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INTRODUCTION  

The learning process of machines may seem quite magical to somebody who is new to machine learning. 

The thought that a machine is able to think and take intelligent action ,  human learning by applying 

mathematical and statistical formulations. In that sense, both human and machine learning strives to build 

formulations or mapping based on a limited number of observations. 

The basic learning process, irrespective of the fact that the learner is a human or a machine, can be divided 

into three parts:  

1. Data Input 

2. Abstraction  

3. Generalization 

      A criminal is going to launch an attack on the main candidate. However, it is not known who the person 

is and quite obviously the person might use some disguise. The only thing that is for sure is the person is 

a history sheeter or a criminal having a long record of serious crime. From the criminal database, a list of 

such criminals along with their photographs has been collected. Also, the photos taken by security cameras 

positioned at different places near the gathering are available with the detective department. They have to 

match the photos from the criminal database with the faces in the gathering to spot the potential attacker. 

So the main problem here is to spot the face of the criminal based on the match with the photos in the 

criminal database. This can be done using human learning where a person from the detective department 

can scan through each shortlisted photo and try to match that photo with the faces in the gathering. A 

person having a strong memory can take a glance at the photos of all criminals in one shot and then try to 

find a face in the gathering which closely resembles one of the criminal photos that she has viewed. Easy, 

isn’t it? But that is not possible in reality. The number of criminals in the database and hence the count of 

photos runs in hundreds, if not thousands. the learning process, abstraction is a significant step as it 

represents raw input data in a summarized and structured format, such that a meaningful insight is obtained 

from the data. This structured representation of raw input data to the meaningful pattern is called a model. 

The model might have different forms. It might be a mathematical equation, it might be a graph or tree 

structure, it might be a computational block, etc. The decision regarding which model is to be selected for 

a specific data set is taken by the learning task, based on the problem to be solved and the type of data. 



 

The process of assigning a model, and fitting a specific model to a data set is called model training. Once 

the model is trained, the raw input data is summarized into an abstracted form. However, with abstraction, 

the learner is able to only summarize the knowledge. consisting of a huge number of feature-based data 

and inter-relations. To generate actionable insight from such broad-based knowledge is very difficult. This 

is where generalization comes into play. Generalization searches through the huge set of abstracted 

knowledge to come up with a small and manageable set of key findings . 

SELECTING  A  MODEL  

        The basic learning process and have understood model abstraction and generalization in that context, 

let’s try to formalize it in context of a motivating example. Continuing the thread of the potential attack 

during the election campaign, New City Police department has succeeded in foiling the bid to attack the 

electoral candidate. Input variables can be denoted by X, while individual input variables are represented 

as X , X , X , …, X and output variable by symbol Y. The relationship between X and Y is represented in 

the general form: Y = f (X) + e, where ‘f ’ is the target function and ‘e’ is a random error term. that there 

are three broad categories of machine learning approaches used for resolving different types of problems. 

Quickly recapitulating, they are , 

1. Supervised 

      1. Classification 

      2. Regression 

2. Unsupervised 

     1. Clustering 

     2. Association analysis 

3. Reinforcement 

    Multiple factors play a role when we try to select the model for solving a machine learning problem. 

The most important factors are (i) the kind of problem we want to solve using machine learning and (ii) 

the nature of the underlying data. The problem may be related to the prediction of a class value like 

whether a tumour is malignant or benign, whether the next day will be snowy or rainy, etc. It may be 

related to prediction – but of some numerical value like what the price of a house should be in the next 

quarter, what is the expected growth of a certain IT stock in the next 7 days, etc. Certain problems are 

related to grouping of data like finding customer segments that are using a certain product, movie genres 

which have got more box office success in the last one year, etc. Machine learning algorithms are broadly 

of two types: models for supervised learning, which primarily focus on solving predictive problems and 

models for unsupervised learning, which solve descriptive problems. 



