FORMAL LANGUAGE AND AUTOMATA THEORY

UNIT-IV

SYLLABUS

1. Pushdown Automata
2. Definition
3. Model (or) Components of PDA
4. Graphical Notation
5. Instantaneous Description
6. Language Acceptance of Pushdown Automata
7. Design of Pushdown Automata
8. Deterministic and Non - Deterministic PDA
9. Equivalence of PDA to CFG
10.Conversion
11.Two Stack PDA
12.Application of Pushdown Automata

UNIT-IV

PUSHDOWN AUTOMATA

- It is a finite automata with extra memory called Stack (LIFO) which helps pushdown automata to recognize context free language.
- PDA are used in theories about what can be computed by machine.
- They are "more capable" than finite state machine but "less capable" than Turing Machine.
- Pushdown automata is a way to implement a CFG in the same way we design DFA for a regular grammar.
- A DFA can remember a "finite amount of information", but a "PDA" can remember an "Infinite amount of information".
- A PDA is more powerful than FA. Any language which can be acceptable by FA can also be acceptable by PDA. PDA also accepts a class of language which even cannot be accepted by FA. Thus PDA is much more superior to FA.
- Basically, a pushdown automaton is:

"Finite state machine" + 'a stack"

\rightarrow DEFINITION: -

PDA is a generalisation of FSA and a PDA changes from "state to state", "reading input symbols" unlike FSA, "transitions" also update the stack either by popping symbols (or) pushing symbols them.
(or)

PDA is a way to represent the language class called context free languages. In other words PDA's are abstract devices that recognise context free languages.

\rightarrow MODEL (OR) COMPONENTS OF PDA: -

They are three (3) components are used in PDA

1. Input Tape
2. Finite Control Unit
3. Stack (Memory Unit)

Input tape: The input tape is divided in many cells or symbols. The input head is read-only and may only move from left to right, one symbol at a time.
Finite control: The finite control has some pointer which points the current symbol which is to be read.

Stack: The stack is a structure in which we can push and remove the items from one end only. It has an infinite size. In PDA, the stack is used to store the items temporarily.

\rightarrow GRAPHICAL NOTATION (or) TRANSITION DIAGRAM: -

A transition in a PDA from a state " \mathbf{q}_{1} " to " \mathbf{q}_{2} " labeled as $\mathrm{a}, \mathrm{b} \rightarrow \mathrm{c}$

Here q_{1} and q_{2} is a States
At state "q1", if an input string "a" is encounter and top symbol of stack is "b", push "c" on top pf the stack and move to state "q2".

TRANSITION TABLE: -

The description of operation of a PDA, for a given input string, can be represented in a tabular format called "Transition Table".

Unread input	Transition	Stack	New State

ORDERED SEVEN (7) - TUPLES SPECIFICATION OF PDA: -

A PDA can be formally described as a 7-tuple $\left(\mathrm{Q}, \sum, \delta, \mathrm{q}_{0}, \mathrm{~F}, \mathrm{Z}, \Gamma\right)$ -

- \mathbf{Q} is the finite number of states
- \sum is input alphabet
- $\boldsymbol{\delta}$ is the transition function: $\mathrm{Q} \times\left(\sum \cup\{\varepsilon\}\right) \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- \mathbf{q}_{0} is the initial state $\left(\mathrm{q}_{0} \in \mathrm{Q}\right)$
- \mathbf{F} is a set of accepting states $(\mathrm{F} \in \mathrm{Q})$
- \mathbf{Z} is the initial stack symbol, placed on the TOS
- $\boldsymbol{\Gamma}$ is the final set of stack symbols

\rightarrow TRANSITION ON PDA: -

The transition of PDA can be represented in different ways, as follows:

Form - 1:

$\delta($ current state, current input symbol, current stack top $)=($ new state, new stack top)
Form - 2:
δ (current state, current input symbol, current stack top, operation on stack, new state)
Example: - 1). Consider a PDA, whose task is described in the transition diagram Show in below figure. The given input string $(w)=a a b, ~ " z "$ initial symbol of stack.

Solution: -

"Transition" of the above diagram are represented using different forms as:

$$
\delta(\underset{0}{\mathrm{q}}, \mathrm{a}, \mathrm{Z})=\left(\mathrm{q}_{0}, \mathrm{a}\right)
$$

This means for the current state " $\mathbf{q} 0$ ", current input symbol "a", if the current stack top is " \mathbf{Z} ", then new state and new stack top are represented as ($\mathrm{q} 0, \mathrm{a}$).

