 
user to gain maximum privileges and access to the entire system (as happens too 
often today). 

Such an operating system also provides system calls and services that 
allow applications to be written with fine-grained access controls. It provides 
mechanisms to enable privileges when they are needed and to disable them 
when they are not needed. Also beneficial is the creation of audit trails for all 
privileged function access. The audit trail allows the programmer, system 
administrator, or law-enforcement officer to trace all protection and security 
activities on the system. 

Managing users with the principle of least privilege entails creating a 
separate account for each user, with just the privileges that the user needs. An 
operator who needs to mount tapes and back up files on the system has access to 
just those commands and files needed to accomplish the job. Some systems 
implement role-based access control (RBAC) to provide this functionality. 

Computers implemented in a computing facility under the principle of 
least privilege can be limited to running specific services, accessing specific 
remote hosts via specific services, and doing so during specific times. Typically, 



these restrictions are implemented through enabling or disabling each service 
and through using access control lists. 

The principle of least privilege can help produce a more secure 
computing environment. Unfortunately, it frequently does not. For example, 
Windows 2000 has a complex protection scheme at its core and yet has many 
security holes. By comparison, Solaris is considered relatively secure, even 
though it is a variant of UNIX, which historically was designed with little 
protection in mind. One reason for the difference may be that Windows 2000 
has more lines of code and more services than Solaris and thus has more to 
secure and protect. Another reason could be that the protection scheme in 
Windows 2000 is incomplete or protects the wrong aspects of the operating 
system, leaving other areas vulnerable. 
 Domain of Protection 

A computer system is a collection of processes and objects. By objects, 
we mean both hardware objects (such as the CPU, memory segments, printers, 
disks, and tape drives) and software objects (such as files, programs, and 
semaphores). Each object has a unique name that differentiates it from all other 
objects in the system, and each can be accessed only through well-defined and 
meaningful operations. Objects are essentially abstract data types. 

The operations that are possible may depend on the object. For example, 
on a CPU, we can only execute. Memory segments can be read and written, 
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read, 
written, and rewound. Data files can be created, opened, read, written, closed, 
and deleted; program files can be read, written, executed, and deleted. 

A process should be allowed to access only those resources for which it 
has authorization. Furthermore, at any time, a process should be able to access 
only those resources that it currently requires to complete its task. This second 
requirement, commonly referred to as the need-to-know principle, is useful in 
limiting the amount of damage a faulty process can cause in the system. 

For example, when process p invokes procedure A(), the procedure 
should be allowed to access only its own variables and the formal parameters 
passed to it; it should not be able to access all the variables of process p. 
Similarly, consider the case in which process p invokes a compiler to compile a 
particular file. The compiler should not be able to access files arbitrarily but 
should have access only to a well-defined subset of files (such as the source file, 
listing file, and so on) related to the file to be compiled. Conversely, the 
compiler may have private files used for accounting or optimization purposes 
that process p should not be able to access. The need-to-know principle is 
similar to the principle of least privilege discussed in Section 14.2 in that the 
goals of protection are to minimize the risks of possible security violations. 



 Domain Structure 

To facilitate the scheme just described, a process operates within a 
protection domain, which specifies the resources that the process may access. 
Each domain defines a set of objects and the types of operations that may be 
invoked on each object. The ability to execute an operation on an object is an 
access right. A domain is a collection of access rights, each of which is an 
ordered pair <object-name, rights-set>. For example, if domain D has the 
access right <file F, {read,write}>, then a process executing in domain D can 
both read and write file F. It cannot, however, perform any other operation on 
that object. 

Domains may share access rights. For example, in Figure 5.10, we 
have three domains: D1, D2, and D3. The access right <O4, {print}> is shared 
by D2 and D3, implying that a process executing in either of these two domains 
can print object O4. Note that a process must be executing in domain D1 to 
read and write object O1, while only processes in domain D3 may execute 
object O1. 

The association between a process and a domain may be either static, 
if the set of resources available to the process is fixed throughout the process‘s 
lifetime, or dynamic. As might be expected, establishing dynamic protection 
domains is more complicated than establishing static protection domains. 

If the association between processes and domains is fixed, and we want 
to adhere to the need-to-know principle, then a mechanism must be available 
to change the content of a domain. The reason stems from the fact that a 
process may execute in two different phases and may, for example, need read 
access in one phase and write access in another. If a domain is static, we must 
define the domain to include both read and write access. However, this 
arrangement provides more rights than are needed in each of the two phases, 
since we have read access in the phase where we need only write access, and 
vice versa. 

 
 

D1 D2  D3 

O3, {read, write} 
  O1, 

{execute}   O4, 
{print} O1, {read, write} O2, {write}  

   O3, {read} 
O2, {execute}    

 
 

Figure 5.10 System with three protection domains. 



Thus, the need-to-know principle is violated. We must allow the contents of a 
domain to be modified so that the domain always reflects the minimum 
necessary access rights. 

If the association is dynamic, a mechanism is available to allow 
domain switching, enabling the process to switch from one domain to another. 
We may also want to allow the content of a domain to be changed. If we cannot 
change the content of a domain, we can provide the same effect by creating a 
new domain with the changed content and switching to that new domain when 
we want to change the domain content. 

A domain can be realized in a variety of ways: 
Each user may be a domain. In this case, the set of objects that can be 
accessed depends on the identity of the user. Domain switching occurs 
when the user is changed — generally when one user logs out and 
another user logs in. 
Each process may be a domain. In this case, the set of objects that can 
be accessed depends on the identity of the process. Domain switching 
occurs when one process sends a message to another process and then 
waits for a response. 
Each procedure may be a domain. In this case, the set of objects that 
can be accessed corresponds to the local variables defined within the 
procedure. Domain switching occurs when a procedure call is made. 

