
  
  

FORMAL LANGUAGE AND AUTOMATA THEORY 

UNIT-IV 

SYLLABUS 

1. Pushdown Automata 

2. Definition 

3. Model (or) Components of PDA 

4. Graphical Notation 

5. Instantaneous Description 

6. Language Acceptance of Pushdown Automata 

7. Design of Pushdown Automata 

8. Deterministic and Non – Deterministic PDA 

9. Equivalence of PDA to CFG 

10.Conversion 

11.Two Stack PDA 

12.Application of Pushdown Automata 

UNIT - IV 1 



  
  

UNIT-IV 

PUSHDOWN AUTOMATA 

 It is a finite automata with extra memory called Stack (LIFO) which helps 

pushdown automata to recognize context free language. 

 PDA are used in theories about what can be computed by machine. 

 They are “more capable” than finite state machine but “less capable” than Turing 

Machine. 

 Pushdown automata is a way to implement a CFG in the same way we design DFA 

for a regular grammar. 

 A DFA can remember a “finite amount of information”, but a “PDA” can 

remember an “Infinite amount of information”. 

 A PDA is more powerful than FA. Any language which can be acceptable by FA can 

also be acceptable by PDA. PDA also accepts a class of language which even cannot 

be accepted by FA. Thus PDA is much more superior to FA. 

 Basically, a pushdown automaton is: 

"Finite state machine" + "a stack" 

→ DEFINITION: - 

PDA is a generalisation of FSA and a PDA changes from “state to state”, “reading 

input symbols” unlike FSA, “transitions” also update the stack either by popping symbols 

(or) pushing symbols them. 

(or) 

PDA is a way to represent the language class called context free languages. In other 

words PDA’s are abstract devices that recognise context free languages. 

→ MODEL (OR) COMPONENTS OF PDA: - 

They are three (3) components are used in PDA 

1. Input Tape 

2. Finite Control Unit 

3. Stack (Memory Unit) 
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Input tape: The input tape is divided in many cells or symbols. The input head is read-only 

and may only move from left to right, one symbol at a time. 

Finite control: The finite control has some pointer which points the current symbol which is 

to be read. 

Stack: The stack is a structure in which we can push and remove the items from one end 

only. It has an infinite size. In PDA, the stack is used to store the items temporarily. 

→ GRAPHICAL NOTATION (or) TRANSITION DIAGRAM: - 

A transition in a PDA from a state “q ” to “q ” labeled as a, b → c 1 2 

Here q and q is a States 1 2 

At state “q1”, if an input string “a” is encounter and top symbol of stack is “b”, push 

“c” on top pf the stack and move to state “q2”. 

→ TRANSITION TABLE: - 

The description of operation of a PDA, for a given input string, can be represented in 

a tabular format called “Transition Table”. 

Unread input Transition Stack New State 
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→ ORDERED SEVEN (7) – TUPLES SPECIFICATION OF PDA: - 

A PDA can be formally described as a 7-tuple (Q, ∑, δ, q0, F, Z, Γ) − 

 Q is the finite number of states 

 ∑ is input alphabet 

 δ is the transition function: Q × (∑ ∪ {ε}) × S × Q × S* 

 q is the initial state (q ∈ Q) 0 0 

 F is a set of accepting states (F ∈ Q) 

 Z is the initial stack symbol, placed on the TOS 

 Γ is the final set of stack symbols 

→ TRANSITION ON PDA: - 

The transition of PDA can be represented in different ways, as follows: 

Form – 1: 

δ (current state, current input symbol, current stack top) = (new state, new stack top) 

Form – 2: 

δ (current state, current input symbol, current stack top, operation on stack, new state) 

Example: - 1). Consider a PDA, whose task is described in the transition diagram Show in 

below figure. The given input string (w) = aab, “z” initial symbol of stack. 