Form-2: $\quad \delta\left(\underset{0}{\left.\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}, \operatorname{Push}(\mathrm{a}), \mathrm{q}_{0}\right)}\right.$
This means for the current state
This means for the current state "q0", current input symbol "a", if the current stack top is "Z", then "Push a" on to stack and remain the state "q0".

3 $^{\text {rd }}$
Transition $\begin{cases}\underline{\text { Form-1: }} & \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \varepsilon\right) \\ \underline{\text { Form-2: }} & \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \operatorname{pop}(\mathrm{a}), \mathrm{q}_{1}\right)\end{cases}$

Transition Table: - \quad Input String (w) $=\mathrm{aab}$

Unread input	Transitions	Stack	New State
$a a b$	------	Z	q_{0}
ab	$\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}\right)$	az	q_{0}
b	$\left(\mathrm{q}_{0}, a, a, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}\right)$	aaz	q_{0}
ε	$\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \operatorname{pop}(\mathrm{a}), \mathrm{q}_{1}\right)$	az	q_{1}

Example: -2). Consider the following transition diagram of a PDA. Input string (w) = aaabbb, " \mathbf{z} " as the current stack top.

Solution: -
Transition Table: - \quad Input String (w) = aaabbb

Unread input	Transitions	Stack	New State
aaabbb	------	Z	q_{0}
aabbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	az	q_{0}
abbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaz	q_{0}
bbb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaaz	q_{0}
bb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	aaz	q_{1}
b	$\left(\mathrm{q}, \mathrm{b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}\right)$	az	q_{1}
ε	($\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	z	q_{1}
--	($\mathrm{q}_{1}, \mathrm{E}, \mathrm{z}, \mathrm{pop}, \mathrm{q}_{2}$)	z	q_{2}

\rightarrow INSTANTANEOUS DESCRIPTION (ID): -

The ID of a PDA is represented by a "triple" ($\mathrm{q}, \mathrm{w}, \mathrm{s}$).

$$
\begin{aligned}
\text { Here } & \mathrm{q} \rightarrow \text { States } \\
& \mathrm{w} \rightarrow \text { Input string } \\
& \mathrm{s} \rightarrow \text { Stack }
\end{aligned}
$$

"ID" is an informal notation of how PDA computes an "input string" and make a decision that string is accepted (or) Rejected.
Example: - 1. $\mathrm{w}=\mathrm{aabb}$
2. $w=a b a b a a b$

\rightarrow TURNSTILE NOTATION: -

It is used for connecting pairs of ID's that represent "one or more moves" of a PDA. The process of transition is denoted by the Turnstile symbol "人".

$$
\begin{aligned}
& \text { (7) "t" } \rightarrow \text { It represent one move } \\
& \text { (\#) } t \rightarrow \text { It describes a sequence of moves. }
\end{aligned}
$$

Example: -3). Consider the following transition diagram of a PDA.

Consider the input string $(w)=$ aaabbb and " $\mathbf{z} \mathbf{"}$ "as the current stack top.

Solution: - Transition Table: -
 Input String (w) = aaabbb

\rightarrow LANGUAGE ACCEPTANCE OF PUSHDOWN AUTOMATA: -

A language can be accepted by Pushdown automat using two approaches:

1. Acceptance by Final State

2. Acceptance by Empty Stack

1) Acceptance by Final State: -

The PDA is said to accept its input by the final state if it enters any final state in zero or more moves after reading the entire input.

Let $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}, \mathrm{F}\right)$ be a PDA. The language acceptable by the final state can be defined as:

$$
\mathbf{L}(\mathbf{P D A})=\left\{\mathbf{w} \mid(\mathbf{q}, \mathbf{w}, \mathbf{Z}) \vdash^{*}(\mathbf{p}, \varepsilon, \mathbf{z}), \mathbf{q} \in \mathbf{F}\right\}
$$

2) Acceptance by Empty Stack: -

On reading the input string from the initial configuration for some PDA, the stack of PDA gets empty.
Let $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}, \mathrm{F}\right)$ be a PDA. The language acceptable by empty stack can be defined as:

$$
\mathbf{N}(\mathbf{P D A})=\left\{\mathbf{w} \mid(\mathbf{q} 0, \mathbf{w}, \mathbf{Z}) \vdash^{*}(\mathbf{p}, \varepsilon, \mathbf{z}), \mathbf{q} \in \mathbf{Q}\right\}
$$

Example: -4). Design a PDA for accepting a language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$

Solution: -

$\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$: Every String contains " n " number of a's followed by " n " number of b 's.
$\mathrm{n}=3, \mathbf{a}^{\mathbf{3}} \mathbf{b}^{\mathbf{3}} \boldsymbol{\rightarrow}$ aaabbb
$\mathbf{L}=\{a a b b$, aaabbb, \qquad
Input String $(w)=$ aaabbb
Transition Diagram: -