Consider the standard dual-mode (monitor – user mode) model of 
operating-system execution. When a process executes in monitor mode, it can 
execute privileged instructions and thus gain complete control of the computer 
system. In contrast, when a process executes in user mode, it can invoke only 
nonprivileged instructions. Consequently, it can execute only within its 
predefined memory space. These two modes protect the operating system 
(executing in monitor domain) from the user processes (executing in user 
domain). In a multiprogrammed operating system, two protection domains are 
insufficient, since users also want to be protected from one another. Therefore, a 
more elaborate scheme is needed. We illustrate such a scheme by examining two 
influential operating systems — UNIX and MULTICS — to see how they 
implement these concepts. 
 An Example: UNIX 

In the UNIX operating system, a domain is associated with the user. 
Switching the domain corresponds to changing the user identification 
temporarily. This change is accomplished through the file system as follows. An 
owner identification and a domain bit (known as the setuid bit) are associated 
with each file. When the setuid bit is on, and a user executes that file, the userID 
is set to that of the owner of the file. When the bit is off, however, the userID 
does not change. For example, when a user A (that is, a user with userID = A) 
starts executing a file owned by B, whose associated domain bit is off, the 
userID of the process is set to A. When the setuid bit is on, the userID is set to 
that of the owner of the file: B. When the process exits, this temporary userID 
change ends. that of the owner of the file: B. When the process exits, this 
temporary userID change ends. 



Other methods are used to change domains in operating systems in 
which userIDs are used for domain definition, because almost all systems need 
to provide such a mechanism. This mechanism is used when an otherwise 
privileged facility needs to be made available to the general user population. 
For instance, it might be desirable to allow users to access a network without 
letting them write their own networking programs. In such a case, on a UNIX 
system, the setuid bit on a networking program would be set, causing the 
userID to change when the program was run. The userID would change to that 
of a user with network access privilege (such  as root, the most powerful 
userID). One problem with this method is that if a user manages to create a file 
with userID root and with its setuid bit on, that user can become root and do 
anything and everything on the system. 

An alternative to this method used in some other operating systems is 
to place privileged programs in a special directory. The operating system is 
designed to change the userID of any program run from this directory, either to 
the equivalent of root or to the userID of the owner of the directory. This 
eliminates one security problem, which occurs when intruders create programs 
to manipulate the setuid feature and hide the programs in the system for later 
use (using obscure file or directory names). This method is less flexible than 
that used in UNIX, however. 

Even more restrictive, and thus more protective, are systems that 
simply do not allow a change of userID. In these instances, special techniques 
must be used to allow users access to privileged facilities. For instance, a 
daemon process may be started at boot time and run as a special userID. 
Users then run a separate program, which sends requests to this process 
whenever they need to use the facility. This method is used by the TOPS-20 
operating system. 

In any of these systems, great care must be taken in writing privileged 
programs. Any oversight can result in a total lack of protection on the system. 
Generally, these programs are the first to be attacked by people trying to break 
into a system. Unfortunately, the attackers are frequently successful. For 
example, security has been breached on many UNIX systems because of the 
setuid feature. 
 An Example: MULTICS 
In the MULTICS system, the protection domains are organized hierarchically 
into a ring structure. Each ring corresponds to a single domain (Figure 5.11). 
The rings are numbered from 0 to 7. Let Di and Dj be any two domain rings. If 
j < i, then Di is a subset of Dj . That is, a process executing in domain Dj has 
more privileges than does a process executing in domain Di . A process 
executing in domain D0 has the most privileges. If only two rings exist, this 
scheme is equivalent to the monitor – user mode of execution, where monitor 
mode corresponds to D0 and user mode corresponds to D1. 

MULTICS has a segmented address space; each segment is a file, and 
each segment is associated with one of the rings. A segment description 
includes an entry that identifies the ring number. In addition, it includes three 



access bits to control reading, writing, and execution. The association between 
segments and rings is a policy decision with which we are not concerned here. 
current-ring-number counter is associated with each process, iden-tifying the 
ring in which the process is executing currently. When a process is executing 
in ring i, it cannot access a segment associated with ring j (j < i). It can access 
a segment associated with ring k (k ≥ i). The type of access, however, is 
restricted according to the access bits associated with that segment. 

Domain switching in MULTICS occurs when a process crosses from 
one ring to another by calling a procedure in a different ring. Obviously, this 
switch must be done in a controlled manner; otherwise, a process could start 
executing in ring 0, and no protection would be provided. To allow controlled 
domain switching, we modify the ring field of the segment descriptor to 
include the following: 

Access bracket. A pair of integers, b1 and b2, such that b1 ≤ b2. 
Limit. An integer b3 such that b3 > b2. 
List of gates. Identifies the entry points (or gates) at which the segments 
may be called. 

If a process executing in ring i calls a procedure (or segment) with 
access bracket (b1,b2), then the call is allowed if b1 ≤ i ≤ b2, and the current 
ring number of the process remains i. Otherwise, a trap to the operating system 
occurs, and the situation is handled as follows: 

i < b1, then the call is allowed to occur, because we have a transfer to a ring 
(or domain) with fewer privileges. However, if parameters are passed that 
refer to segments in a lower ring (that is, segments not accessible to the 
called procedure), then these segments must be copied into an area that can 
be accessed by the called procedure. 
If i > b2, then the call is allowed to occur only if b3 is greater than or equal 
to i and the call has been directed to one of the designated entry points in 
the list of gates. This scheme allows processes with limited access rights to 
call procedures in lower rings that have more access rights, but only in a 
carefully controlled manner. 

 
The main disadvantage of the ring (or hierarchical) structure is that 

it does not allow us to enforce the need-to-know principle. In particular, if an 
object must be accessible in domain Dj but not accessible in domain Di , then 
we must have j < i. But this requirement means that every segment accessible 
in Di is also accessible in Dj . 



 
 

Figure 5.11 MULTICS ring structure. 

The MULTICS protection system is generally more complex and less 
efficient than are those used in current operating systems. If protection 
interferes with the ease of use of the system or significantly decreases system 
performance, then its use must be weighed carefully against the purpose of the 
system. For instance, we would want to have a complex protection system on a 
computer used by a university to process students‘ grades and also used by 
students for classwork. A similar protection system would not be suited to a 
computer being used for number crunching, in which performance is of utmost 
importance. We would prefer to separate the mechanism from the protection 
policy, allowing the same system to have complex or simple protection 
depending on the needs of its users. To separate mechanism from policy, we 
require a more general model of protection. 

