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UNIT II  

Introduction to Number theory : Integer Arithmetic, Modular Arithmetic, Matrices, Linear 

Congruence, Algebraic Structures, GF(2n) Fields, Primes, Primarily Testing, Factorization, 

Chinese remainder Theorem, Quadratic Congruence, Exponentiation and Logarithm.  

Public-key cryptography: Principles of public-key cryptography, RSA Algorithm, Diffie-

Hellman Key Exchange, ELGamal cryptographic system, Elliptic Curve Arithmetic, Elliptic 

curve cryptography 

Principles of public-key cryptography: 

Of equal importance to conventional encryption is public-key encryption, which finds use in 

message authentication and key distribution. This section looks first at the basic concept of 

public-key encryption and takes a preliminary look at key distribution issues. This notes 

examines the two most important public-key algorithms: RSA and Diffie-Hellman. 

Public-Key Encryption Structure 

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976 [DIFF76], is 

the first truly revolutionary advance in encryption in literally thousands of years. Public-key 

algorithms are based on mathematical functions rather than on simple operations on bit patterns, 

such as are used in symmetric encryption algo-rithms. More important, public-key cryptography 

is asymmetric, involving the use of two separate keys—in contrast to the symmetric conventional 

encryption, which uses only one key. The use of two keys has profound consequences in the 

areas of confidentiality, key distribution, and authentication. 

Before proceeding, we should first mention several common misconceptions concerning 

public-key encryption. One is that public-key encryption is more secure from cryptanalysis than 

conventional encryption. In fact, the security of any encryption scheme depends on (1) the length 

of the key and (2) the computational work involved in breaking a cipher. There is nothing in 

principle about either con-ventional or public-key encryption that makes one superior to another 

from the point of view of resisting cryptanalysis. A second misconception is that public-key 

encryption is a general-purpose technique that has made conventional encryption obsolete. On 

the contrary, because of the computational overhead of current public-key encryption schemes, 

there seems no foreseeable likelihood that conven-tional encryption will be abandoned 
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A public-key encryption scheme has six ingredients (Figure 3.9a) 

 Plaintext: This is the readable message or data that is fed into the algorithm as input. 
 

 Encryption algorithm: The encryption algorithm performs various transforma-tions on the 

plaintext. 

 Public and private key: This is a pair of keys that have been selected so that if one is used 

for encryption, the other is used for decryption. The exact trans-formations performed by 

the encryption algorithm depend on the public or private key that is provided as input. 
 

 Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 

and the key. For a given message, two different keys will produce two different ciphertexts. 
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 Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 

produces the original plaintext. 

As the names suggest, the public key of the pair is made public for others to use, while the 

private key is known only to its owner. A general-purpose public-key cryptographic algorithm 

relies on one key for encryption and a different but related key for decryption. 

The essential steps are the following: 

 →Each user generates a pair of keys to be used for the encryption and decryption of 

messages  

 →Each user places one of the two keys in a public register or other accessible file. This is 

the public key. The companion key is kept private. As Figure 3.9a suggests, each user 

maintains a collection of public keys obtained from others. 

 →If Bob wishes to send a private message to Alice, Bob encrypts the message using Alice’s 

public key. 

 →When Alice receives the message, she decrypts it using her private key. No other 

recipient can decrypt the message because only Alice knows Alice’s pri-vate key. 

With this approach, all participants have access to public keys, and private keys are 

generated locally by each participant and therefore need never be distrib-uted. As long as a user 

protects his or her private key, incoming communication is secure. At any time, a user can 

change the private key and publish the companion public key to replace the old public key. 
 

The key used in conventional encryption is typically referred to as a secret key. The two keys 

used for public-key encryption are referred to as the public key and the private key. Invariably, 

the private key is kept secret, but it is referred to as a private key rather than a secret key to avoid 

confusion with conventional encryption. 

Applications for Public-Key Cryptosystems 

. Public-key systems are characterized by the use of a cryptographic type of algorithm with two 

keys, one held private and one available publicly. Depending on the application, the sender uses 

either the sender’s private key, the receiver’s public key, or both to perform some type of 

cryptographic function. In broad terms, we can classify the use of public-key cryptosystems into 

three categories 

  Encryption/decryption: The sender encrypts a message with the recipient’s public key. 

 

  Digital signature: The sender “signs” a message with its private key. Signing is achieved by a 

cryptographic algorithm applied to the message or to a small block of data that is a function of 

the message. 
 