Transition on PDA: -

$$
\begin{aligned}
\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}\right)=\left(\mathrm{q}_{0}, \mathrm{a}\right) \quad(\mathrm{or}) \quad & \left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}\right) \\
& \left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}\right) \\
& \left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}\right) \\
& \left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \operatorname{pop}, \mathrm{q}_{1}\right) \\
& \left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \operatorname{pop}, \mathrm{q}_{1}\right) \\
& \left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \operatorname{pop}, \mathrm{q}_{1}\right) \\
& \left(\mathrm{q}_{1}, \mathrm{\varepsilon}, \mathrm{z}, \operatorname{pop}, \mathrm{q}_{2}\right)
\end{aligned}
$$

Transition Table: - \quad Input String (w) = aaabbb

Unread input	Transitions	Stack	New State
aaabbb	------	Z	q_{0}
aabbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	az	q_{0}
abbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaz	q_{0}
bbb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaaz	q0
bb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	aaz	q_{1}
b	$\left(q, b, a, p o p, q_{1}\right)$	az	q_{1}
ε	($\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	z	q_{1}
--	($\mathrm{q}_{1}, \varepsilon, \mathrm{z}, \mathrm{pop}, \mathrm{q}_{2}$)	z	q_{2}

PDA action for the Input String: -

a) Consider the input String $(\mathrm{w})=$ aaabbb

ID: ($\mathrm{q}, \mathrm{w}, \mathrm{s}$)

$$
\begin{aligned}
\left(\mathrm{q}_{0},\right. \text { aaabbb, z) } & \\
& F\left(\mathrm{q}_{0}, a a b b b, a z\right) \\
& F\left(\mathrm{q}_{0}, a b b b, a a z\right) \\
& F\left(\mathrm{q}_{0}, \mathrm{bbb}, \text { aaaz }\right) \\
& F\left(\mathrm{q}_{1}, \mathrm{bb}, \mathrm{aaz}\right) \\
& F\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{az}\right) \\
& F\left(\mathrm{q}_{1}, \varepsilon, \mathrm{z}\right) \\
& F\left(\mathrm{q}_{2}, \mathrm{z}\right)
\end{aligned}
$$

So my string is accepted.
b) Consider the input string (w) = aabbb

ID: $\quad\left(q_{0}, a a b b b, z\right) \quad \vdash\left(q_{0}, a b b b, a z\right)$

$$
\begin{aligned}
& \text { F(} \left.\mathrm{q}_{0}, \mathrm{bbb}, \mathrm{aaz}\right) \\
& \text { F (} \left.\mathrm{q}_{1}, \mathrm{bb}, \mathrm{az}\right) \\
& \text { F (} \left.\mathrm{q}_{1}, \mathrm{~b}, \mathrm{z}\right) \\
& \text { F }\left(\mathrm{q}_{1}, \mathrm{z}\right)
\end{aligned}
$$

\therefore The String is not accepted, because "q1" is not a final State.

DESIGN OF PDA: -

The basic design strategy for PDA as follows:

1. Understand the language properties, for which the PDA has to be design.
2. Determine the state and alphabet set required.
3. Identify the initial, accepting (final) and dead states of PDA.
4. Decide on the stack symbols required.
5. Determine the initial stack symbols from the stack symbol set.
6. For each state, decide on the transition to be made for each character of the input string.
7. For each state transition, decide on the stack operation to be performed.
8. Obtain the transition diagram and table for PDA.
9. Test, the PDA obtained on short string.

Example: -4). Design a PDA for accepting a language $L=\left\{0^{n} 1^{2 n} \mid n>1\right\}$
Solution: - In this language " \mathbf{n} " number of $\mathbf{0}$'s should be followed by " $\mathbf{2 n}$ " number of $\mathbf{1}$'s.
*** Logic: - One Zero is corresponding two one's.