Solution: - 

“Transition” of the above diagram are represented using different forms as: 

Form-1: δ (q , a, Z) = (q , a) 
0 0 

This means for the current state “q0”, current input symbol “a”, if the current 

stack top is “Z”, then new state and new stack top are represented as (q0, a). 

Form-2: δ (q , a, Z, Push(a), q ) 
0 0 

Ist 
This means for the current state “q0”, current input symbol “a”, if the current 

stack top is “Z”, then “Push a” on to stack and remain the state “q0”. 

Transition 

Form-1: δ (q , a, a) = (q , a) 
0 0 

2nd 

Transition 
Form-2: δ (q , a, a, Push(a), q ) 0 0 

Form-1: 

Form-2: 

δ (q , b, a) = (q , Ɛ) 3rd 

Transition 

0 1 

δ (q , b, a, pop(a), q ) 0 1 
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Transition Table: - 

Unread input 

Input String (w) = aab 

Transitions Stack 

Z 

New State 

aab 

ab 

b 

------ q0 

q0 

q0 

q1 

(q , a, Z, push(a), q ) az 0 0 

(q , a, a, push(a), q ) aaz 

az 

0 0 

Ɛ (q , b, a, pop(a), q ) 
0 1 

Example: -2). Consider the following transition diagram of a PDA. Input string (w) = 

aaabbb, “z” as the current stack top. 

Solution: - 

Transition Table: - 

Unread input 

Input String (w) = aaabbb 

Transitions Stack 

Z 

New State 

aaabbb 

aabbb 

abbb 

bbb 

bb 

------ q0 

q0 

q0 

q0 

q1 

q1 

q1 

q2 

(q , a, Z, push(a), q ) az 0 0 

(q , a, a, push(a), q ) aaz 

aaaz 

aaz 

az 

0 0 

(q , b, a, push(a), q ) 0 0 

(q , b, a, pop, q ) 0 1 

b (q , b, a, pop, q ) 
1 1 

Ɛ (q , b, a, pop, q ) z 1 1 

-- (q , Ɛ, z, pop, q ) z 1 2 
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→ INSTANTANEOUS DESCRIPTION (ID): - 

The ID of a PDA is represented by a “triple” (q, w, s). 

Here q → States 

w → Input string 

s → Stack 

“ID” is an informal notation of how PDA computes an “input string” and make a decision 

that string is accepted (or) Rejected. 

Example: - 1. w = aabb 

2. w = ababaab 

→ TURNSTILE NOTATION: - 

It is used for connecting pairs of ID’s that represent “one or more moves” of a PDA. 

The process of transition is denoted by the Turnstile symbol “├ ”. 

Example: -3). Consider the following transition diagram of a PDA. 

Consider the input string (w) = aaabbb and “z” as the current stack top. 

Solution: - Transition Table: - Input String (w) = aaabbb 

Unread input Transitions Stack 

Z 

New State 

aaabbb 

aabbb 

abbb 

bbb 

bb 

------ q0 

q0 

q0 

q0 

q1 

q1 

q1 

q2 

(q , a, Z, push(a), q ) az 0 0 

(q , a, a, push(a), q ) aaz 

aaaz 

aaz 

az 

0 0 

(q , b, a, push(a), q ) 0 0 

(q , b, a, pop, q ) 0 1 

b (q , b, a, pop, q ) 
1 1 

Ɛ (q , b, a, pop, q ) z 1 1 

-- (q , Ɛ, z, pop, q ) z 1 2 
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→ LANGUAGE ACCEPTANCE OF PUSHDOWN AUTOMATA: - 

A language can be accepted by Pushdown automata using two approaches: 

1. Acceptance by Final State 

2. Acceptance by Empty Stack 

1) Acceptance by Final State: - 

The PDA is said to accept its input by the final state if it enters any final state 

in zero or more moves after reading the entire input. 