Key exchange: Two sides cooperate to exchange a session key. Several different approaches 

are possible, involving the private key(s) of one or both parties 
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Algorithm Encryption/Decryption Digital Signature Key Exchange 

    

RSA Yes Yes Yes 

    

Diffie-Hellman No No Yes 

    

DSS No Yes No 

Elliptic curve Yes Yes Yes 

    

Table 3.2 Applications for Public-Key Cryptosystems 

Requirements for Public-Key Cryptography 

The cryptosystem illustrated in Figure 3.9 depends on a cryptographic algorithm based on 

two related keys. Diffie and Hellman postulated this system without demonstrating that 

such algorithms exist. However, they did lay out the conditions that such algorithms must 

fulfill [DIFF76]: 

 It is computationally easy for a party B to generate a pair (public key PUb, private 
key PRb).  

 It is computationally easy for a sender A, knowing the public key and the mes-sage 

to be encrypted, M, to generate the corresponding ciphertext:  

 = E(PUb, M) 
 

 It is computationally easy for the receiver B to decrypt the resulting ciphertext using 

the private key to recover the original message:  

 = D(PRb, C) = D[PRb, E(PUb, M)]  

 It is computationally infeasible for an opponent, knowing the public key, PUb, to 
determine the private key, PRb.  

 It is computationally infeasible for an opponent, knowing the public key, PUb, and a 
ciphertext, C, to recover the original message, M. 

 

We can add a sixth requirement that, although useful, is not necessary for all Public-

key applications. 

 Either of the two related keys can be used for encryption, with the other used for 

decryption.  

                         = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)] 
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PUBLIC KEY CRYPTOGRAPHY ALGORITHMS: 

The two most widely used public-key algorithms are 

1. RSA and  

2. Diffie-Hellman.  

 

In this section and then briefly introduce two other algorithms 

The RSA Public-Key Encryption Algorithm 

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi Shamir, and Len 

Adleman at MIT and first published in 1978 [RIVE78]. The RSA scheme has since that time 

reigned supreme as the most widely accepted and imple-mented approach to public-key encryption. 

RSA is a block cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for 

some n.  

Encryption and decryption are of the following form period for some plaintext block M and 
ciphertext block C: 

= Me mod n  

           = Cd mod n = (Me
)
d mod n = Med mod n 

Both sender and receiver must know the values of n and e, and only the receiver knows the value of d. 

This is a public-key encryption algorithm with a pub-lic key of KU = {e, n} and a private key of KR = {d, 

n}. For this algorithm to be sat-isfactory for public-key encryption, the following requirements must be 

met 

 It is possible to find values of e, d, n such that M
ed

 mod n = M for all M < n. 

 It is relatively easy to calculate M
e
 and C

d
 for all values of M < n.  

It is infeasible to determine d given e and n 

The first two requirements are easily met. The third requirement can be met for large values of 

e and n. 

Figure 3.10 summarizes the RSA algorithm. Begin by selecting two prime numbers p and q and 

calculating their product n, which is the modulus for encryp-tion and decryption. Next, we need the 

quantity f(n), referred to as the Euler totient of n, which is the number of positive integers less than n and 

relatively prime to n. Then select an integer e that is relatively prime to f(n) [i.e., the greatest com-mon 

divisor of e and f(n) is 1]. Finally, calculate d as the multiplicative inverse of e, modulo f(n). It can be 

shown that d and e have the desired properties 
Suppose that user A has published its public key and that user B wishes to send the message 

M to A. Then B calculates C = M
e
 (mod n) and transmits C. On receipt of this ciphertext, user A 

decrypts by calculating M = C
d
 (mod n). 

An example, from [SING99], is shown in Figure 3.11. For this example, the keys were 
generated as follows: 

 

 Select two prime numbers, p = 17 and q = 11.  

Calculate n = pq = 17 × 11 = 187 

  



6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Calculate f(n) = (p - 1)(q - 1) = 16 × 10 = 160. 
 

 Select e such that e is relatively prime to f(n) = 160 and less than f(n); we choose e = 7. 

 Determine d such that de mod 160 = 1 and d < 160. The correct value is d = 23, because 23 

× 7 = 161 = (1 × 160) + 1. 