 Access Matrix 

Our general model of protection can be viewed abstractly as a matrix, called 
an access matrix. The rows of the access matrix represent domains, and the 
columns represent objects. Each entry in the matrix consists of a set of access 
rights. Because the column defines objects explicitly, we can omit the object 
name from the access right. The entry access(i,j) defines the set of operations 
that a process executing in domain Di can invoke on object Oj . 

To illustrate these concepts, we consider the access matrix shown in 
Figure 5.12. There are four domains and four objects — three files (F1, F2, F3) 
and one laser printer. A process executing in domain D1 can read files F1 and 
F 3. A process executing in domain D4 has the same privileges as one 
executing in domain D1; but in addition, it can also write onto files F1 and F3. 
The laser printer can be accessed only by a process executing in domain D2. 

The access-matrix scheme provides us with the mechanism for 
specifying a variety of policies. The mechanism consists of implementing the 
access matrix and ensuring that the semantic properties we have outlined hold. 
More specifically, we must ensure that a process executing in domain Di can 
access only those objects specified in row i, and then only as allowed by the 
access-matrix entries. 

ring 0 

ring 1 

• • • ring N – 1 



The access matrix can implement policy decisions concerning 
protection. The policy decisions involve which rights should be included in the 
(i, j )th entry. We must also decide the domain in which each process executes. 
This last policy is usually decided by the operating system. 

The users normally decide the contents of the access-matrix entries. 
When a user creates a new object Oj , the column Oj is added to the access 
matrix with the appropriate initialization entries, as dictated by the creator. The 
user may decide to enter some rights in some entries in column j and other 
rights in other entries, as needed. 
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Figure 5.12 Access matrix. 
 

The access matrix provides an appropriate mechanism for defining 
and implementing strict control for both static and dynamic association 
between processes and domains. When we switch a process from one domain 
to another, we are executing an operation (switch) on an object (the domain). 
We can control domain switching by including domains among the objects of 
the access matrix. Similarly, when we change the content of the access matrix, 
we are performing an operation on an object: the access matrix. Again, we can 
control these changes by including the access matrix itself as an object. 
Actually, since each entry in the access matrix can be modified individually, 
we must consider each entry in the access matrix as an object to be protected. 
Now, we need to consider only the operations possible on these new objects 
(domains and the access matrix) and decide how we want processes to be able 
to execute these operations. 

Processes should be able to switch from one domain to another. 
Switching from domain Di to domain Dj is allowed if and only if the access 
right switch ∈ access(i, j). Thus, in Figure 5.13, a process executing in domain 
D2 can switch to domain D3 or to domain D4. A process in domain D4 can 
switch to D1, and one in domain D1 can switch to D2. 

Allowing controlled change in the contents of the access-matrix 
entries requires three additional operations: copy, owner, and control. We 
examine these operations next. 



The ability to copy an access right from one domain (or row) of the 
access matrix to another is denoted by an asterisk (*) appended to the access 
right. The copy right allows the access right to be copied only within the 
column (that is, for the object) for which the right is defined. For example, in 
Figure 5.14(a), a process executing in domain D2 can copy the read operation 
into any entry associated with file F2. Hence, the access matrix of Figure 
5.14(a) can be modified to the access matrix shown in Figure 5.14(b). 

This scheme has two additional variants: 
A right is copied from access(i, j) to access(k, j); it is then removed from 
access(i, j). This action is a of a right, rather than a copy. 

Propagation of the copy right may be limited. That is, when the right R∗ is 
copied from access(i, j) to access(k, j), only the right R (not R∗ ) is created. A 
process executing in domain Dk cannot further copy the right R. 

A system may select only one of these three copy rights, or it may 
provide all three by identifying them as separate rights: copy, transfer, and 
limited copy. 

We also need a mechanism to allow addition of new rights and 
removal of some rights. The owner right controls these operations. If access(i, 
j) includes the owner right, then a process executing in domain Di can add and 
remove any right in any entry in column j. For example, in Figure 5.16(a), 
domain D1 is the owner of F1 and thus can add and delete any valid right in 
column F1. Similarly, domain D2 is the owner of F2 and F3 and thus can add 
and remove any valid right within these two columns. Thus, the access matrix 
of Figure 5.16(a) can be modified to the access matrix shown in Figure 
5.16(b). 

The copy and owner rights allow a process to change the entries in a 
column. A mechanism is also needed to change the entries in a row. The 
control right is applicable only to domain objects. If access(i, j) includes the 
control right, then a process executing in domain Di can remove any access 
right from row j. For example, suppose that, in Figure 5.14, we include the 
control right in access(D2, D4). Then, a process executing in domain D2 could 
modify domain D4, as shown in Figure 5.17 
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Figure 5.14 Access matrix of Figure 5.13 with domains as objects. 
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Figure 5.16 Access matrix with copy rights. 
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Figure 5.17   Access matrix with owner rights. 
The copy and owner rights provide us with a mechanism to limit the propagation 
of access rights. However, they do not give us the appropriate tools for 
preventing the propagation (or disclosure) of information. The problem of 
guaranteeing that no information initially held in an object can migrate outside 
of its execution environment is called the confinement problem. This problem 
is in general unsolvable. 

These operations on the domains and the access matrix are not in them- 
selves important, but they illustrate the ability of the access-matrix model to 
allow us to implement and control dynamic protection requirements. New 
objects and new domains can be created dynamically and included in the access- 
matrix model. However, we have shown only that the basic mechanism exists. 
System designers and users must make the policy decisions concerning which 
domains are to have access to which objects in which ways. 
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Figure 5.17Modified access matrix of Figure 514. 
 

 Implementation of the Access Matrix 

How can the access matrix be implemented effectively? In general, the matrix 
will be sparse; that is, most of the entries will be empty. Although data- 
structure techniques are available for representing sparse matrices, they are not 
particularly useful for this application, because of the way in which the 
protection facility is used. Here, we first describe several methods of 
implementing the access matrix and then compare the methods. 
 Global Table 

The simplest implementation of the access matrix is a global table 
consisting of a set of ordered triples <domain, object, rights-set>. Whenever 
an operation M is executed on an object Oj within domain Di , the global table 
is searched for a triple < Di , Oj , Rk >, with M ∈ Rk . If this triple is found, the 
operation is allowed to continue; otherwise, an exception (or error) condition 
is raised. 