Input String $(\mathrm{w})=001111$

Transition on PDA: -

$$
\left(\mathrm{q}_{0}, 0, \mathrm{z}, \operatorname{push}(0), \mathrm{q}_{0}\right)
$$

$$
\left(\mathrm{q}_{0}, 0,0, \operatorname{push}(0), \mathrm{q}_{0}\right)
$$

$$
\left(\mathrm{q}_{0}, 1,0,0, \mathrm{q}_{1}\right)
$$

$$
\left(\mathrm{q}_{1}, 1,0, \operatorname{pop}(0), \mathrm{q}_{2}\right)
$$

$$
\left(\mathrm{q}_{2}, 1,0,0, \mathrm{q}_{1}\right)
$$

$$
\left(\mathrm{q}_{1}, 1,0, \operatorname{pop}(0), \mathrm{q}_{2}\right)
$$

$$
\left(\mathrm{q}_{2}, \varepsilon, \mathrm{z}, \mathrm{pop}, \mathrm{q}_{3}\right)
$$

$$
\omega=001111 \quad \text { Rough }
$$

Transition Table: - \quad Input String (w) $=001111$

Unread input	Transitions	Stack	New State
001111	-----	Z	q_{0}
01111	$\left(\mathrm{q}_{0}, 0, \mathrm{Z}, \operatorname{push}(0), \mathrm{q}_{0}\right)$	0 z	q_{0}
1111	$\left(\mathrm{q}_{0}, 0,0, \operatorname{push}(0), \mathrm{q}_{0}\right)$	00 z	q_{0}
111	$\left(\mathrm{q}_{0}, 1,0,0, \mathrm{q}_{1}\right)$	00 z	q_{1}
11	$\left(\mathrm{q}_{1}, 1,0, \operatorname{pop}(0), \mathrm{q}_{2}\right)$	0 z	q_{2}
1	$\left(\mathrm{q}_{2}, 1,0,0, \mathrm{q}_{1}\right)$	0 z	q_{1}
ε	$\left(\mathrm{q}_{1}, 1,0, \operatorname{pop}(0), \mathrm{q}_{2}\right)$	z	q_{2}
--	$\left(\mathrm{q}_{2}, \varepsilon, \mathrm{z}, \operatorname{pop}, \mathrm{q}_{3}\right)$	z	q_{3}

PDA action for the Input String: -

a) Consider the input String $(\mathrm{w})=001111$

ID: (q, w, s)

$$
\begin{aligned}
& \left(q_{0}, 001111, z\right) \vdash\left(q_{0}, 01111,0 z\right) \\
& \text { F (} \left.q_{0}, 1111,00 z\right) \\
& \text { - }\left(\mathrm{q}_{1}, 111,00 \mathrm{z}\right) \\
& \text { - }\left(\mathrm{q}_{2}, 11,0 \mathrm{z}\right) \\
& \text { - (} \left.\mathrm{q}_{1}, 1,0 \mathrm{z}\right) \\
& f\left(\mathrm{q}_{2}, \varepsilon, \mathrm{z}\right) \\
& -\left(q_{3}, z\right)
\end{aligned}
$$

\therefore So, the String is accepted.
b) To show that input String $(\mathrm{w})=001$

ID: ($\mathrm{q}, \mathrm{w}, \mathrm{s}$)

$$
\begin{aligned}
\left(\mathrm{q}_{0}, 001, \mathrm{z}\right) & \vdash\left(\mathrm{q}_{0}, 11,0 \mathrm{z}\right) \\
& \vdash\left(\mathrm{q}_{0}, 1,00 \mathrm{z}\right) \\
& F\left(\mathrm{q}_{1}, \varepsilon, 00 \mathrm{z}\right)
\end{aligned}
$$

\therefore So, this String is Rejected.
Example: -5). Design a PDA for accepting a language $L=\left\{w w^{R} \mid w \mathcal{E}(a+b)^{*}\right\}$

Solution: -

$w \rightarrow$ words with any combination of "a" and "b" including null string.
$w^{R} \rightarrow$ words having reverse of " w ".
$(a+b)^{*}=a^{*}+b^{*}$
$=\mathrm{a}^{*} \mathrm{U} \mathrm{b}^{*}$

$=\{\varepsilon, a, b, a a, b b, a a a, b b b$, \qquad
$L=\{\varepsilon, a a, b b$, abba, aaaa, baab, aabbaa, baaaab,
*** Logic: -

Transition Diagram: -

Transition Table: -
Input String (w) = baaaab

PDA action for the Input String: -

a) Consider the input String (w) $=$ baaaab

ID: ($q, w, s)$
(q_{0}, baaaab, z) $\vdash\left(q_{0}\right.$, aaaab, bz)

$$
\begin{aligned}
& \text { F(} \left.q_{0}, a a a b, a b z\right) \\
& F\left(q_{0}, a a b, a a b z\right) \\
& F\left(q_{0}, a b, a b z\right) \\
& F\left(q_{1}, b, b z\right) \\
& F\left(q_{1}, \varepsilon, z\right) \\
& F\left(q_{2}, z\right)
\end{aligned}
$$

\therefore So, the String is accepted.