Let P = (Q, ∑, Γ, δ, q0, Z, F) be a PDA. The language acceptable by the final state can 

be defined as: 

L(PDA) = {w | (q0, w, Z) ⊢* (p, ε, z), q ∈ F} 

2) Acceptance by Empty Stack: - 

On reading the input string from the initial configuration for some PDA, the 

stack of PDA gets empty. 

Let P = (Q, ∑, Γ, δ, q0, Z, F) be a PDA. The language acceptable by empty stack can 

be defined as: 

N(PDA) = {w | (q0, w, Z) ⊢* (p, ε, z), q ∈ Q} 

Example: -4). Design a PDA for accepting a language L = {anbn | n>=1} 

Solution: - 

anbn: Every String contains “n” number of a’s followed by “n” number of b’s. 

n = 3, a3b3 
➔ aaabbb 

L = {aabb, aaabbb, _ _ _ _ _ _} 

Input String (w) = aaabbb 

Transition Diagram: - 
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Transition on PDA: - 

δ (q , a, z) = (q , a) (or) (q , a, z, push(a), q ) 0 0 0 0 

(q , a, a, push(a), q ) 0 0 

(q , a, a, push(a), q ) 0 0 

(q , b, a, pop, q ) 0 1 

(q , b, a, pop, q ) 1 1 

(q , b, a, pop, q ) 1 1 

(q , Ɛ, z, pop, q ) 1 2 

Transition Table: - Input String (w) = aaabbb 

Transitions Unread input Stack 

Z 

New State 

aaabbb 

aabbb 

abbb 

bbb 

bb 

------ q0 

q0 

q0 

q0 

q1 

q1 

q1 

q2 

(q , a, Z, push(a), q ) az 0 0 

(q , a, a, push(a), q ) aaz 

aaaz 

aaz 

az 

0 0 

(q , b, a, push(a), q ) 0 0 

(q , b, a, pop, q ) 0 1 

b (q , b, a, pop, q ) 
1 1 

Ɛ (q , b, a, pop, q ) z 1 1 

-- (q , Ɛ, z, pop, q ) z 1 2 

PDA action for the Input String: - 

a) Consider the input String (w) = aaabbb 

ID: (q, w, s) 

(q , aaabbb, z) ├ (q , aabbb, az) 0 0 

├ (q0, abbb, aaz) 

├ (q0, bbb, aaaz) 

├ (q1, bb, aaz) 

├ (q1, b, az) 

├ (q1, Ɛ, z) 

├ (q2, z) 

So my string is accepted. 

b) Consider the input string (w) = aabbb 

ID: (q0, aabbb, z) ├ (q0, abbb, az) 

├ (q0, bbb, aaz) 

├ (q1, bb, az) 

├ (q1, b, z) 

├ (q1, z) 

⸫ The String is not accepted, because “q1” is not a final State. 
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→ DESIGN OF PDA: - 

The basic design strategy for PDA as follows: 

1. Understand the language properties, for which the PDA has to be design. 

2. Determine the state and alphabet set required. 

3. Identify the initial, accepting (final) and dead states of PDA. 

4. Decide on the stack symbols required. 

5. Determine the initial stack symbols from the stack symbol set. 

6. For each state, decide on the transition to be made for each character of the input 

string. 

7. For each state transition, decide on the stack operation to be performed. 

8. Obtain the transition diagram and table for PDA. 

9. Test, the PDA obtained on short string. 

Example: -4). Design a PDA for accepting a language L = {0n12n | n>1} 

Solution: - In this language “n” number of 0’s should be followed by “2n” number of 1’s. 