This implementation suffers from several drawbacks. The table is 
usually large and thus cannot be kept in main memory, so additional I/O is 
needed. Virtual memory techniques are often used for managing this table. In 
addition, it is difficult to take advantage of special groupings of objects or 
domains. For example, if everyone can read a particular object, this object 
must have a separate entry in every domain. 



 Access Lists for Objects 
Each column in the access matrix can be implemented as an access 

list for one object, as described in Section 11.6.2. Obviously, the empty entries 
can be discarded. The resulting list for each object consists of ordered pairs 
<domain, rights-set>, which define all domains with a nonempty set of access 
rights for that object. 

This approach can be extended easily to define a list plus a default set 
of access rights. When an operation M on an object Oj is attempted in domain 
Di , we search the access list for object Oj , looking for an entry < Di , Rk > 
with M ∈ Rk . If the entry is found, we allow the operation; if it is not, we 
check the default set. If M is in the default set, we allow the access. Otherwise, 
access is denied, and an exception condition occurs. For efficiency, we may 
check the default set first and then search the access list. 
 Capability Lists for Domains 

Rather than associating the columns of the access matrix with the 
objects as access lists, we can associate each row with its domain. A 
capability list for a domain is a list of objects together with the operations 
allowed on those objects. An object is often represented by its physical name 
or address, called a capability. To execute operation M on object Oj , the 
process executes the operation M, specifying the capability (or pointer) for 
object Oj as a parameter. Simple possession of the capability means that 
access is allowed. The capability list is associated with a domain, but it is 
never directly accessible to a process executing in that domain. Rather, the 
capability list is itself a protected object, maintained by the operating system 
and accessed by the user only indirectly. Capability-based protection relies on 
the fact that the capabilities are never allowed to migrate into any address 
space directly accessible by a user process (where they could be modified). If 
all capabilities are secure, the object they protect is also secure against 
unauthorized access. 

Capabilities were originally proposed as a kind of secure pointer, to 
meet the need for resource protection that was foreseen as multiprogrammed 
computer systems came of age. The idea of an inherently protected pointer 
provides a foundation for protection that can be extended up to the application 
level. 

To provide inherent protection, we must distinguish capabilities from 
other kinds of objects, and they must be interpreted by an abstract machine on 
which higher-level programs run. Capabilities are usually distinguished from 
other data in one of two ways: 

Each object has a tag to denote whether it is a capability or accessible 
data. The tags themselves must not be directly accessible by an application 
program. Hardware or firmware support may be used to enforce this 
restriction. Although only one bit is necessary to distinguish between 
capabilities and other objects, more bits are often used. This extension allows 
all objects to be tagged with their types by the hardware. Thus, the hardware 
can distinguish integers, floating-point numbers, pointers, Booleans, 
characters, instructions, capabilities, and uninitialized values by their tags. 



Alternatively, the address space associated with a program can be split into two 
parts. One part is accessible to the program and contains the program‘s normal 
data and instructions. The other part, containing the capability list, is accessible 
only by the operating system. A segmented memory space (Section 8.4) is useful 
to support this approach. 
 A Lock – Key Mechanism 

The lock – key scheme is a compromise between access lists and 
capability lists. Each object has a list of unique bit patterns, called locks. 
Similarly, each domain has a list of unique bit patterns, called keys. A process 
executing in a domain can access an object only if that domain has a key that 
matches one of the locks of the object. 

As with capability lists, the list of keys for a domain must be managed 
by the operating system on behalf of the domain. Users are not allowed to 
examine or modify the list of keys (or locks) directly. 
 Comparison 

As you might expect, choosing a technique for implementing an access 
matrix involves various trade-offs. Using a global table is simple; however, the 
table can be quite large and often cannot take advantage of special groupings of 
objects or domains. Access lists correspond directly to the needs of users. When 
a user creates an object, he can specify which domains can access the object, as 
well as what operations are allowed. However, because access-right information 
for a particular domain is not localized, determining the set of access rights for 
each domain is difficult. In addition, every access to the object must be checked, 
requiring a search of the access list. In a large system with long access lists, this 
search can be time consuming. 

Capability lists do not correspond directly to the needs of users, but 
they are useful for localizing information for a given process. The process 
attempting access must present a capability for that access. Then, the protection 
system needs only to verify that the capability is valid. Revocation of 
capabilities, however, may be inefficient. 

The lock – key mechanism, as mentioned, is a compromise between 
access lists and capability lists. The mechanism can be both effective and 
flexible, depending on the length of the keys. The keys can be passed freely from 
domain to domain. In addition, access privileges can be effectively revoked by 
the simple technique of changing some of the locks associated with the object. 

Most systems use a combination of access lists and capabilities. When a 
process first tries to access an object, the access list is searched. If access is 
denied, an exception condition occurs. Otherwise, a capability is created and 
attached to the process. Additional references use the capability to demonstrate 
swiftly that access is allowed. After the last access, the capability is destroyed. 
This strategy is used in the MULTICS system and in the CAL system. 

As an example of how such a strategy works, consider a file system in 
which each file has an associated access list. When a process opens a file, the 
directory structure is searched to find the file, access permission is checked, and 
buffers are allocated. All this information is recorded in a new entry in a file 
table associated with the process. The operation returns an index into this table 
for the newly opened file. All operations on the file are made by specification of 



the index into the file table. The entry in the file table then points to the file and 
its buffers. When the file is closed, the file-table entry is deleted. Since the file 
table is maintained by the operating system, the user cannot accidentally corrupt 
it. Thus, the user can access only those files that have been opened. 

Since access is checked when the file is opened, protection is ensured. 
This strategy is used in the UNIX system. 

The right to access must still be checked on each access, and the file- 
table entry has a capability only for the allowed operations. If a file is opened for 
reading, then a capability for read access is placed in the file-table entry. If an 
attempt is made to write onto the file, the system identifies this protection 
violation by comparing the requested operation with the capability in the file- 
table entry. 
 Access Control 

In Section 11.6.2, we described how access controls can be used on 
files within a file system. Each file and directory is assigned an owner, a group, 
or possibly a list of users, and for each of those entities, access-control 
information is assigned. A similar function can be added to other aspects of a 
computer system. A good example of this is found in Solaris 10. 