Example: -6). Design a PDA for accepting a language $L=\left\{a^{n} b^{m} \mid n>=m, m>=1\right\}$
Solution: - At least " $\mathbf{1 b}$ " is there and " $\mathbf{2 a}$'s" should be there.

$$
\begin{aligned}
& \mathrm{L}=\{\mathrm{aab}, \text { aaabbb, aaaabbbb, } \\
& \text { Input String }(\mathrm{w})=\text { aaabbb }
\end{aligned}
$$

Transition Diagram: -

Transition Table: -

Unread input	Transitions	Stack	New State
aaabbb	------	Z	q_{0}
aabbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}, \operatorname{push}(\mathrm{a}), \mathrm{q}_{0}$)	az	q_{0}
abbb	($\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaz	q_{0}
bbb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{push}(\mathrm{a}), \mathrm{q}_{0}$)	aaaz	q_{0}
bb	($\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	aaz	q_{1}
b	$\left(\mathrm{q}, \mathrm{b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}\right)$	az	q_{1}
ε	($\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \mathrm{pop}, \mathrm{q}_{1}$)	z	q_{1}
--	($\mathrm{q}_{1}, \varepsilon, \mathrm{z}, \mathrm{pop}, \mathrm{q}_{2}$)	Z	q_{2}

PDA action for the Input String: -

a) Consider the input String $(w)=$ aaabbb

ID: ($\mathrm{q}, \mathrm{w}, \mathrm{s}$)
$\left(q_{0}, a a a b b b, z\right) \quad \vdash\left(q_{0}, a a b b b, a z\right)$

$$
\begin{aligned}
& \text { F(} \left.q_{0}, a b b b, a a z\right) \\
& F\left(q_{0}, b b b, a a a z\right) \\
& F\left(q_{1}, b b, a a z\right) \\
& F\left(q_{1}, b, a z\right) \\
& F\left(q_{1}, \varepsilon, z\right) \\
& F\left(q_{2}, z\right)
\end{aligned}
$$

So my string is accepted.
b) Consider the input string $(w)=$ aabbb

$$
\text { ID: } \quad \begin{aligned}
\left(\mathrm{q}_{0}, a a b b b, z\right) & \\
& F\left(\mathrm{q}_{0}, \mathrm{abbb}, \mathrm{az}\right) \\
& \vdash\left(\mathrm{q}_{0}, \mathrm{bbb}, \mathrm{aaz}\right) \\
& \vdash\left(\mathrm{q}_{1}, \mathrm{bb}, \mathrm{az}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { F(} \left.\mathrm{q}_{1}, \mathrm{~b}, \mathrm{z}\right) \\
& F\left(\mathrm{q}_{1}, \mathrm{z}\right)
\end{aligned}
$$

\therefore The String is not accepted, because " $\mathbf{q 1}$ " is not a final State.
Example: -7). Design a PDA for accepting a language $L=\left\{w^{2} w^{\mathrm{R}} \mid \mathrm{w} \mathcal{E}(0+1)^{*}\right\}$
Solution: - $\quad \mathrm{w} \rightarrow$ words with any combination of " 0 " \& " 1 " including null string. $w^{R} \rightarrow$ words having reverse of " w ".

$$
\begin{aligned}
& (0+1)^{*}=0^{*}+1^{*} \\
& =0^{*} \mathrm{U} 1^{*} \\
& =\left\{\varepsilon, 0,00,000, \ldots \ldots{ }_{-}\right\} U\{\varepsilon, 1,11,111 \text {, } \\
& =\left\{\varepsilon, 0,1,00,11,000,111, \ldots{ }_{-}\right\} \\
& \mathrm{L}=\{\varepsilon, 0 \mathrm{C} 0,1 \mathrm{C} 1,00 \mathrm{C} 00,001 \mathrm{C} 100,110 \mathrm{C} 011, \ldots \ldots \ldots\} \\
& \text { Input String }(\mathrm{w})=001 \mathrm{C} 100 \text {. }
\end{aligned}
$$

Now Construct Transition Diagram, Transition table and PDA action for the Input String.

\rightarrow DETERMINISTIC AND NON - DETERMINISTIC PDA: -

DETERMINISTIC PDA: -

PDA is deterministic, if each input string can only be processed by the machine in only one way, i.e., for the "same input symbol" and "same stack symbol", there must be only one choice.

Formally, a PDA $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}, \mathrm{Z}, \Gamma\right)$ is deterministic if
i. $\quad \delta(\mathrm{q}, \mathrm{a}, \mathrm{z})$ has only one element.
ii. $\quad \delta(\mathrm{q}, \varepsilon, \mathrm{z})$ is not empty, then $\delta(\mathrm{q}, \mathrm{a}, \mathrm{z})$ should be empty.