*** Logic: - One Zero is corresponding two one’s. 

Input String (w) = 001111 

Transition on PDA: - 

(q , 0, z, push(0), q ) 0 0 

This is 

Logic 
(q , 0, 0, push(0), q ) 0 0 

(q , 1, 0, 0, q ) 0 1 

(q , 1, 0, pop(0), q ) 1 2 

(q , 1, 0, 0, q ) 2 1 

(q , 1, 0, pop(0), q ) 1 2 

(q , Ɛ, z, pop, q ) 2 3 
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Transition Table: - 

Unread input 

Input String (w) = 001111 

Transitions Stack 

Z 

New State 

001111 

01111 

1111 

111 

11 

------ q0 

q0 

q0 

q1 

q2 

q1 

q2 

q3 

(q , 0, Z, push(0), q ) 0z 0 0 

(q , 0, 0, push(0), q ) 00z 

00z 

0z 

0 0 

(q , 1, 0, 0, q ) 0 1 

(q , 1, 0, pop(0), q ) 1 2 

1 (q , 1, 0, 0, q ) 0z 2 1 

Ɛ (q , 1, 0, pop(0), q ) z 1 2 

-- (q , Ɛ, z, pop, q ) z 2 3 

PDA action for the Input String: - 

a) Consider the input String (w) = 001111 

ID: (q, w, s) 

(q , 001111, z) ├ (q , 01111, 0z) 0 0 

├ (q0, 1111, 00z) 

├ (q1, 111,00z) 

├ (q2, 11,0z) 

├ (q1, 1, 0z) 

├ (q2, Ɛ, z) 

├ (q3, z) 

⸫ So, the String is accepted. 

b) To show that input String (w) = 001 

ID: (q, w, s) 

(q , 001, z) ├ (q , 11, 0z) 0 0 

├ (q0, 1, 00z) 

├ (q1, Ɛ, 00z) 

⸫ So, this String is Rejected. 

Example: -5). Design a PDA for accepting a language L = {wwR | w Ɛ (a+b)*} 

Solution: - 

w → words with any combination of “a” and “b” including null string. 

wR 
→ words having reverse of “w”. 

(a+b)* = a* + b* 

= a* U b* 

= {Ɛ, a, aa, aaa, _ _ _ _ _} U {Ɛ, b, bb, bbb, _ _ _ _ _} 

= {Ɛ, a, b, aa, bb, aaa, bbb, _ _ _ _ _} 

L = {Ɛ, aa, bb, abba, aaaa, baab, aabbaa, baaaab, _ _ _ _ _} 
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Input String (w) = baaaab 

***Logic: - 

Transition Diagram: - 

Transition Table: - Input String (w) = baaaab 

PDA action for the Input String: - 

a) Consider the input String (w) = baaaab 

ID: (q, w, s) 

(q , baaaab, z) ├ (q , aaaab, bz) 0 0 

├ (q0, aaab, abz) 

├ (q0, aab, aabz) 

├ (q0, ab, abz) 

├ (q1, b, bz) 

├ (q1, Ɛ, z) 

├ (q2, z) 

⸫ So, the String is accepted. 
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Example: -6). Design a PDA for accepting a language L = {anbm | n>=m, m>=1} 

Solution: - At least “1b” is there and “2a’s” should be there. 

L = {aab, aaabbb, aaaabbbb, _ _ _ _ _ } 

Input String (w) = aaabbb 

Transition Diagram: - 

Transition Table: - 

Unread input Transitions 

------ 

Stack 

Z 

New State 

aaabbb 

aabbb 

abbb 

bbb 

bb 

q0 

q0 

q0 

q0 

q1 

q1 

q1 

q2 

(q , a, Z, push(a), q ) az 0 0 

(q , a, a, push(a), q ) aaz 

aaaz 

aaz 

az 

0 0 

(q , b, a, push(a), q ) 0 0 

(q , b, a, pop, q ) 0 1 

b (q , b, a, pop, q ) 
1 1 

Ɛ (q , b, a, pop, q ) z 1 1 

-- (q , Ɛ, z, pop, q ) z 1 2 

PDA action for the Input String: - 

a) Consider the input String (w) = aaabbb 

ID: (q, w, s) 

(q , aaabbb, z) ├ (q , aabbb, az) 0 0 

├ (q0, abbb, aaz) 

├ (q0, bbb, aaaz) 

├ (q1, bb, aaz) 

├ (q1, b, az) 

├ (q1, Ɛ, z) 

├ (q2, z) 

So my string is accepted. 

b) Consider the input string (w) = aabbb 

ID: (q0, aabbb, z) ├ (q0, abbb, az) 

├ (q0, bbb, aaz) 

├ (q1, bb, az) 
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├ (q1, b, z) 

├ (q1, z) 

⸫ The String is not accepted, because “q1” is not a final State. 