 

PREDICTIVE  MODELS 

Models for supervised learning or predictive models, as is understandable from the name itself, try to 

predict certain value using the values in an input data set. The learning model attempts to establish a 

relation between the target feature, i.e. the feature being predicted, and the predictor features. The 

predictive models have a clear focus on what they want to learn and how they want to learn.  

 Predictive models, in turn, may need to predict the value of a category or class to which a data instance 

belongs to. Below are some examples: 

1. Predicting win/loss in a cricket match 

2. Predicting whether a transaction is fraud 

3. Predicting whether a customer may move to another product 

The target feature is known as a class and the categories to which classes are divided into are called levels. 

Some of the popular classification models include k-Nearest Neighbor (kNN), Naïve Bayes, and Decision 

Tree.  

Predictive models may also be used to predict numerical values of the target feature based on the predictor 

features. Below are some examples: 

1. Prediction of revenue growth in the succeeding year 

2. Prediction of rainfall amount in the coming monsoon 

3. Prediction of potential flu patients and demand for flu shots next winter 

The models which are used for prediction of the numerical value of the target feature of a data instance 

are known as regression models. Linear Regression and Logistic Regression models are popular regression 

models. 

DESCRIPTIVE  MODELS 

Models for unsupervised learning or descriptive models are used to describe a data set or gain insight from 

a data set. There is no target feature or single feature of interest in case of unsupervised learning. Based 

on the value of all features, interesting patterns or insights are derived about the data set. 

Descriptive models which group together similar data instances, i.e. data instances having a similar value 

of the different features are called clustering models. Examples of clustering include  

1. Customer grouping or segmentation based on social, demographic, ethnic, etc. factors 

2. Grouping of music based on different aspects like genre, language, time-period, etc. 

3. Grouping of commodities in an inventory 

The most popular model for clustering is k-Means. 



 

Descriptive models related to pattern discovery is used for market basket analysis of transactional data. In 

market basket analysis, based on the purchase pattern available in the transactional data, the possibility of 

purchasing one product based on the purchase of another product is determined. 

TRAINING   A  MODEL  ( FOR  SUPERVISED  LEARNING  ):- 

HOLDOUT  METHOD  

In case of supervised learning, a model is trained using the labelled input data. However, how can we 

understand the performance of the model? The test data may not be available immediately. Also, the label 

value of the test data is not known. That is the reason why a part of the input data is held back (that is how 

the name holdout originates) for evaluation of the model. This subset of the input data is used as the test 

data for evaluating the performance of a trained model. In general 70%–80% of the input data (which is 

obviously labelled) is used for model training. The remaining 20%–30% is used as test data for validation 

of the performance of the model. However, a different proportion of dividing the input data into training 

and test data is also acceptable. To make sure that the data in both the buckets are similar in nature, the 

division is done randomly. Random numbers are used to assign data items to the partitions. This method 

of partitioning the input data into two parts – training and test data (depicted in Figure 3.1), which is by 

holding back a part of the input data for validating the trained model is known as holdout method. 

 

FIG. 3.1 Holdout method 

The division of data of different classes into the training and test data may not be proportionate. This 

situation is worse if the overall percentage of data related to certain classes is much less compared to other 

classes. This may happen despite the fact that random sampling is employed for test data selection. This 

problem can be addressed to some extent by applying stratified random sampling in place of sampling. In 

case of stratified random sampling, the whole data is broken into several homogenous groups or strata and 

a random sample is selected from each such stratum. This ensures that the generated random partitions 

have equal proportions of each class. 

 



 

 

K-FOLD CROSS-VALIDATION METHOD 

Holdout method employing stratified random sampling approach still heads into issues in certain specific 

situations. Especially, the smaller data sets may have the challenge to divide the data of some of the classes 

proportionally amongst training and test data sets. A special variant of holdout method, called repeated 

holdout, is sometimes employed to ensure the randomness of the composed data sets. This process of 

repeated holdout is the basis of k-fold cross-validation technique. In k-fold cross-validation, the data set 

is divided into kcompletely distinct or non-overlapping random partitions called folds. Figure 3.2 depicts 

an overall approach for k-fold cross-validation. 