If conditions (i) \& (ii) are satisfied, then the PDA is deterministic, otherwise PDA is nondeterministic.

Example: - The PDA for $L=\left\{a^{n} b^{n} \mid n>=1\right\}$ is deterministic.

NON - DETERMINISTIC PDA: -

PDA is nondeterministic, if there is same string that can be processed by it in "more

than one way".

There are two (2) types of nondeterministic PDA (it occurs two types of moves):
i. When a state emits two (or) more edges labelled with the "same input symbol" and "same stack symbol".

Example: -

Solution: -

$$
\begin{array}{lll}
\delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{2}, \mathrm{x}\right) & (\text { or }) & \left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}, \operatorname{push}(\mathrm{x}), \mathrm{q}_{2}\right) \\
\delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{3}, \mathrm{y}\right) & \text { (or }) & \left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}, \operatorname{push}(\mathrm{y}), \mathrm{q}_{3}\right)
\end{array}
$$

ii. When a state emits two edges labelled with the "same stack symbol", where one input symbol is ' \boldsymbol{E} ' and the other input symbol is not.

Example: -

Solution: -

($\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}, \operatorname{push}(\mathrm{x}), \mathrm{q}_{1}$)
($\mathrm{q}_{0}, \varepsilon, \mathrm{z}$, pop, q_{2})

Example: -

1. Design a PDA for accepting a language $L=\left\{w \in\{a, b\}^{*} \mid n_{a}=n_{b}\right\}$
2. Design a PDA for accepting a language $L=\left\{w^{R} \mid w \mathcal{E}(a, b)^{*}\right\}$ a language of palindrome with even length of words..

\rightarrow EQUIVALENCE OF PDA TO CFG: -

The Context free grammar " \mathbf{G} " and pushdown automata " \mathbf{P} " are said to be equivalent.

$$
\mathbf{L}(\mathbf{G})=\mathbf{L}(\mathbf{P})
$$

In other words, equivalence of PDA and CFG means:

1. The class of language accepted by context free grammar is exactly the same as the class of languages accepted by PDA. It is possible to convert any context free grammar to PDA, Such that $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{P})$.
2. The language accepted by PDA is exactly the same as the language accepted by context free grammar, it is possible to convert any PDA to context free grammar, such that $\mathrm{L}(\mathrm{P})=\mathrm{L}(\mathrm{G})$.

1) Conversion from Context Free Grammar to PDA: -

There are set of rules:
Step: - 1). We have to convert the given production of CFG into GNF.
Step: - 2). The PDA will only have one state $\{q\}$.
Step: - 3). The initial symbol of CFG will be initial symbol in the PDA.
Step: - 4). For "Non-Terminal Symbol" we have to add the following rule:

$$
\begin{aligned}
\mathbf{A} \rightarrow \mathbf{a} \\
\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{A}) \stackrel{(\mathbf{q}, \mathbf{a})}{=}
\end{aligned} \text { So, we have to Convert }
$$

Step: - 5). For each "Terminal Symbol" we have to add the following rule:

$$
\delta(\mathbf{q}, \mathbf{a}, \mathbf{a})=(\mathbf{q}, \boldsymbol{\varepsilon})
$$

Example: -1. Construct a PDA equivalent to following CFG productions:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAA} \\
& \mathrm{~A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}
\end{aligned}
$$

Solution: -
Step: - 1) The given CFG is in GNF form
Step: - 4)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAA} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, \mathrm{aAA}) \\
& \mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=\{(\mathrm{q}, \mathrm{aS})|(\mathrm{q}, \mathrm{bS})|(\mathrm{q}, \mathrm{a})\}
\end{aligned}
$$

Step: - 5) There are two (2) Terminal Symbols "a", "b".

$$
\begin{aligned}
& \delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, \mathrm{~b}, \mathrm{~b})=(\mathrm{q}, \varepsilon)
\end{aligned}
$$

So, this is a equivalent PDA, for given CFG.
Example: -2. Construct a PDA equivalent to following CFG productions:

$$
\begin{aligned}
& S \rightarrow \text { aBB } \\
& B \rightarrow 0 S|1 S| 0
\end{aligned}
$$

Solution: -

Step: - 1) The given CFG is in GNF form
Step: - 4)

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{BB} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, 0 \mathrm{BB}) \\
& \mathrm{B} \rightarrow 0 \mathrm{~S}|1 \mathrm{~S}| 0 \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=\{(\mathrm{q}, 0 \mathrm{~S})|(\mathrm{q}, 1 \mathrm{~S})|(\mathrm{q}, 0)\}
\end{aligned}
$$