Example: -7). Design a PDA for accepting a language L = {wCwR | w Ɛ (0+1)*} 

Solution: - w → words with any combination of “0” & “1” including null string. 

wR 
→ words having reverse of “w”. 

(0+1)* = 0* + 1* 

= 0* U 1* 

= {Ɛ, 0, 00, 000, _ _ _ _ _ _} U {Ɛ, 1, 11, 111, _ _ _ _ _} 

= {Ɛ, 0, 1, 00, 11, 000, 111, _ _ _ _ _} 

L = {Ɛ, 0C0, 1C1, 00C00, 001C100, 110C011,_ _ _ _ __} 

Input String (w) = 001C100. 

Now Construct Transition Diagram, Transition table and PDA action for the Input 

String. 

→ DETERMINISTIC AND NON – DETERMINISTIC PDA: - 

DETERMINISTIC PDA: - 

PDA is deterministic, if each input string can only be processed by the machine in 

only one way, i.e., for the “same input symbol” and “same stack symbol”, there must be 

only one choice. 

Formally, a PDA P = (Q, Ʃ, δ, q0, F, Z, Γ) is deterministic if 

i. δ (q, a, z) has only one element. 

ii. δ (q, Ɛ, z) is not empty, then δ (q, a, z) should be empty. 

If conditions (i) & (ii) are satisfied, then the PDA is deterministic, otherwise PDA is 

nondeterministic. 

Example: - The PDA for L = {anbn | n>=1} is deterministic. 

NON – DETERMINISTIC PDA: - 

PDA is nondeterministic, if there is same string that can be processed by it in “more 

than one way”. 

There are two (2) types of nondeterministic PDA (it occurs two types of moves): 

i. When a state emits two (or) more edges labelled with the “same input symbol” and 

“same stack symbol”. 

Example: - 
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Solution: - 

δ (q , a, b) = (q , x) (or) (q , a, b, push(x), q ) 1 2 1 2 

δ (q , a, b) = (q , y) (or) (q , a, b, push(y), q ) 1 3 1 3 

ii. When a state emits two edges labelled with the “same stack symbol”, where one 

input symbol is ‘Ɛ’ and the other input symbol is not. 

Example: - 

Solution: - 

(q , a, z, push(x), q ) 0 1 

(q , Ɛ, z, pop, q ) 0 2 

Example: - 

1. Design a PDA for accepting a language L = {w Ɛ {a, b}* | n = n } a b 

2. Design a PDA for accepting a language L = {wwR | w Ɛ (a, b)*} a language of 

palindrome with even length of words.. 

→ EQUIVALENCE OF PDA TO CFG: - 

The Context free grammar “G” and pushdown automata “P” are said to be 

equivalent. 

L(G) = L(P) 

In other words, equivalence of PDA and CFG means: 

1. The class of language accepted by context free grammar is exactly the same as the 

class of languages accepted by PDA. It is possible to convert any context free 

grammar to PDA, Such that L(G) = L(P). 

2. The language accepted by PDA is exactly the same as the language accepted by 

context free grammar, it is possible to convert any PDA to context free grammar, such 

that L(P) = L(G). 

1) Conversion from Context Free Grammar to PDA: - 

There are set of rules: 

Step: - 1). We have to convert the given production of CFG into GNF. 

Step: - 2). The PDA will only have one state {q}. 

Step: - 3). The initial symbol of CFG will be initial symbol in the PDA. 