The value of ‘k’ in k-fold cross-validation can be set to any number. However, there are two approaches 

which are extremely popular: 

1. 10-fold cross-validation (10-fold CV) 

2. Leave-one-out cross-validation (LOOCV) 

10-fold cross-validation is by far the most popular approach. In this approach, for each of the 10-folds, 

each comprising of approximately 10% of the data, one of the folds is used as the test data for validating 

model performance trained based on the remaining 9 folds (or 90% of the data). This is repeated 10 times, 

once for each of the 10 folds being used as the test data and the remaining folds as the training data.The 

average performance across all folds is being reported. The entire data set is broken into ‘k’ folds – out of 

which one fold is selected in each iteration as the test data set. The fold selected as test data set in each of 

the ‘k’ iterations is different. the circles resemble the records in the input data set, the contiguous circles 

represented as folds do not mean that they are subsequent records in the data set. This is more a virtual 

representation and not a physical representation. As already mentioned, the records in a fold are drawn by 

using random sampling technique. 

 

FIG. 3.2 Overall approach for K-fold cross-validation 



 

 

BOOTSTRAP  SAMPLING 

Bootstrap sampling or simply bootstrapping is a popular way to identify training and test data sets from the 

input data set. It uses the technique of Simple Random Sampling with Replacement (SRSWR), which is a 

wellknown technique in sampling theory for drawing random samples. We have seen earlier that k-fold 

crossvalidation divides the data into separate partitions – say 10 partitions in case of 10-fold cross-

validation. Then it uses data instances from partition as test data and the remaining partitions as training 

data. Unlike this approach adopted in case of k-fold cross- validation, bootstrapping randomly picks data 

instances from the input data set, with the possibility of the same data instance to be picked multiple times. 

This essentially means that from the input data set having ‘n’ data instances, bootstrapping can create one 

or more training data sets having ‘n’ data instances, some of the data instances being repeated multiple 

times. Figure 3.4 briefly presents the approach followed in bootstrap sampling. 

This technique is particularly useful in case of input data sets of small size, i.e. having very less number of 

data instances. 

 

FIG. 3.4 Bootstrap sampling 



 

 

LAZY   VS.  EAGER  LEARNER  

It tries to construct a generalized, inputindependent target function during the model training phase. It 

follows the typical steps of machine learning, i.e. abstraction and generalization and comes up with a trained 

model at the end of the learning phase. Hence, when the test data comes in for classification, the eager 

learner is ready with the model and doesn’t need to refer back to the training data. Eager learners take more 

time in the learning phase than the lazy learners. Some of the algorithms which adopt eager learning 

approach include Decision Tree, Support Vector Machine, Neural Network, etc. 

Lazy learning, on the other hand, completely skips the abstraction and generalization processes, as 

explained in context of a typical machine learning process. In that respect, strictly speaking, lazy learner 

doesn’t ‘learn’ anything. It uses the training data in exact, and uses the knowledge to classify the unlabelled 

test data. They are also called non-parametric learning. Lazy learners take very little time in training because 

not much of training actually happens. However, it takes quite some time in classification as for each tuple 

of test data, a comparison-based assignment of label happens. One of the most popular algorithm for lazy 

learning is k-nearest neighbor. 

MODEL  REPRESENTATION  AND   INTERPRETABILITY 

We have already seen that the goal of supervised machine learning is to learn or derive a target function 

which can best determine the target variable from the set of input variables. A key consideration in learning 

the target function from the training data is the extent of generalization. This is because the input data is 

just a limited, specific view and the new, unknown data in the test data set may be differing quite a bit from 

the training data.  

 Fitness of a target function approximated by a learning algorithm determines how correctly it is able to 

classify a set of data it has never seen. 