Solaris 10 advances the protection available in the operating system by 
explicitly adding the principle of least privilege via role-based access control 
(RBAC). This facility revolves around privileges. A privilege is the right to 
execute a system call or to use an option within that system call (such as opening 
a file with write access). Privileges can be assigned to processes, limiting them 
to exactly the access they need to perform their work. Privileges and programs 
can also be assigned to roles. Users are assigned roles or can take roles based on 
passwords to the roles. In this way, a user can take a role that enables a privilege, 
allowing the user to run a program to accomplish a specific task, as depicted in 
Figure 5.18. This implementation of privileges decreases the security risk 
associated with superusers and setuid programs. 
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Figure 5.18 Role-based access control in Solaris 10. 
 Revocation of Access Rights 
In a dynamic protection system, we may sometimes need to revoke access rights 
to objects shared by different users. Various questions about revocation may 
arise: 

Immediate versus delayed. Does revocation occur immediately, or is 
it delayed? If revocation is delayed, can we find out when it will take 
place? 
Selective versus general. When an access right to an object is 
revoked, does it affect all the users who have an access right to that 
object, or can we specify a select group of users whose access rights 
should be revoked? 
Partial versus total. Can a subset of the rights associated with an 
object be revoked, or must we revoke all access rights for this object? 
Temporary versus permanent. Can access be revoked permanently 
(that is, the revoked access right will never again be available), or can 
access be revoked and later be obtained again? 

With an access-list scheme, revocation is easy. The access list is 
searched for any access rights to be revoked, and they are deleted from the list. 
Revocation is immediate and can be general or selective, total or partial, and 
permanent or temporary. 

Capabilities, however, present a much more difficult revocation 
problem, as mentioned earlier. Since the capabilities are distributed throughout 
the system, we must find them before we can revoke them. Schemes that 
implement revocation for capabilities include the following: 

user 1 

role 1 
privileges 1 

privileges 2 



Reacquisition. Periodically, capabilities are deleted from each 
domain. If a process wants to use a capability, it may find that that 
capability has been deleted. The process may then try to reacquire the 
capability. If access has been revoked, the process will not be able to 
reacquire the capability. 
Back-pointers. A list of pointers is maintained with each object, 
pointing to all capabilities associated with that object. When 
revocation is required, we can follow these pointers, changing the 
capabilities as necessary. This scheme was adopted in the MULTICS 
system. It is quite general, but its implementation is costly. 
Indirection. The capabilities point indirectly, not directly, to the 
objects. Each capability points to a unique entry in a global table, 
which in turn points to the object. We implement revocation by 
searching the global table for the desired entry and deleting it. Then, 
when an access is attempted, the capability is found to point to an 
illegal table entry. Table entries can be reused for other capabilities 
without difficulty, since both the capability and the table entry contain 
the unique name of the object. The object for a capability and its table 
entry must match. This scheme was adopted in the CAL system. It 
does not allow selective revocation. 

 
Keys. A key is a unique bit pattern that can be associated with a 
capability. This key is defined when the capability is created, and it 
can be neither modified nor inspected by the process that owns the 
capability. A master key is associated with each object; it can be 
defined or replaced with the set-key operation. When a capability is 
created, the current value of the master key is associated with the 
capability. When the capability is exercised, its key is compared with 
the master key. If the keys match, the operation is allowed to continue; 
otherwise, an exception condition is raised. Revocation replaces the 
master key with a new value via the set-key operation, invalidating all 
previous capabilities for this object. 

 
This scheme does not allow selective revocation, since only one master key is 
associated with each object. If we associate a list of keys with each object, then 
selective revocation can be implemented. Finally, we can group all keys into 
one global table of keys. A capability is valid only if its key matches some key 
in the global table. We implement revocation by removing the matching key 
from the table. With this scheme, a key can be associated with several objects, 
and several keys can be associated with each object, providing maximum 
flexibility. 

In key-based schemes, the operations of defining keys, inserting them 
into lists, and deleting them from lists should not be available to all users. In 
particular, it would be reasonable to allow only the owner of an object to set 
the keys for that object. This choice, however, is a policy decision that the 
protection system can implement but should not define. 



 Capability-Based Systems 
In this section, we survey two capability-based protection systems. These 
systems differ in their complexity and in the types of policies that can be 
implemented on them. Neither system is widely used, but both provide 
interesting proving grounds for protection theories. 

 An Example: Hydra 
Hydra is a capability-based protection system that provides considerable 
flexibility. The system implements a fixed set of possible access rights, 
including such basic forms of access as the right to read, write, or execute a 
memory segment. In addition, a user (of the protection system) can declare other 
rights. The interpretation of user-defined rights is performed solely by the user‘s 
program, but the system provides access protection for the use of these rights, as 
well as for the use of system-defined rights. These facilities constitute a 
significant development in protection technology. 

Operations on objects are defined procedurally. The procedures that 
implement such operations are themselves a form of object, and they are 
accessed indirectly by capabilities. The names of user-defined procedures must 
be identified to the protection system if it is to deal with objects of the user- 
defined type. When the definition of an object is made known to Hydra, the 
names of operations on the type become auxiliary rights. Auxiliary rights can 
be described in a capability for an instance of the type. For a process to perform 
an operation on a typed object, the capability it holds for that object must 
contain the name of the operation being invoked among its auxiliary rights. This 
restriction enables discrimination of access rights to be made on an instance-by- 
instance and process-by-process basis. 

Hydra also provides rights amplification. This scheme allows a 
procedure to be certified as trustworthy to act on a formal parameter of a 
specified type on behalf of any process that holds a right to execute the 
procedure. The rights held by a trustworthy procedure are independent of, and 
may exceed, the rights held by the calling process. However, such a procedure 
must not be regarded as universally trustworthy (the procedure is not allowed to 
act on other types, for instance), and the trustworthiness must not be extended to 
any other procedures or program segments that might be executed by a process. 