Step: - 4). For “Non-Terminal Symbol” we have to add the following rule: 

A → a 
So, we have to Convert 

δ (q, Ɛ, A) = (q, a) 
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Step: - 5). For each “Terminal Symbol” we have to add the following rule: 

δ (q, a, a) = (q, Ɛ) 

Example: -1. Construct a PDA equivalent to following CFG productions: 

S → aAA 

A → aS | bS | a 

Solution: - 

Step: - 1) The given CFG is in GNF form 

Step: - 4) S → aAA 

δ (q, Ɛ, S) = (q, aAA) 

A → aS | bS | a 

δ (q, Ɛ, A) = {(q, aS) | (q, bS) | (q, a)} 

Step: - 5) There are two (2) Terminal Symbols “a”, “b”. 

δ (q, a, a) = (q, Ɛ) 

δ (q, b, b) = (q, Ɛ) 

So, this is a equivalent PDA, for given CFG. 

Example: -2. Construct a PDA equivalent to following CFG productions: 

S → aBB 

B → 0S | 1S | 0 

Solution: - 

Step: - 1) The given CFG is in GNF form 

Step: - 4) S → 0BB 

δ (q, Ɛ, S) = (q, 0BB) 

B → 0S | 1S | 0 

δ (q, Ɛ, B) = {(q, 0S) | (q, 1S) | (q, 0)} 

Step: - 5) There are two (2) Terminal Symbols “0”, “1”. 

δ (q, 0, 0) = (q, Ɛ) 

δ (q, 1, 1) = (q, Ɛ) 

So, this is a equivalent PDA, for given CFG. 

Example: -3. Construct a PDA for the grammar 

S → aA 

A →aABD | bB | a 

B → b 

D → d 

Solution: - 

UNIT - IV 
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δ (q, Ɛ, S) = (q, aA) 

A →aABD | bB | a 

δ (q, Ɛ, A) = {(q, aABD) | (q, bB) | (q, a)} 

B → b 

δ (q, Ɛ, B) = (q, b) 

D → d 

δ (q, Ɛ, D) = (q, d) 

Step: - 5) There are two (2) Terminal Symbols “a”, “b”,”d”. 

δ (q, a, a) = (q, Ɛ) 

δ (q, b, b) = (q, Ɛ) 

δ (q, d, d) = (q, Ɛ) 

So, this is a equivalent PDA, for given CFG. 

Example: - 4. Construct PDA for the following CFG 

S → aABB | aAA 

A → aBB | a 

B → bBB | A 

Solution: - Elimination of Unit Production: - 

aBB 
B → A 

a 

B → aBB | a 

⸫ After eliminating Unit Production B → A 

CFG in GNF is S → aABB | aAA 

A → aBB | a 

B → bBB | aBB | a 

Step: - 1. The given CFG is in GNG form 

Step: - 4. δ (q, Ɛ, S) = (q, aABB) 

δ (q, Ɛ, S) = (q, aAA) 

δ (q, Ɛ, A) = (q, aBB) 

δ (q, Ɛ, A) = (q, a) 

δ (q, Ɛ, B) = (q, bBB) 

δ (q, Ɛ, B) = (q, aBB) 

δ (q, Ɛ, B) = (q, a) 

Step: - 5. There are two (2) terminal symbols “a”, “b”. 

δ (q, a, a) = (q, Ɛ) 

δ (q, b, b) = (q, Ɛ) 
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⸫ The Pushdown Automata Transitions are: 

δ (q, Ɛ, S) = (q, aABB) 

δ (q, Ɛ, S) = (q, aAA) 

δ (q, Ɛ, A) = (q, aBB) 

δ (q, Ɛ, A) = (q, a) 

δ (q, Ɛ, B) = (q, bBB) 

δ (q, Ɛ, B) = (q, aBB) 

δ (q, Ɛ, B) = (q, a) 

δ (q, a, a) = (q, Ɛ) 

δ (q, b, b) = (q, Ɛ) 
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→ TWO STACK PDA: - 

 It is similar to a PDA, but it has two stack instead of one stack. 