UNDERFITTING 

If the target function is kept too simple, it may not be able to capture the essential nuances and represent 

the underlying data well. A typical case of underfitting may occur when trying to represent a non-linear 

data with a linear model as demonstrated by both cases of underfitting shown in figure 3.5. Many times 

underfitting happens due to unavailability of sufficient training data. Underfitting results in both poor 

performance with training data as well as poor generalization to test data. Underfitting can be avoided by 

1. using more training data 

2. reducing features by effective feature selection 

 

 



 

 

OVERFITTING  

Overfitting refers to a situation where the model has been designed in such a way that it emulates the 

training data too closely. In such a case, any specific deviation in the training data, like noise or outliers, 

gets embedded in the model. It adversely impacts the performance of the model on the test data. 

Overfitting, in many cases, occur as a result of trying to fit an excessively complex model to closely 

match the training data. This is represented with a sample data set in figure 3.5 . The target function, in 

these cases, tries to make sure all training data points are correctly partitioned by the decision boundary. 

However, more often than not, this exact nature is not replicated in the unknown test data set. Hence, the 

target function results in wrong classification in the test data set. Overfitting results in good performance 

with training data set, but poor generalization and hence poor performance with test data set. Overfitting 

can be avoided by 

1. using re-sampling techniques like k-fold cross validation 

2. hold back of a validation data set 

3. remove the nodes which have little or no predictive power for the given machine learning problem. 

 

BIAS – VARIANCE TRADE OFF 

In supervised learning, the class value assigned by the learning model built based on the training data may 

differ from the actual class value. This error in learning can be of two types – errors due to ‘bias’ and error 

due to ‘variance’. Let’s try to understand each of them in details. 

Errors due to ‘Bias’ 

Errors due to bias arise from simplifying assumptions made by the model to make the target function less 

complex or easier to learn. In short, it is due to underfitting of the model. Parametric models generally have 

high bias making them easier to understand/interpret and faster to learn. These algorithms have a poor 

performance on data sets, which are complex in nature and do not align with the simplifying assumptions 

made by the algorithm. Underfitting results in high bias. 

Errors due to ‘Variance’ 

Errors due to variance occur from difference in training data sets used to train the model. Different training 

data sets (randomly sampled from the input data set) are used to train the model. Ideally the difference in 

the data sets should not be significant and the model trained using different training data sets should not be 

too different. However, in case of overfitting, since the model closely matches the training data, even a 

small difference in training data gets magnified in the model. 



 

FIG. 3.6 Bias-variance trade-off  

On one hand, parametric algorithms are generally seen to demonstrate high bias but low variance. On the 

other hand, non-parametric algorithms demonstrate low bias and high variance. 

EVALUATING  PERFORMANCE  OF  A  MODEL 

SUPERVISED LEARNING – CLASSIFICATION 

In supervised learning, one major task is classification. The responsibility of the classification model is to 

assign class label to the target feature based on the value of the predictor features. For example, in the 

problem of predicting the win/loss in a cricket match, the classifier will assign a class value win/loss to 

target feature based on the values of other features like whether the team won the toss, number of spinners 

in the team, number of wins the team had in the tournament, etc. To evaluate the performance of the model, 

the number of correct classifications or predictions made by the model has to be recorded. A classification 

is said to be correct if, say for example in the given problem, it has been predicted by the model that the 

team will win and it has actually won. Based on the number of correct and incorrect classifications or 

predictions made by a model, the accuracy of the model is calculated. If 99 out of 100 times the model has 

classified correctly, e.g. if in 99 out of 100 games what the model has predicted is same as what the outcome 

has been, then the model accuracy is said to be 99%. However, it is quite relative to say whether a model 

has performed well just by looking at the accuracy value. For example, 99% accuracy in case of a sports 

win predictor model may be reasonably good but the same number may not be acceptable as a good 

threshold when the learning problem deals with predicting a critical illness. In this case, even the 1% 

incorrect prediction may lead to loss of many lives. So the model performance needs to be evaluated in 

light of the learning problem in question. Also, in certain cases, erring on the side of caution may be 



 

preferred at the cost of overall accuracy. For that reason, we need to look more closely at the model accuracy 

and also at the same time look at other measures of performance of a model like sensitivity, specificity, 

precision, etc. So, let’s start with looking at model accuracy more closely. And let’s try to understand it with 

an example. 