Amplification allows implementation procedures access to the 
representation variables of an abstract data type. If a process holds a capability 
to a typed object A, for instance, this capability may include an auxiliary right to 
invoke some operation P but does not include any of the so-called kernel rights, 
such as read, write, or execute, on the segment that represents A. Such a 
capability gives a process a means of indirect access (through the operation P) 
to the representation of A, but only for specific purposes. 

When a process invokes the operation P on an object A, however, the 
capability for access to A may be amplified as control passes to the code body of 
P. This amplification may be necessary to allow P the right to access the storage 
segment representing A so as to implement the operation that P defines on the 



abstract data type. The code body of P may be allowed to read or to write to the 
segment of A directly, even though the calling process cannot. On return from P, 
the capability for A is restored to its original, unamplified state. This case is a 
typical one in which the rights held by a process for access to a protected 
segment must change dynamically, depending on the task to be performed. The 
dynamic adjustment of rights is performed to guarantee consistency of a 
programmer-defined abstraction. Amplification of rights can be stated explicitly 
in the declaration of an abstract type to the Hydra operating system. 

When a user passes an object as an argument to a procedure, we may need 
to ensure that the procedure cannot modify the object. We can implement this 
restriction readily by passing an access right that does not have the modification 
(write) right. However, if amplification may occur, the right to modify may be 
reinstated. Thus, the user-protection requirement can be circumvented. In 
general, of course, a user may trust that a procedure performs its task correctly. 
This assumption is not always correct, however, because of hardware or 
software errors. Hydra solves this problem by restricting amplifications. 

The procedure-call mechanism of Hydra was designed as a direct 
solution to the problem of mutually suspicious subsystems. This problem is 
defined as follows. Suppose that a program can be invoked as a service by a 
number of different users (for example, a sort routine, a compiler, a game). 
When users invoke this service program, they take the risk that the program will 
malfunction and will either damage the given data or retain some access right to 
the data to be used (without authority) later. Similarly, the service program may 
have some private files (for accounting purposes, for example) that should not 
be accessed directly by the calling user program. Hydra provides mechanisms 
for directly dealing with this problem. 

A Hydra subsystem is built on top of its protection kernel and may 
require protection of its own components. A subsystem interacts with the kernel 
through calls on a set of kernel-defined primitives that define access rights to 
resources defined by the subsystem. The subsystem designer can define policies 
for use of these resources by user processes, but the policies are enforced by use 
of the standard access protection provided by the capability system. 

Programmers can make direct use of the protection system after 
acquainting themselves with its features in the appropriate reference manual. 
Hydra provides a large library of system-defined procedures that can be called 
by user programs. Programmers can explicitly incorporate calls on these system 
procedures into their program code or can use a program translator that has been 
interfaced to Hydra. 
 An Example: Cambridge CAP System 

A different approach to capability-based protection has been taken in the 
design of the Cambridge CAP system. CAP‘s capability system is simpler and 
superficially less powerful than that of Hydra. However, closer examination 
shows that it, too, can be used to provide secure protection of user-defined 
objects. CAP has two kinds of capabilities. The ordinary kind is called a data 
capability. It can be used to provide access to objects, but the only rights 
provided are the standard read, write, and execute of the individual storage 



segments associated with the object. Data capabilities are interpreted by 
microcode in the CAP machine. 

The second kind of capability is the so-called software capability, 
which is protected, but not interpreted, by the CAP microcode. It is interpreted 
by a protected (that is, privileged) procedure, which may be written by an 
application programmer as part of a subsystem. A particular kind of rights 
amplification is associated with a protected procedure. When executing the code 
body of such a procedure, a process temporarily acquires the right to read or 
write the contents of a software capability itself. This specific kind of rights 
amplification corresponds to an implementation of the seal and unseal primitives 
on capabilities. Of course, this privilege is still subject to type verification to 
ensure that only software capabilities for a specified abstract type are passed to 
any such procedure. Universal trust is not placed in any code other than the CAP 
machine‘s microcode. 

The interpretation of a software capability is left completely to the sub- 
system, through the protected procedures it contains. This scheme allows a 
variety of protection policies to be implemented. Although programmers can 
define their own protected procedures (any of which might be incorrect), the 
security of the overall system cannot be compromised. The basic protection 
system will not allow an unverified, user-defined, protected procedure access to 
any storage segments (or capabilities) that do not belong to the protection 
environment in which it resides. The most serious consequence of an insecure 
protected procedure is a protection breakdown of the subsystem for which that 
procedure has responsibility. 

The designers of the CAP system have noted that the use of software 
capabilities allowed them to realize considerable economies in formulating and 
implementing protection policies commensurate with the requirements of 
abstract resources. However, subsystem designers who want to make use of this 
facility cannot simply study a reference manual, as is the case with Hydra. 
Instead, they must learn the principles and techniques of protection, since the 
system provides them with no library of procedures. 

 
 Language-Based Protection 

To the degree that protection is provided in existing computer systems, it 
is usually achieved through an operating-system kernel, which acts as a security 
agent to inspect and validate each attempt to access a protected resource. Since 
comprehensive access validation may be a source of considerable overhead, 
either we must give it hardware support to reduce the cost of each validation, or 
we must allow the system designer to compromise the goals of protection. 
Satisfying all these goals is difficult if the flexibility to implement protection 
policies is restricted by the support mechanisms provided or if protection 
environments are made larger than necessary to secure greater operational 
efficiency. 

As operating systems have become more complex, and particularly as 
they have attempted to provide higher-level user interfaces, the goals of 
protection have become much more refined. The designers of protection systems 



have drawn heavily on ideas that originated in programming languages and 
especially on the concepts of abstract data types and objects. Protection systems 
are now concerned not only with the identity of a resource to which access is 
attempted but also with the functional nature of that access. In the newest 
protection systems, concern for the function to be invoked extends beyond a set 
of system-defined functions, such as standard file-access methods, to include 
functions that may be user-defined as well. 

Policies for resource use may also vary, depending on the application, 
and they may be subject to change over time. For these reasons, protection can 
no longer be considered a matter of concern only to the designer of an operating 
system. It should also be available as a tool for use by the application designer, 
so that resources of an application subsystem can be guarded against tampering 
or the influence of an error. 