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}. The example 

shows the use of these keys for a plaintext input of M = 88. For 
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encryption, we need to calculate C = 88
7
 mod 187. Exploiting the properties of modular arithmetic, we 

can do this as follows: 

 

88
7
 mod 187 = [(88

4
 mod 187) × (88

2
 mod 187) × (88

1
 mod 187)] mod 187 

88
1
 mod 

187 = 88 

88
2
 mod 

187 = 7744 mod 187 = 77 

88
4
 mod 

187 = 59,969,536 mod 187 = 132 

88
7
 mod 

187 

= (88 × 77 × 132) mod 187 = 894,432 mod 187 
= 11 

 

For decryption, we calculate M = 11
23

 mod 187: 

 

11
23

 mod 187 = [(11
1
 mod 187) × (11

2
 mod 187) × (11

4
 mod 187) × 

(11
8
 mod 187) × (11

8
 mod 187)] mod 187 

 

11
1
 mod 187 = 11 

11
2
 mod 187 = 121 

11
4
 mod 187 = 14,641 mod 187 = 55 

11
8
 mod 187 = 214,358,881 mod 187 = 33 

11
23

 mod 187 = (11 × 121 × 55 × 33 × 33) mod 187 

 79,720,245 mod 187 = 88 
 

There are two possible approaches to defeating the RSA algorithm. The first is the brute-force 

approach: Try all possible private keys. Thus, the larger the number of bits in e and d, the more secure the 

algorithm. However, because the calculations involved (both in key generation and in 

encryption/decryption) are complex, the larger the size of the key, the slower the system will run. 

Most discussions of the cryptanalysis of RSA have focused on the task of fac-toring n into its two prime 

factors. For a large n with large prime factors, factoring is a hard problem, but not as hard as it used to 

beA striking illustration of this occurred in 1977; the three inventors of RSA challenged Scientific 

American readers to decode a cipher they printed in Martin Gardner’s “Mathematical Games” column 

[GARD77]. They offered a $100 reward for the return of a plaintext sentence, an event they predicted 

might not occur for some 40 quadrillion years. In April of 1994, a group working over the Internet and 

using over 1600 computers claimed the prize after only eight months of work [LEUT94]. This challenge 

used a public-key size (length of n) of 129 decimal digits (approximately 428 bits). This result does not 
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invalidate the use of RSA; it simply means that larger key sizes must be used. Currently, a 1024-bit key 

size (about 300 decimal digits) is considered strong enough for virtually all applications 

Diffie-Hellman Key Exchange 

The first published public-key algorithm appeared in the seminal paper by Diffie and Hellman that 

defined public-key cryptography [DIFF76] and is generally referred to as the Diffie-Hellman key 

exchange. A number of commercial products employ this key exchange technique 

The purpose of the algorithm is to enable two users to exchange a secret key securely that then can be 

used for subsequent encryption of messages. The algo-rithm itself is limited to the exchange of the keys. 

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete 

logarithms. Briefly, we can define the discrete logarithm in the following way. First, we define a primitive 

root of a prime number p as one whose powers generate all the integers from 1 to p - 1. That is, if a is a 

primitive root of the prime number p, then the numbers 

a mod p, a
2
 mod p, . . ., ap-1 mod p 

are distinct and consist of the integers from 1 through p - 1 in some permutation. For any integer 

b less than p and a primitive root a of prime number p, one can 

 

find a unique exponent i such that 

b = a
i
 mod p 0 … i … (p - 1) 

The exponent i is referred to as the discrete logarithm, or index, of b for the base a, mod p. We 

denote this value as dloga,p(b).
5 

THE ALGORITHM With this background, we can define the Diffie-Hellman key exchange, which is 
summarized in Figure 3.12. For this scheme, there are two publicly known numbers: a prime 
number q and an integer α that is a primitive root of q. Suppose the users A and B wish to 

exchange a key. User A selects a random integer XA < q and computes YA = aX
A mod q. Similarly, 

user B independently selects a random integer XB < q and computes YB = aX
B mod q.Each side 

keeps the X value private and makes the Y value available publicly to the other side. User A 

computes the key as K = 1YB2X
A mod q and user B computes the key as K = 1YA2X

B mod q. These 
two calculations produce identical results: 

 = 1YB2X
A mod q 

 