There are four possibilities with regards to the cricket match win/loss prediction: 

1. The model predicted win and the team won 

2. The model predicted win and the team lost 

3. The model predicted loss and the team won 

4. The model predicted loss and the team lost 

The first case, i.e. the model predicted win and the team won is a case where the model has correctly 

classified data instances as the class of interest. These cases are referred as True Positive (TP) cases. The 

second case, i.e. the model predicted win and the team lost is a case where the model incorrectly classified 

data instances as the class of interest. These cases are referred as False Positive (FP) cases. The third case, 

i.e. the model predicted loss and the team won is a case where the model has incorrectly classified as not 

the class of interest. These cases are referred as False Negative (FN) cases. 

The fourth case, i.e. the model predicted loss and the team lost is a case where the model has correctly 

classified as not the class of interest. These cases are referred as True Negative (TN) cases. Any 

classification model, model accuracy is given by total number of correct classifications (either as the class 

of interest, i.e. True Positive or as not the class of interest, i.e. True Negative) divided by total number of 

classifications done. 



 

 

Sometimes, correct prediction, both TPs as well as TNs, may happen by mere coincidence. Since these 

occurrences boost model accuracy, ideally it should not happen. Kappa value of a model indicates the 

adjusted the model accuracy. It is calculated using the formula below: 

 

 

These are precision and recall. While precision gives the proportion of positive predictions which are 

truly positive, recall gives the proportion of TP cases over all actually positive cases. 

Precision indicates the reliability of a model in predicting a class of interest. When the model is related to 

win / loss prediction of cricket, precision indicates how often it predicts the win correctly. 

Recall indicates the proportion of correct prediction of positives to the total number of positives. In case of 

win/loss prediction of cricket, recall resembles what proportion of the total wins were predicted correctly. 

F-Measure 

F-measure is another measure of model performance which combines the precision and recall. It takes the 

harmonic mean of precision and recall as calculated as 

 



 

As a combination of multiple measures into one, Fscore gives the right measure using which performance 

of different models can be compared. However, one assumption the calculation is based on is that 

precision and recall have equal weight, which may not always be true in reality. 

Receiver Operating Characteristic (ROC) Curves  

Receiver Operating Characteristic (ROC) curve helps in visualizing the performance of a classification 

model. It shows the efficiency of a model in the detection of true positives while avoiding the occurrence 

of false positives. To refresh our memory, true positives are those cases where the model has correctly 

classified data instances as the class of interest. For example, the model has correctly classified the tumours 

as malignant, in case of a tumour malignancy prediction problem. On the other hand, FPs are those cases 

where the model incorrectly classified data instances as the class of interest. Using the same example, in 

this case, the model has incorrectly classified the tumours as malignant, i.e. tumours which are actually 

benign have been classified as malignant. 

 

 

 FIG. 3.8 ROC curve 

SUPERVISED LEARNING-REGRESSION 

A well-fitted regression model churns out predicted values close to actual values. Hence, a regression 

model which ensures that the difference between predicted and actual values is low can be considered as a 

good model. Figure 3.9 represents a very simple problem of real estate value prediction solved using 

linear regression model. If ‘area’ is the predictor variable (say x) and ‘value’ is the target variable (say y), 

the linear regression model can be represented in the form: 

 



 

FIG. 3.9 Error – Predicted vs. actual value 

For a certain value of x, say x̂, the value of y is predicted as ŷ whereas the actual value of y is Y (say). The 

distance between the actual value and the fitted or predicted value, i.e. ŷ is known as residual. 