Step: - 5) There are two (2) Terminal Symbols " $\mathbf{0}$ ", " $\mathbf{1}$ ".

$$
\begin{aligned}
& \delta(\mathrm{q}, 0,0)=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, 1,1)=(\mathrm{q}, \varepsilon)
\end{aligned}
$$

So, this is a equivalent PDA, for given CFG.
Example: -3. Construct a PDA for the grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \\
& \mathrm{~A} \rightarrow \mathrm{aABD}|\mathrm{bB}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \\
& \mathrm{D} \rightarrow \mathrm{~d}
\end{aligned}
$$

Solution: -
Step: - 1) The given CFG is in GNF form
Step: - 4)

$$
\begin{aligned}
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, \mathrm{aA}) \\
& \mathrm{A} \rightarrow \mathrm{aABD}|\mathrm{bB}| \mathrm{a} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=\{(\mathrm{q}, \mathrm{aABD})|(\mathrm{q}, \mathrm{bB})|(\mathrm{q}, \mathrm{a})\} \\
& \mathrm{B} \rightarrow \mathrm{~b} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{~b}) \\
& \mathrm{D} \rightarrow \mathrm{~d} \\
& \delta(\mathrm{q}, \mathrm{C}, \mathrm{D})=(\mathrm{q}, \mathrm{~d})
\end{aligned}
$$

Step: - 5) There are two (2) Terminal Symbols "a", "b","d".

$$
\begin{aligned}
& \delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, \mathrm{~b}, \mathrm{~b})=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, \mathrm{~d}, \mathrm{~d})=(\mathrm{q}, \varepsilon)
\end{aligned}
$$

So, this is a equivalent PDA, for given CFG.
Example: - 4. Construct PDA for the following CFG

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aABB} \mid \mathrm{aAA} \\
& \mathrm{~A} \rightarrow \mathrm{aBB} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bBB} \mid \mathrm{A}
\end{aligned}
$$

Solution: - Elimination of Unit Production: -

$$
\mathrm{B} \rightarrow \mathrm{aBB} \mid \mathrm{a}
$$

\therefore After eliminating Unit Production $\mathrm{B} \rightarrow \mathrm{A}$
CFG in GNF is $\quad \mathrm{S} \rightarrow \mathrm{aABB} \mid \mathrm{aAA}$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{aBB} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bBB}|\mathrm{aBB}| \mathrm{a}
\end{aligned}
$$

Step: - 1. The given CFG is in GNG form
Step: - 4. $\delta(q, \varepsilon, S)=(q, a A B B)$

$$
\begin{aligned}
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, \mathrm{aAA}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=(\mathrm{q}, \mathrm{aBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=(\mathrm{q}, \mathrm{a}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{bBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{aBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{a})
\end{aligned}
$$

Step: - 5. There are two (2) terminal symbols "a", "b".

$$
\begin{aligned}
& \delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, \mathrm{~b}, \mathrm{~b})=(\mathrm{q}, \varepsilon)
\end{aligned}
$$

\therefore The Pushdown Automata Transitions are:

$$
\begin{aligned}
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, \mathrm{aABB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=(\mathrm{q}, \mathrm{aAA}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=(\mathrm{q}, \mathrm{aBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~A})=(\mathrm{q}, \mathrm{a}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{bBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{aBB}) \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{~B})=(\mathrm{q}, \mathrm{a}) \\
& \delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=(\mathrm{q}, \varepsilon) \\
& \delta(\mathrm{q}, \mathrm{~b}, \mathrm{~b})=(\mathrm{q}, \varepsilon)
\end{aligned}
$$

Example!-5) construct PDA for the following cFC.

$$
\begin{aligned}
& S \rightarrow O S I \\
& S \rightarrow A \\
& A \rightarrow A O|S| E
\end{aligned}
$$

Solution!-
first of all Elimination of e-production:-

Nullable variable: $\{A\}$

$C F G=\underset{G \rightarrow A}{S \rightarrow O S I} 101$

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow 1 A O \mid 10 \backslash S
\end{aligned}
$$

Elimination of $\underbrace{\text { unit Production:- }}_{S \rightarrow A=100}$

TWO STACK PDA: -

- It is similar to a PDA, but it has two stack instead of one stack.
- A machine using two pushdown automata accept the recursively enumerable language (or) Turing machine.

Definition: - A Two - Stack Pushdown Automata (2-stack PDA) is similar to a PDA, but it has two stacks instead of one. In each transition, we must denote the POP and PUSH action on both stacks.