 1aX
B mod q2X

A mod q 

 1aX
B2X

A mod q  

 a
X

B
X

A mod q 

 1aX
A2X

B mod q  

 1aX
A mod q2X

B mod q 

 1YA2X
B mod q 

The result is that the two sides have exchanged a secret value. Furthermore, because XA and XB 

are private, an adversary only has the following ingredients to work with: q, a, YA, and YB. Thus, 
the adversary is forced to take a discrete loga-rithm to determine the key. For example, to 
determine the private key of user B, an adversary must compute 

XB = dlogα,q(YB) 
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The adversary can then calculate the key K in the same manner as user B does. The security of 

the Diffie-Hellman key exchange lies in the fact that, while it is 

relatively easy to calculate exponentials modulo a prime, it is very difficult to calcu-late discrete 

logarithms. For large primes, the latter task is considered infeasible. 

Here is an example. Key exchange is based on the use of the prime number 

 = 353 and a primitive root of 353, in this case α = 3. A and B select secret keys XA = 97 and XB = 
233, respectively. Each computes its public key: 

A computes YA = 397 mod 353 = 40.  
B computes YB  = 3233 mod 353 = 248 

After they exchange public keys, each can compute the common secret key: 

A computes K = (YB)XA mod 353 = 24897 mod 353 = 160.  

B computes K = (YA)XB mod 353 = 40233 mod 353 = 160  

We assume an attacker would have available the following information: 

q = 353; α  = 3; YA = 40; YB = 248 
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 In this simple example, it would be possible to determine the secret key 160 by 
brute force. In particular, an attacker E can determine the common key by discovering a 
solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248. The brute-
force approach is to calculate powers of 3 modulo 353, stopping when the result equals 
either 40 or 248. The desired answer is reached with the exponent value of 97, which 
provides 397 mod 353 = 40. 

With larger numbers, the problem becomes impractical 

KEY EXCHANGE PROTOCOLS Figure 3.13 shows a simple protocol that makes use of 
the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection with 
user B and use a secret key to encrypt messages on that connection. User A can generate 
a one-time private key XA, calculate YA, and send that to user B. User B responds by 
generating a private value XB, calculating YB, and sending YB to user A. Both users can 
now calculate the key. The necessary public values q and α would need to be known 
ahead of time. Alternatively, user A could pick values for q and α and include those in 
the first message. 

 

As an example of another use of the Diffie-Hellman algorithm, suppose that a group of users 

(e.g., all users on a LAN) each generate a long-lasting private value XA and calculate a public 

value YA. These public values, together with global public values for q and α, are stored in some 

central directory. At any time, user B can access user A’s public value, calculate a secret key, 

and use that to send an encrypted message to user A. If the central directory is trusted, then this 

form of communica-tion provides both confidentiality and a degree of authentication. Because 

only A and B can determine the key, no other user can read the message (confidentiality). 

Recipient A knows that only user B could have created a message using this key (authentication). 

However, the technique does not protect against replay attacks 

MAN-IN-THE-MIDDLE ATTACK The protocol depicted in Figure 3.13 is insecure 

against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys, and 

Darth is the adversary. The attack proceeds as follows: 

 

 Darth prepares for the attack by generating two random private keys XD1 and XD2, 
and then computing the corresponding public keys YD1 and YD2. 
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 Alice transmits YA to Bob. 

3. Darth 
intercepts  YA  and  transmits  YD1  to  Bob.  Darth  also  
calculates 

K2 = 1Y  2XD2 mod q. 

 Bob receives YD1 and calculates K1 = 1YD12
XB mod q. 

 

 Bob transmits YB to Alice.A 

6. 
Dart
h 

intercepts  YB   and  
transmits 

YD2   to  Alice.  Darth  
calculates 

 K1 = 1YB2XD1 mod q. 

1YD22
XA mod q. 7. 

Alice receives YD2 and calculates 

K2 = 
 

At this point, Bob and Alice think that they share a secret key. Instead Bob and Darth share 

secret key K1, and Alice and Darth share secret key K2. All future communication between Bob 

and Alice is compromised in the following way:  

 Alice sends an encrypted message M: E(K2, M). 
 

 Darth intercepts the encrypted message and decrypts it to recover M. 
 

 Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first case, Darth 

simply wants to eavesdrop on the communication without altering it. In the second case, 

Darth wants to modify the message going to Bob. 
 

The key exchange protocol is vulnerable to such an attack because it does not authenticate the 

participants. This vulnerability can be overcome with the use of digital signatures and public-key 

certificates 