R-squared is a good measure to evaluate the model fitness. It is also known as the coefficient of 

determination, or for multiple regression, the coefficient of multiple determination. The R-squared value 

lies between 0 to 1 (0%–100%) with a larger value representing a better fit. It is calculated as: 

Sum of Squares Total (SST) = squared differences of each observation from the overall mean =  

 where y̅ is the mean.  

Sum of Squared Errors (SSE) (of prediction) = sum of the squared residuals =  

where is the predicted value of y and Y is the actual value of yi 

UNSUPERVISED LEARNING – CLUSTERING 

Clustering algorithms try to reveal natural groupings amongst the data sets. However, it is quite tricky to 

evaluate the performance of a clustering algorithm. Clustering, by nature, is very subjective and whether 

the cluster is good or bad is open for interpretations. It was noted, ‘clustering is in the eye of the beholder’. 

This stems from the two inherent challenges which lie in the process of clustering: 

1. It is generally not known how many clusters can be formulated from a particular data set. It Is completely 

open-ended in most cases and provided as a user input to a clustering algorithm. 



 

2. Even if the number of clusters is given, the same number of clusters can be formed with different groups 

of data instances. 

(a) Internal evaluation 

      In this approach, the cluster is assessed based on the underlying data that was clustered. The internal 

evaluation methods generally measure cluster quality based on homogeneity of data belonging to i i i. the 

same cluster and heterogeneity of data belonging to different clusters. The homogeneity/heterogeneity is 

decided by some similarity measure. For example, silhouette coefficient, which is one of the most popular 

internal evaluation methods, uses distance (Euclidean or Manhattan distances most commonly used) 

between data elements as a similarity measure. The value of silhouette width ranges between –1 and +1, 

with a high value indicating high intracluster homogeneity and inter-cluster heterogeneity 

For a data set clustered into ‘k’ clusters, silhouette width is calculated as:  

In the same way, let’s calculate the distance of an arbitrary data element ‘i’ in cluster 1 with the different 

data elements from another cluster, say cluster 4 and take an average of all those distances. Hence, 

where n is the total number of elements in cluster 4. In the same way, we can calculate the values of b 

(average) and b (average). b (i) is the minimum of all these values. Hence, we can say that,  

b(i) = minimum [b (average), b (average), b (average)] 

(b) External evaluation 

In this approach, class label is known for the data set subjected to clustering. However, quite obviously, the 

known class labels are not a part of the data used in clustering. The cluster algorithm is assessed based on 

how close the results are compared to those known class labels. For example, purity is one of the most 

popular measures of cluster algorithms – evaluates the extent to which clusters contain a single class.  

For a data set having ‘n’ data instances and ‘c’ known class labels which generates ‘k’ clusters, purity is 

measured as: 

 

IMPROVING  PERFORMANCE  OF  A  MODEL 

Now we have almost reached the end of the journey of building learning models. We have got some idea 

about what modelling is, how to approach about it to solve a learning problem and how to measure the 

success of our model. Now comes a million dollar question. Can we improve the performance of our model? 



 

If so, then what are the levers for improving the performance? In fact, even before that comes the question 

of model selection – which model should be selected for which machine learning task? We have already 

discussed earlier that the model selection is done one several aspects: 

1. Type of learning the task in hand, i.e. supervised or unsupervised 

2. Type of the data, i.e. categorical or numeric 

3. Sometimes on the problem domain 

4. Above all, experience in working with different models to solve problems of diverse domains 

So, assuming that the model selection is done, what are the different avenues to improve the performance 

of models? 

This approach of combining different models with diverse strengths is known as ensemble (depicted in 

Figure 3.11 ). Ensemble helps in averaging out biases of the different underlying models and also reducing 

the variance. Ensemble methods combine weaker learners to create stronger ones. A performance boost can 

be expected even if models are built as usual and then ensembled. Following are the typical steps in 

ensemble process: 

• Build a number of models based on the training data  

• For diversifying the models generated, the training data subset can be varied using the allocation function. 