 A machine using two pushdown automata accept the recursively enumerable 

language (or) Turing machine. 

Definition: - A Two – Stack Pushdown Automata (2-stack PDA) is similar to a PDA, but 

it has two stacks instead of one. In each transition, we must denote the POP and PUSH 

action on both stacks. 

Example: 

The above diagram means State “q” & State “p” from “q to p” we read input string 

“a” is encounter with condition b → c, d → c. 

1. “b” is popped off the first stack and “c” is pushed on the first stack. 

2. “d” is popped off the second stack and “c” is pushed on the second stack. 

→ Model (or) Components of 2 stack PDA (or) Block Diagram: - 

There are three (3) components are used 2 stack pushdown Automata: 

1. The state of finite control. 

2. The input symbol read. 

3. The TOP stack symbol on each of its stack. 
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→ ORDERED NINE (9) – TUPLES SPECIFICATION OF PDA: - 

A 2-stack PDA can be formally described as a 9-tuple. 

M = (Q, ∑, δ, q , F, Γ , Γ , Z , Z ) 0 1 2 0 1 

 Q is the finite number of states 

 ∑ is input alphabet 

 δ is the transition function 

δ: Q x ∑ x {ε}) x Γ x Γ → Q × Γ * x Γ * 1 2 1 2 

 q0 is the initial state 

 F is a set of accepting states 

 Z is the initial stack symbol, placed on the TOS 

 Γ1 is the final set of stack1 symbols 

 Γ2 is the final set of stack2 symbols 

 Z0 is the initial stack1 symbol 

 Z1 is the initial stack2 symbol 

Example: - Construct a 2 stack PDA which accepts the following language L = {an bn cn | 

n>=1} 

Solution: - L = {an bn cn | n>=1} 

n = 1, 2, 3, 4, _ _ _ _ _ __ 

n =1; an bn cn = abc 

n =2; an bn cn = aabbcc 

n =3; an bn cn = aaabbbccc 

L = {abc, aabbcc, aaabbbccc, _ _ _ _ _ _ _} 

Input string (w) = aabbcc 

Transitions: - 

δ (q , a, z , z ) = (q , a, z ) 0 0 1 0 1 

δ (q , a, a, z ) = (q , a, z ) 0 1 0 1 

δ (q , b, a, z ) = (q , a, b) 0 1 1 

δ (q , b, a, b) = (q , a, b) 1 1 

δ (q , c, a, b) = (q , a, b) 1 2 

δ (q , c, a, b) = (q , a, b) 1 2 

δ (q , c, a, b) = (q , z , z ) 2 2 0 1 

δ (q , ɛ, z , z ) = (q , ɛ, ɛ) 2 0 1 3 
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Transition Diagram: - 

2 stack PDA action for the Input String: 

Consider the input string (w) = aabbcc 

ID: (q, w, s) 

(q , aabbcc, s) = ├ (q , abbcc, az , z ) 0 0 0 1 

= ├ (q , bbcc, aaz , z ) 0 0 1 

= ├ (q , bcc, aaz , bz ) 1 0 1 

= ├ (q , cc, aaz , bbz ) 1 0 1 

= ├ (q , c, az , bz ) 2 0 1 

= ├ (q , ε, z , z ) 2 0 1 

= ├ (q3, ε) 

⸫ The input string is accepted the final state. 

→ APPLICATION OF PUSHDOWN AUTOMATA: - 

 Used for deriving a string from the grammar. 

 Used for designing Top-down parser and Bottom-up parser in compiler design. 

 Used in evaluation of the arithmetic expressions. 

 Used for solving the Tower of Hanoi problem. 

 It works on regular grammar and context free grammar. 

 It accepts regular language and context free language. 

 It has remembering capability by maintaining a stack. 

 It is more powerful than Finite Automata. 
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