 
 Compiler-Based Enforcement 

At this point, programming languages enter the picture. Specifying the desired 
control of access to a shared resource in a system is making a declarative 
statement about the resource. This kind of statement can be integrated into a 
language by an extension of its typing facility. When protection is declared 
along with data typing, the designer of each subsystem can specify its 
requirements for protection, as well as its need for use of other resources in a 
system. Such a specification should be given directly as a program is composed, 
and in the language in which the program itself is stated. This approach has 
several significant advantages: 

 
Protection needs are simply declared, rather than programmed as a 
sequence of calls on procedures of an operating system. 
Protection requirements can be stated independently of the facilities 
provided by a particular operating system. 
The means for enforcement need not be provided by the designer of a 
subsystem. 
A declarative notation is natural because access privileges are closely 
related to the linguistic concept of data type. 

 
 

A variety of techniques can be provided by a programming-language 
implementation to enforce protection, but any of these must depend on some 
degree of support from an underlying machine and its operating system. For 
example, suppose a language is used to generate code to run on the Cambridge 
CAP system. On this system, every storage reference made on the underlying 
hardware occurs indirectly through a capability. This restriction prevents any 
process from accessing a resource outside of its protection environment at any 
time. However, a program may impose arbitrary restrictions on how a resource 
can be used during execution of a particular code segment. We can implement 
such restrictions most readily by using the software capabilities provided by 



CAP. A language implementation might provide standard protected procedures 
to interpret software capabilities that would realize the protection policies that 
could be specified in the language. This scheme puts policy specification at the 
disposal of the programmers, while freeing them from implementing its 
enforcement. 

Even if a system does not provide a protection kernel as powerful as those 
of Hydra or CAP, mechanisms are still available for implementing protection 
specifications given in a programming language. The principal distinction is that 
the security of this protection will not be as great as that supported by a 
protection kernel, because the mechanism must rely on more assumptions about 
the operational state of the system. A compiler can separate references for which 
it can certify that no protection violation could occur from those for which a 
violation might be possible, and it can treat them differently. The security 
provided by this form of protection rests on the assumption that the code 
generated by the compiler will not be modified prior to or during its execution. 

What, then, are the relative merits of enforcement based solely on a 
kernel, as opposed to enforcement provided largely by a compiler? 
Security. Enforcement by a kernel provides a greater degree of security of the 
protection system itself than does the generation of protection-checking code by 
a compiler. In a compiler-supported scheme, security rests on correctness of the 
translator, on some underlying mechanism of storage management that protects 
the segments from which compiled code is executed, and, ultimately, on the 
security of files from which a program is loaded. Some of these considerations 
also apply to a software-supported protection kernel, but to a lesser degree, since 
the kernel may reside in fixed physical storage segments and may be loaded 
only from a designated file. With a tagged-capability system, in which all 
address computation is performed either by hardware or by a fixed 
microprogram, even greater security is possible. Hardware-supported protection 
is also relatively immune to protection violations that might occur as a result of 
either hardware or system software malfunction. 
Flexibility. There are limits to the flexibility of a protection kernel in 
implementing a user-defined policy, although it may supply adequate facilities 
for the system to provide enforcement of its own policies. With a programming 
language, protection policy can be declared and enforcement provided as needed 
by an implementation. If a language does not provide sufficient flexibility, it can 
be extended or replaced with less disturbance than would be caused by the 
modification of an operating-system kernel. 
Efficiency. The greatest efficiency is obtained when enforcement of protec-tion 
is supported directly by hardware (or microcode). Insofar as software support is 
required, language-based enforcement has the advantage that static access 
enforcement can be verified off-line at compile time. Also, since an intelligent 
compiler can tailor the enforcement mechanism to meet the specified need, the 
fixed overhead of kernel calls can often be avoided. 



In summary, the specification of protection in a programming language allows 
the high-level description of policies for the allocation and use of resources. A 
language implementation can provide software for protection enforcement 
when automatic hardware-supported checking is unavailable. In addition, it can 
interpret protection specifications to generate calls on whatever protection 
system is provided by the hardware and the operating system. 

One way of making protection available to the application program is 
through the use of a software capability that could be used as an object of 
computation. Inherent in this concept is the idea that certain program 
components might have the privilege of creating or examining these software 
capabilities. A capability-creating program would be able to execute a 
primitive operation that would seal a data structure, rendering the latter‘s 
contents inaccessible to any program components that did not hold either the 
seal or the unseal privilege. Such components might copy the data structure or 
pass its address to other program components, but they could not gain access to 
its contents. The reason for introducing such software capabilities is to bring a 
protection mechanism into the programming language. The only problem with 
the concept as proposed is that the use of the seal and unseal operations takes a 
procedural approach to specifying protection. A nonprocedural or declarative 
notation seems a preferable way to make protection available to the application 
programmer. 

What is needed is a safe, dynamic access-control mechanism for 
distributing capabilities to system resources among user processes. To 
contribute to the overall reliability of a system, the access-control mechanism 
should be safe to use. To be useful in practice, it should also be reasonably 
efficient. This requirement has led to the development of a number of language 
constructs that allow the programmer to declare various restrictions on the use 
of a specific managed resource. (See the bibliographical notes for appropriate 
references.) These constructs provide mechanisms for three functions: 

Distributing capabilities safely and efficiently among customer 
processes. In particular, mechanisms ensure that a user process will 
use the managed resource only if it was granted a capability to that 
resource. 
Specifying the type of operations that a particular process may 
invoke on an allocated resource (for example, a reader of a file 
should be allowed only to read the file, whereas a writer should be 
able both to read and to write). It should not be necessary to grant the 
same set of rights to every user process, and it should be impossible 
for a process to enlarge its set of access rights, except with the 
authorization of the access-control mechanism. 
Specifying the order in which a particular process may invoke the 
various operations of a resource (for example, a file must be opened 
before it can be read). It should be possible to give two processes 
different restrictions on the order in which they can invoke the 
operations of the allocated resource. 