Sampling techniques like bootstrapping may be used to generate unique training data sets.  

• Alternatively, the same training data may be used but the models combined are quite varying, e.g, SVM, 

neural network, kNN, etc.  

• The outputs from the different models are combined using a combination function. A very simple strategy 

of combining, say in case of a prediction task using ensemble, can be majority voting of the different models 

combined. For example, 3 out of 5 classes predict ‘win’ and 2 predict ‘loss’ – then the final outcome of the 

ensemble using majority vote would be a ‘win’. 

 

FIG. 3.11 Ensemble 



 

 

One of the earliest and most popular ensemble models is bootstrap aggregating or bagging. Bagging uses 

bootstrap sampling method (refer section 3.3.3) to generate multiple training data sets. These training data 

sets are used to generate (or train) a set of models using the same learning algorithm. Then the outcomes of 

the models are combined by majority voting (classification) or by average (regression). Bagging is a very 

simple ensemble technique which can perform really well for unstable learners like a decision tree, in which 

a slight change in data can impact the outcome of a model significantly.  

Just like bagging, boosting is another key ensemblebased technique. In this type of ensemble, weaker 

learning models are trained on resampled data and the outcomes are combined using a weighted voting 

approach based on the performance of different models. Adaptive boosting or AdaBoost is a special 

variant of boosting algorithm. It is based on the idea of generating weak learners and slowly learning  

Random forest is another ensemble-based technique. It is an ensemble of decision trees – hence the name 

random forest to indicate a forest of decision trees. 

 

WHAT  IS  A  FEATURE? 

A feature is an attribute of a data set that is used in a machine learning process. There is a view amongst 

certain machine learning practitioners that only those attributes which are meaningful to a machine learning 

problem are to be called as features. 

WHAT IS FEATURE ENGINEERING? 

Feature engineering refers to the process of translating a data set into features such that these features are 

able to represent the data set more effectively and result in a better learning performance.  

As we know already, feature engineering is an important pre-processing step for machine learning. It has 

two major elements: 

1. feature transformation 

2. feature subset selection 

Feature Transformation transforms the data – structured or unstructured, into a new set of features which 

can represent the underlying problem which machine learning is trying to solve. There are two variants of 

feature transformation: 

➢ feature construction 

➢ feature extraction 

Both are sometimes known as feature discovery. 

 



 

 

➢ Feature Construction process discovers missing information about the relationships between 

features and augments the feature space by creating additional features. Hence, if there are ‘n’ 

features or dimensions in a data set, after feature construction ‘m’ more features or dimensions may 

get added. So at the end, the data set will become ‘n + m’ dimensional. 

➢ Feature Extraction is the process of extracting or creating a new set of features from the original 

set of features using some functional mapping. 

Unlike feature transformation, in case of feature subset selection (or simply feature selection) no 

new feature is generated. The objective of feature selection is to derive a subset of features from the 

full feature set which is most meaningful in the context of a specific machine learning problem. So, 

essentially the job of feature selection is to derive a subset F (F , F , …, F ) of F (F , F , …, F ), 

where m < n, such that F is most meaningful and gets the best result for a machine learning problem. 

We will discuss these concepts in detail in the next section. 

 

FEATURE TRANSFORMATION 

Engineering a good feature space is a crucial prerequisite for the success of any machine learning model. 

However, often it is not clear which feature is more important. For that reason, all available attributes of 

the data set are used as features and the problem of identifying the important features is left to the learning 

model. 

FEATURE CONSTRUCTION 

Feature construction involves transforming a given set of input features to generate a new set of more 

powerful features. To understand more clearly, let’s take the example of a real estate data set having details 

of all apartments sold in a specific region. 

The data set has three features – apartment length, apartment breadth, and price of the apartment. If it is 

used as an input to a regression problem, such data can be training data for the regression model. 