Example:

Stack - 1

Stack-2

The above diagram means State " \mathbf{q} " \& State " \mathbf{p} " from " \mathbf{q} to \mathbf{p} " we read input string "a" is encounter with condition $\mathbf{b} \rightarrow \mathbf{c}, \mathbf{d} \rightarrow \mathbf{c}$.

1. "b" is popped off the first stack and " \mathbf{c} " is pushed on the first stack.
2. "d" is popped off the second stack and " \mathbf{c} " is pushed on the second stack.

\rightarrow Model (or) Components of 2 stack PDA (or) Block Diagram: -

There are three (3) components are used 2 stack pushdown Automata:

1. The state of finite control.
2. The input symbol read.
3. The TOP stack symbol on each of its stack.

Input Tape

\rightarrow ORDERED NINE (9) - TUPLES SPECIFICATION OF PDA: -

A 2-stack PDA can be formally described as a 9-tuple.

$$
\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}, \Gamma_{1}, \Gamma_{2}, \mathrm{Z}_{0}, \mathrm{Z}_{1}\right)
$$

- \mathbf{Q} is the finite number of states
- \sum is input alphabet
- $\boldsymbol{\delta}$ is the transition function

$$
\left.\delta: \mathbf{Q} \times \sum \times\{\varepsilon\}\right) \times \Gamma_{1} \times \Gamma_{2} \rightarrow \mathbf{Q} \times \Gamma_{1}^{*} \times \Gamma_{2}^{*}
$$

- \mathbf{q}_{0} is the initial state
- \mathbf{F} is a set of accepting states
- \mathbf{Z} is the initial stack symbol, placed on the TOS
- Γ_{1} is the final set of stack 1 symbols
- Γ_{2} is the final set of stack2 symbols
- \mathbf{Z}_{0} is the initial stack 1 symbol
- \mathbf{Z}_{1} is the initial stack2 symbol

Example: - Construct a 2 stack PDA which accepts the following language $L=\left\{a^{n} b^{n} c^{n} \mid\right.$ $\mathrm{n}>=1\}$
Solution: -

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n}>=1\right\}
$$

$\mathrm{n}=1,2,3,4, \ldots \ldots$
$\mathrm{n}=1 ; \mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}=\mathrm{abc}$
$\mathrm{n}=2 ; \mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}=\mathrm{aabbcc}$
$\mathrm{n}=3 ; \mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}=$ aaabbbccc
$\mathrm{L}=\{\mathrm{abc}$, aabbcc, aaabbbccc,, \qquad
Input string $(w)=$ aabbcc

Transitions: -

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}_{0}, \mathrm{z}_{1}\right)=\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}_{1}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}, \mathrm{z}_{1}\right)=\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}_{1}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{z}_{1}\right)=\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{~b}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{c}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{~b}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{c}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{~b}\right) \\
& \delta\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{a}, \mathrm{~b}\right)=\left(\mathrm{q}_{2}, \mathrm{z}_{0}, \mathrm{z}_{1}\right) \\
& \delta\left(\mathrm{q}_{2}, \varepsilon, \mathrm{z}_{0}, \mathrm{z}_{1}\right)=\left(\mathrm{q}_{3}, \varepsilon, \varepsilon\right)
\end{aligned}
$$

Transition Diagram：－

$\mathbf{2}$ stack PDA action for the Input String：

Consider the input string（ w ）$=$ aabbcc
ID：（ $\mathrm{q}, \mathrm{w}, \mathrm{s}$ ）

$$
\begin{aligned}
& \left(q_{0}, \text { aabbcc }, s\right)=\vdash\left(q_{0}, \text { abbcc, } a z_{0}, z_{1}\right) \\
& =ト\left(q_{0}, b b c c, a_{0} z_{0}, z_{1}\right) \\
& =ト\left(q_{1}, b c c, a a z o, z_{1}\right) \\
& =ト\left(q_{1}, c c, a z_{0}, b_{2} z_{1}\right) \\
& =ト\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{az}_{0}, \mathrm{bz}_{1}\right) \\
& =F\left(\mathrm{q}_{2}, \varepsilon, \mathrm{z}_{0}, \mathrm{z}_{1}\right) \\
& =F\left(q_{3}, \varepsilon\right)
\end{aligned}
$$

\therefore The input string is accepted the final state．

APPLICATION OF PUSHDOWN AUTOMATA：－

－Used for deriving a string from the grammar．
－Used for designing Top－down parser and Bottom－up parser in compiler design．
－Used in evaluation of the arithmetic expressions．
－Used for solving the Tower of Hanoi problem．
－It works on regular grammar and context free grammar．
－It accepts regular language and context free language．
－It has remembering capability by maintaining a stack．
－It is more powerful than Finite Automata．