The incorporation of protection concepts into programming languages, as 
a practical tool for system design, is in its infancy. Protection will likely 
become a matter of greater concern to the designers of new systems with 
distributed architectures and increasingly stringent requirements on data 
security. Then the importance of suitable language notations in which to 
express protection requirements will be recognized more widely. 

 
 Protection in Java 
Because Java was designed to run in a distributed environment, the Java virtual 
machine — or JVM — has many built-in protection mechanisms. Java 
programs are composed of classes, each of which is a collection of data fields 
and functions (called methods) that operate on those fields. The JVM loads a 
class in response to a request to create instances (or objects) of that class. One 
of the most novel and useful features of Java is its support for dynamically 
loading untrusted classes over a network and for executing mutually distrusting 
classes within the same JVM. 

Because of these capabilities, protection is a paramount concern. Classes 
running in the same JVM may be from different sources and may not be 
equally trusted. As a result, enforcing protection at the granularity of the JVM 
process is insufficient. Intuitively, whether a request to open a file should be 
allowed will generally depend on which class has requested the open. The 
operating system lacks this knowledge. 

Thus, such protection decisions are handled within the JVM. When the 
JVM loads a class, it assigns the class to a protection domain that gives the 
permissions of that class. The protection domain to which the class is assigned 
depends on the URL from which the class was loaded and any digital 
signatures on the class file. (Digital signatures are covered in Section 15.4.1.3.) 
A configurable policy file determines the permissions granted to the domain 
(and its classes). For example, classes loaded from a trusted server might be 
placed in a protection domain that allows them to access files in the user‘s 
home directory, whereas classes loaded from an untrusted server might have no 
file access permissions at all. 

It can be complicated for the JVM to determine what class is responsible 
for a request to access a protected resource. Accesses are often performed 
indirectly, through system libraries or other classes. For example, consider a 
class that is not allowed to open network connections. It could call a system 
library to request the load of the contents of a URL. The JVM must decide 
whether or not to open a network connection for this request. But which class 
should be used to determine if the connection should be allowed, the 
application or the system library? 

The philosophy adopted in Java is to require the library class to explicitly 
permit a network connection. More generally, in order to access a protected 
resource, some method in the calling sequence that resulted in the request must 
explicitly assert the privilege to access the resource. By doing so, this method 



takes responsibility for the request. Presumably, it will also perform whatever 
checks are necessary to ensure the safety of the request. Of course, not every 
method is allowed to assert a privilege; a method can assert a privilege only if 
its class is in a protection domain that is itself allowed to exercise the privilege. 

This implementation approach is called stack inspection. Every thread in 
the JVM has an associated stack of its ongoing method invocations. When a 
caller may not be trusted, a method executes an access request within a 
doPrivileged block to perform the access to a protected resource directly or 
indirectly. doPrivileged() is a static method in the AccessController class that is 
passed a class with a run() method to invoke. When the doPrivileged block is 
entered, the stack frame for this method is annotated to indicate this fact. Then, 
the contents of the block are executed. When an access to a protected resource 
is subsequently requested, either by this method or a method it calls, a call to 
checkPermissions() is used to invoke stack inspection to determine if the 
request should be allowed. The inspection examines stack frames on the calling 
thread‘s stack, starting from the most recently added frame and working toward 
the oldest. If a stack frame is first found that has the doPrivileged() annotation, 
then checkPermissions() returns immediately and silently, allowing the access. 
If a stack frame is first found for which access is disallowed based on the 
protection domain of the method‘s class, then checkPermissions() throws an 
AccessControlException. If the stack inspection exhausts the stack without 
finding either type of frame, then whether access is allowed depends on the 
implementation (for example, some implementations of the JVM may allow 
access, while other implementations may not). 

Stack inspection is illustrated in Figure 5.19. Here, the gui() method of a 
class in the untrusted applet protection domain performs two operations, first a 
get() and then an open(). The former is an invocation of the get() method of a 
class in the URL loader protection domain, which is permitted to open() 
sessions to sites in the lucent.com domain, in particular a proxy server 
proxy.lucent.com for retrieving URLs. For this reason, the untrusted applet‘s 
get() invocation will succeed: the checkPermissions() call in the networking 
library encounters the stack frame of the get() method, which performed its 
open() in a doPrivileged block. However, the untrusted applet‘s open() 
invocation will result in an exception, because the checkPermissions() call 
finds no doPrivileged annotation before encountering the stack frame of the 
gui() method. 

Of course, for stack inspection to work, a program must be unable to 
modify the annotations on its own stack frame or to otherwise manipulate stack 
inspection. This is one of the most important differences between Java and 
many other languages (including C++). A Java program cannot directly access 
memory; it can manipulate only an object for which it has a reference. 
References cannot be forged, and manipulations are made only through well- 
defined interfaces. Compliance is enforced through a sophisticated collection 
of load-time and run-time checks. As a result, an object cannot manipulate its 
run-time stack, because it cannot get a reference to the stack or other 
components of the protection system. 



 

protection untrusted  
URL loader 

 
networking 

 

domain: applet 

socket  
None 

 
*.lucent.com:80, connect 

 
any 

 
permissio 
n: 

 
class: 

 
gui: 

 
get(URL u): 

open(Addr 
a): 

 

 … … … 
 get(url); doPrivileged { 

checkPermissi 
on 

 open(addr 
); 

open(‗proxy.lucent.com: 
80‘); 

(a, 
connect);  

 … } 
connect 
(a); 

  request u from proxy … 
  …  

Figure 5.19 Stack 
inspection. 

 
 

More generally, Java‘s load-time and run-time checks enforce type 
safety of Java classes. Type safety ensures that classes cannot treat integers as 
pointers, write past the end of an array, or otherwise access memory in 
arbitrary ways. Rather, a program can access an object only via the methods 
defined on that object by its class. This is the foundation of Java protection, 
since it enables a class to effectively encapsulate and protect its data and 
methods from other classes loaded in the same JVM. For example, a variable 
can be defined as private so that only the class that contains it can access it or 
protected so that it can be accessed only by the class that contains it, 
subclasses of that class, or classes in the same package. Type safety ensures 
that these restrictions can be enforced. 
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