FIG. 4.2 Feature construction (example 1) 

 



 

 

➢ Encoding Categorical (nominal) variables  

Let’s take the example of another data set on athletes, as presented in Figure 4.3a. Say the data set 

has features age, city of origin, parents athlete (i.e. indicate whether any one of the parents was an 

athlete) and Chance of Win. The feature chance of a win is a class variable while the others are 

predictor variables. We know that any machine learning algorithm, whether it’s a classification 

algorithm (like kNN) or a regression algorithm, requires numerical figures to learn from. So there 

are three features – City of origin, Parents athlete, and Chance of win, which are categorical in 

nature and cannot be used by any machine learning task. 

 

FIG. 4.3 Feature construction (encoding nominal variables) 

➢ Encoding Categorical (ordinal) Variables 

Let’s take an example of a student data set. Let’s assume that there are three variable – science 

marks, maths marks and grade as shown in Figure 4.4a. As we can see, the grade is an ordinal 

variable with values A, B, C, and D. To transform this variable to a numeric variable, we can create 

a feature num_grade mapping a numeric value against each ordinal value. In the context of the 

current example, grades A, B, C, and D in Figure 4.4a is mapped to values 1, 2, 3, and 4 in the 

transformed variable shown in Figure 4.4b. 



 

FIG. 4.4 Feature construction (encoding ordinal variables) 

➢ Transforming Numeric (continuous) Features To Categorical Features 

Sometimes there is a need of transforming a continuous numerical variable into a categorical 

variable. For example, we may want to treat the real estate price prediction problem, which is a 

regression problem, as a real estate price category prediction, which is a classification problem. In 

that case, we can ‘bin’ the numerical data into multiple categories based on the data range. In the 

context of the real estate price prediction example, the original data set has a numerical feature 

apartment_price as shown in Figure 4.5a. It can be transformed to a categorical variable price-grade 

either as shown in Figure 4.5b or as shown in Figure 4.5c. 

FIG. 4.5 Feature construction (numeric to categorical) 

➢ Text-Specific Feature Construction 

In the first place, the text data chunks that we can think about do not have readily available features, 

like structured data sets, on which machine learning tasks can be executed. All machine learning 

models need numerical data as input. So the text data in the data sets need to be transformed into 

numerical features. Text data, or corpus which is the more popular keyword, is converted to a 

numerical representation following a process is known as vectorization. In this process, word 



 

occurrences in all documents belonging to the corpus are consolidated in the form of bag-of-words. 

There are three major steps that are followed: 

1. tokenize 

2. count 

3. normalize 

In order to tokenize a corpus, the blank spaces and punctuations are used as delimiters to separate 

out the words, or tokens. Then the number of occurrences of each token is counted, for each 

document. Lastly, tokens are weighted with reducing importance when they occur in the majority 

of the documents. A matrix is then formed with each token representing a column and a specific 

document of the corpus representing each row. Each cell contains the count of occurrence of the 

token in a specific document. This matrix is known as a document-term matrix (also known as a 

term-document matrix). Figure 4.6 represents a typical document-term matrix which forms an input 

to a machine learning model. 

FIG. 4.6 Feature construction (text-specific) 

FEATURE EXTRACTION 

In feature extraction, new features are created from a combination of original features. Some of the 

commonly used operators for combining the original features include 

1. For Boolean features: Conjunctions, Disjunctions, Negation, etc. 

2. For nominal features: Cartesian product, M of N, etc. 

3. For numerical features: Min, Max, Addition, Subtraction, Multiplication, Division, Average Equivalence, 

Inequality, etc. 

Let’s take an example and try to understand. Say, we have a data set with a feature set F (F , F , …, F ). 

After feature extraction using a mapping function f  

(F , F , …, F ) say, we will have a set of features  

such that   and m < n.  

For example  ,. This is depicted in Figure4.7 



 

 FIG. 4.7 Feature extraction 

 


